1
|
Lazzarini SG, Mosconi B, Cordani C, Arienti C, Cecchi F. Effectiveness of robot-assisted training in adults with Parkinson's disease: a systematic review and meta-analysis. J Neurol 2024; 272:22. [PMID: 39666104 DOI: 10.1007/s00415-024-12798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/13/2024]
Abstract
AIM This work aimed to update and summarize the existing evidence on the effectiveness of robot-assisted training (RAT) in adults with Parkinson's disease (PD). METHODS We conducted a systematic review with meta-analysis, reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PROSPERO CRD42022371124). Seven databases and two trial registries were searched for randomized-controlled trials (RCTs) addressing RAT alone or in addition to other treatments in adults with PD up to January 2024. Primary outcomes were disease-specific motor impairment, balance, mobility, freezing of gait, falls, number of people who fell at least once, and adverse events. Meta-analysis using a random-effects model was performed. Risk of bias (RoB) and certainty of the evidence for the primary outcomes were assessed using the Cochrane RoB Tool and the Grades of Recommendation Assessment, Development, and Evaluation (GRADE) approach, respectively. RESULTS Fifteen RCTs (629 randomized adults with PD) were included. Our results show that the evidence is very uncertain about the effectiveness of any kind of RAT, either focused on gait, balance or upper limb impairment, compared to any comparator (treadmill training, overground gait training, exercises without the exoskeleton, conventional physical therapy, balance training, and no treatment), mainly because of RoB, inconsistency in individual studies results, and very limited number (less than 200) of participants considered in each comparison. CONCLUSION In light of the aforementioned very low certainty evidence, clinical considerations should be drawn very carefully. High-quality studies are thus highly needed to investigate potential benefits, risks, and cost/benefit ratio of RAT in adults with PD.
Collapse
Affiliation(s)
- Stefano G Lazzarini
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Via A. Capecelatro 66, 20148, Milan, Italy
| | - Bianca Mosconi
- IRCCS Fondazione Don Carlo Gnocchi, Via A. Capecelatro 66, 20148, Milan, Italy.
| | - Claudio Cordani
- Department of Biomedical, Surgical and Dental Sciences, University "La Statale", Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Chiara Arienti
- Clinical Epidemiology and Research Center, Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Francesca Cecchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
2
|
Tseng KC, Wang L, Hsieh C, Wong AM. Portable robots for upper-limb rehabilitation after stroke: a systematic review and meta-analysis. Ann Med 2024; 56:2337735. [PMID: 38640459 PMCID: PMC11034452 DOI: 10.1080/07853890.2024.2337735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/28/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Robot-assisted upper-limb rehabilitation has been studied for many years, with many randomised controlled trials (RCTs) investigating the effects of robotic-assisted training on affected limbs. The current trend directs towards end-effector devices. However, most studies have focused on the effectiveness of rehabilitation devices, but studies on device sizes are relatively few. GOAL Systematically review the effect of a portable rehabilitation robot (PRR) on the rehabilitation effectiveness of paralysed upper limbs compared with non-robotic therapy. METHODS A meta-analysis was conducted on literature that included the Fugl-Meyer Assessment (FMA) obtained from the PubMed and Web of Science (WoS) electronic databases until June 2023. RESULTS A total of 9 studies, which included RCTs, were completed and a meta-analysis was conducted on 8 of them. The analysis involved 295 patients. The influence on upper-limb function before and after treatment in a clinical environment is analysed by comparing the experimental group using the portable upper-limb rehabilitation robot with the control group using conventional therapy. The result shows that portable robots prove to be effective (FMA: SMD = 0.696, 95% = 0.099 to.293, p < 0.05). DISCUSSION Both robot-assisted and conventional rehabilitation effects are comparable. In some studies, PRR performs better than conventional rehabilitation, but conventional treatments are still irreplaceable. Smaller size with better portability has its advantages, and portable upper-limb rehabilitation robots are feasible in clinical rehabilitation. CONCLUSION Although portable upper-limb rehabilitation robots are clinically beneficial, few studies have focused on portability. Further research should focus on modular design so that rehabilitation robots can be decomposed, which benefits remote rehabilitation and household applications.
Collapse
Affiliation(s)
- Kevin C. Tseng
- Department of Industrial Design, National Taipei University of Technology, Taipei, Taiwan, ROC
- Product Design and Development Laboratory, Taoyuan, Taiwan, ROC
| | - Le Wang
- Product Design and Development Laboratory, Taoyuan, Taiwan, ROC
| | - Chunkai Hsieh
- Product Design and Development Laboratory, Taoyuan, Taiwan, ROC
| | - Alice M. Wong
- Product Design and Development Laboratory, Taoyuan, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan, ROC
| |
Collapse
|
3
|
Aguirre-Ollinger G, Chua KSG, Ong PL, Kuah CWK, Plunkett TK, Ng CY, Khin LW, Goh KH, Chong WB, Low JAM, Mushtaq M, Samkharadze T, Kager S, Cheng HJ, Hussain A. Telerehabilitation using a 2-D planar arm rehabilitation robot for hemiparetic stroke: a feasibility study of clinic-to-home exergaming therapy. J Neuroeng Rehabil 2024; 21:207. [PMID: 39593101 PMCID: PMC11590240 DOI: 10.1186/s12984-024-01496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND We evaluated the feasibility, safety, and efficacy of a 2D-planar robot for minimally supervised home-based upper-limb therapy for post-stroke hemiparesis. METHODS The H-Man, end effector robot, combined with web-based software application for remote tele-monitoring were evaluated at homes of participants. Inclusion criteria were: strokes > 28 days, Fugl-Meyer Motor Assessment (FMA) > 10-60/66, presence of a carer and absence of medical contraindications. Participants performed self-directed, minimally supervised robotics-assisted therapy (RAT) at home for 30 consecutive days, after 2 therapist-supervised clinic on-boarding sessions. Web-based compliance measures were: accessed sessions of > 20 min/day, training minutes/day and active training hours/30 days. Clinical outcomes at weeks 0, 5 (post-training), 12 and 24 (follow-up) consisted of FMA, Action Research Arm Test (ARAT) and WHO-Stroke Specific Quality of Life (SSQOL). To estimate immediate economic benefits of the home-based robotic therapy, we performed cost-effectiveness analysis (CEA), followed by budget impact analysis (BIA). RESULTS Altogether, all 12 participants completed Home-RAT without adverse events; 9 (75.0%) were males, mean (SD) age, 59.4 years (9.5), median (IQR) stroke duration 38.6 weeks (25.4, 79.6) baseline FMA (0-66) 42.1 ± 13.2, ARAT (0-57) 25.4 ± 19.5, SSQOL (0-245) 185.3 ± 32.8. At week 5 follow-up, mean (SD) accessed days were 26.3 days ± 6.4, active training hours of 35.3 h ± 14.7/30 days, or ~ 6 days/week and 77 training minutes ± 20.9/day were observed. Significant gains were observed from baseline across time; ΔFMA 2.4 at week 5 (FMA 44.5, CI 95% 39.7-49.3, p < 0.05) and ΔFMA 3.7 at week 24 (FMA 45.8, CI 95% 40.5-51, p < 0.05); ΔARAT 2.6 at week 5 (ARAT 28.0, CI 95% 19.3-36.7, p < 0.05), and ΔARAT 4.8 at week 24 (ARAT 30.2, CI 95% 21.2-39.1, p < 0.05). At week 5 follow-up, 91% of participants rated their overall experience as satisfied or very satisfied. Incremental CEA observed savings of -S$144/per cure over 24 weeks, BIA-potentially 12% impact reduction over five years. CONCLUSIONS This study demonstrates the feasibility, acceptability, safety, clinical efficacy, and cost-effectiveness of a home-based, web-enabled telemonitored carer-supervised robotics-aided therapy. TRIAL REGISTRATION NCT05212181 ( https://clinicaltrials.gov ).
Collapse
Affiliation(s)
| | - Karen Sui Geok Chua
- Institute of Rehabilitation Excellence (IREx), Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poo Lee Ong
- Institute of Rehabilitation Excellence (IREx), Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher Wee Keong Kuah
- Institute of Rehabilitation Excellence (IREx), Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Tegan Kate Plunkett
- Institute of Rehabilitation Excellence (IREx), Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Chwee Yin Ng
- Institute of Rehabilitation Excellence (IREx), Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Lay Wai Khin
- Clinical Research and Innovation Office, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kim Huat Goh
- Nanyang Business School, Nanyang Technological University, Singapore, Singapore
| | - Wei Binh Chong
- Institute of Rehabilitation Excellence (IREx), Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Jaclyn Ai Mei Low
- Institute of Rehabilitation Excellence (IREx), Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Malaika Mushtaq
- Articares Pte Ltd, 67, Ayer Rajah Crescent, #07-11/12, Singapore, 139950, Singapore
| | | | | | | | - Asif Hussain
- Articares Pte Ltd, 67, Ayer Rajah Crescent, #07-11/12, Singapore, 139950, Singapore
| |
Collapse
|
4
|
Kiyono K, Tanabe S, Hirano S, Ii T, Nakagawa Y, Tan K, Saitoh E, Otaka Y. Effectiveness of Robotic Devices for Medical Rehabilitation: An Umbrella Review. J Clin Med 2024; 13:6616. [PMID: 39518755 PMCID: PMC11546060 DOI: 10.3390/jcm13216616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Clinical trials have investigated the efficacy of rehabilitation robotics for various pathological conditions, but the overall impact on rehabilitation practice remains unclear. We comprehensively examined and analyzed systematic reviews (SRs) of randomized controlled trials (RCTs) investigating rehabilitative interventions with robotic devices. Methods: Four databases were searched using term combinations of keywords related to robotic devices, rehabilitation, and SRs. The SR meta-analyses were categorized into "convincing", "highly suggestive", "suggestive", "weak", or "non-significant" depending on evidence strength and validity. Results: Overall, 62 SRs of 341 RCTs involving 14,522 participants were identified. Stroke was most frequently reported (40 SRs), followed by spinal cord injury (eight SRs), multiple sclerosis (four SRs), cerebral palsy (four SRs), Parkinson's disease (three SRs), and neurological disease (any disease causing limited upper- and lower-limb functioning; three SRs). Furthermore, 38, 21, and 3 SRs focused on lower-limb devices, upper-limb devices, and both upper- and lower-limb devices, respectively. Quantitative synthesis of robotic intervention effects was performed by 51 of 62 SRs. Robot-assisted training was effective for various outcome measures per disease. Meta-analyses offering suggestive evidence were limited to studies on stroke. Upper-limb devices were effective for motor control and activities of daily living, and lower-limb devices for walking independence in stroke. Conclusions: Robotic devices are useful for improving impairments and disabilities in several diseases. Further high-quality SRs including RCTs with large sample sizes and meta-analyses of these RCTs, particularly on non-stroke-related diseases, are required. Further research should also ascertain which type of robotic device is the most effective for improving each specific impairment or disability.
Collapse
Affiliation(s)
- Kei Kiyono
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (K.K.); (S.T.); (T.I.)
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (K.K.); (S.T.); (T.I.)
| | - Satoshi Hirano
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.H.); (Y.N.); (K.T.); (E.S.)
| | - Takuma Ii
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (K.K.); (S.T.); (T.I.)
| | - Yuki Nakagawa
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.H.); (Y.N.); (K.T.); (E.S.)
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Koki Tan
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.H.); (Y.N.); (K.T.); (E.S.)
| | - Eiichi Saitoh
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.H.); (Y.N.); (K.T.); (E.S.)
| | - Yohei Otaka
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.H.); (Y.N.); (K.T.); (E.S.)
| |
Collapse
|
5
|
Alashram AR. Combined robot-assisted therapy virtual reality for upper limb rehabilitation in stroke survivors: a systematic review of randomized controlled trials. Neurol Sci 2024; 45:5141-5155. [PMID: 38837113 DOI: 10.1007/s10072-024-07628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Upper limb impairments are among the most common consequences following a stroke. Recently, robot-assisted therapy (RT) and virtual reality (VR) have been used to improve upper limb function in stroke survivors. OBJECTIVES This review aims to investigate the effects of combined RT and VR on upper limb function in stroke survivors and to provide recommendations for researchers and clinicians in the medical field. METHODS We searched PubMed, SCOPUS, REHABDATA, PEDro, EMBASE, and Web of Science from inception to March 28, 2024. Randomized controlled trials (RCTs) involving stroke survivors that compared combined RT and VR interventions with either passive (i.e., sham, rest) or active (i.e., traditional therapy, VR, RT) interventions and assessed outcomes related to upper limb function (e.g., strength, muscle tone, or overall function) were included. The Cochrane Collaboration tool was used to evaluate the methodological quality of the included studies. RESULTS Six studies were included in this review. In total, 201 patients with stroke (mean age 57.84 years) were involved in this review. Four studies were considered 'high quality', while two were considered as 'moderate quality' on the Cochrane Collaboration tool. The findings showed inconsistent results for the effects of combined RT and VR interventions on upper limb function poststroke. CONCLUSION In conclusion, there are potential effects of combined RT and VR interventions on improving upper limb function, but further research is needed to confirm these findings, understand the underlying mechanisms, and assess the consistency and generalizability of the results.
Collapse
Affiliation(s)
- Anas R Alashram
- Department of Physiotherapy, Middle East University, Ammam, Jordan.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy.
| |
Collapse
|
6
|
Parmar N, Sirpal P, Sikora WA, Dewald JP, Refai HH, Yang Y. Beta-Band Cortico-Muscular Phase Coherence in Hemiparetic Stroke. Biomed Signal Process Control 2024; 97:106719. [PMID: 39493553 PMCID: PMC11526780 DOI: 10.1016/j.bspc.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Following a stroke, compensation for the loss of ipsilesional corticospinal and corticobulbar projections, results in increased reliance on contralesional motor pathways during paretic arm movement. Better understanding outcomes of post-stroke contralesional cortical adaptation outcomes may benefit more targeted post-stroke motor rehabilitation interventions. This proof-of-concept study involves eight healthy controls and ten post-stroke participants. Electroencephalographic (EEG) and deltoid electromyographic (EMG) data were collected during an upper-limb task. Phase coupling between beta-band motor cortex EEG and deltoid EMG was assessed using the Multi-Phase Locking Value (M-PLV) method. Different from classic cortico-muscular coherence, M-PLV allows for the calculation of dynamic phase coherence and delays, and is not affected by the non-stationary nature of EEG/EMG signals. Nerve conduction delay from the contralateral motor cortex to the deltoid muscle of the paretic arm was estimated. Our results show the ipsilateral (contralesional) motor cortex beta-band phase coherence behavior is altered in stroke participants, with significant differences in ipsilateral EEG-EMG coherence values, ipsilateral time course percentage above the significance threshold, and ipsilateral time course area above the significance threshold. M-PLV phase coherence analysis provides evidence for post-stroke contralesional motor adaptation, highlighting its increased role in the paretic shoulder abduction task. Nerve conduction delay between the motor cortices and deltoid muscle is significantly higher in stroke participants. Beta-band M-PLV phase coherence analysis shows greater phase-coherence distribution convergence between the ipsilateral (contralesional) and contralateral (ipsilesional) motor cortices in stroke participants, which is interpretable as evidence of maladaptive neural adaptation resulting from a greater reliance on the contralesional motor cortices.
Collapse
Affiliation(s)
- Nishaal Parmar
- University of Oklahoma, School of Electrical and Computer Engineering, Gallogly College of Engineering, Norman, Oklahoma, United States
| | - Parikshat Sirpal
- University of Oklahoma, School of Electrical and Computer Engineering, Gallogly College of Engineering, Norman, Oklahoma, United States
| | - William A Sikora
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
| | - Julius P.A. Dewald
- Northwestern University, Department of Physical Therapy and Human Movement Sciences, Chicago, Illinois, United States
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Hazem H. Refai
- University of Oklahoma, School of Electrical and Computer Engineering, Gallogly College of Engineering, Norman, Oklahoma, United States
| | - Yuan Yang
- Northwestern University, Department of Physical Therapy and Human Movement Sciences, Chicago, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Bioengineering, Grainger College of Engineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, Illinois, USA
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| |
Collapse
|
7
|
Facciorusso S, Malfitano C, Giordano M, Del Furia MJ, Mosconi B, Arienti C, Cordani C. Effectiveness of robotic rehabilitation for gait and balance in people with multiple sclerosis: a systematic review. J Neurol 2024; 271:7141-7155. [PMID: 39390289 DOI: 10.1007/s00415-024-12715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024]
Abstract
This review investigated the effectiveness of robotic-assisted gait training (RAGT) in improving gait and balance performance in adults with multiple sclerosis (MS). Databases and registers were searched from inception to December 2023 to identify randomized controlled trials (RCTs) that analyzed the effects of RAGT on gait speed, function, balance, fatigue, and adverse events. Three reviewers screened studies for eligibility and extracted key information such as participants and intervention characteristics, as well as outcomes of interest. The reviewers assessed the risk of bias of included studies using Cochrane Risk of Bias tool. From the 948 records identified, 8 RCTs were included, involving 335 participants. The studies have demonstrated significant heterogeneity in patient characteristics, intervention protocols, and outcomes measured. The risk of bias assessment revealed concerns, mainly in terms of performance and detection bias. The evidence is uncertain on the effectiveness of RAGT on balance and gait in people with MS, but a multimodal rehabilitation approach, including RAGT, should be encouraged. No serious adverse events seem to be associated with RAGT, suggesting that these interventions are generally safe for use in people with MS. Further studies of higher methodological quality should be led to confirm these positive results.
Collapse
Affiliation(s)
- Salvatore Facciorusso
- Spasticity and Movement Disorders "ReSTaRt", Physical Medicine and Rehabilitation Section, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Calogero Malfitano
- Department of Biomedical Sciences for Health, University "La Statale", Milan, Italy
- Azienda di Servizi alla Persona Istituti Milanesi Martinitt e Stelline e Pio Albergo Trivulzio, Milan, Italy
| | - Martino Giordano
- Unit of Pulmonary Rehabilitation, Research Hospital of Casatenovo, Italian National Research Centre on Aging (INRCA), Casatenovo, Italy
| | - Matteo Johann Del Furia
- Department of Biomedical, Surgical and Dental Sciences, University "La Statale", Milan, Italy
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Bianca Mosconi
- IRCCS Fondazione Don Carlo Gnocchi, Via A. Capecelatro 66, 20148, Milan, Italy.
| | - Chiara Arienti
- Clinical Epidemiology and Research Center, Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Claudio Cordani
- Department of Biomedical, Surgical and Dental Sciences, University "La Statale", Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
8
|
Akgün İ, Demirbüken İ, Timurtaş E, Pehlivan MK, Pehlivan AU, Polat MG, Francisco GE, Yozbatiran N. Exoskeleton-assisted upper limb rehabilitation after stroke: a randomized controlled trial. Neurol Res 2024; 46:1074-1082. [PMID: 39056363 DOI: 10.1080/01616412.2024.2381385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES The upper-limb exoskeleton training program which is repetetive and task-specific therapy can improve motor functions in patients with stroke. To compare the effect of an upper-limb exoskeleton training program with Bobath concept on upper limb motor functions in individuals with chronic stroke. METHODS Participants were randomly assigned to exoskeleton group (EG, n = 12) or to Bobath group (BG, n = 12). Interventions were matched in terms of session duration and total number of sessions and performed 2 times per week for 6-weeks. Primary outcome was Fugl-Meyer-Upper Extremity (FMA-UE). Secondary outcomes were Modified Ashworth Scale (elbow and wrist flexor muscles), Motor Activity Log-30 which is consist of two parts as an amount of use (AOU) and quality of movement (QOM), and The Nottingham Extended Activities of Daily Living (NEADL) index. RESULTS After 12-sessions of training, the mean (SD) FMA-UE score increased by 5.7 (2.9) in the EG, and 1.9 (1.5) points in the BG (p < .05). In total, 40% of participants (5/12) demonstrated a clinically meaningful improvement (≥5.25 points) in the FM-UE, while none of the participants reached MCID score in the bobath group. Changes in the AOU, QOM, and NEADL were significantly larger in the EG compared to BG (p < .05). 7/12 (58.33%) of participants for AOU and 5/12 (42%) of participants for QOM in the EG showed that clinically meaningful change. 5/12 of participants (42%) in the EG demonstrated ≥4.9-point increase in NEADL score. DISCUSSION High-intensity repetitive arm and hand exercises with an exoskeleton device was safe and feasible. Exoskeleton-assisted training demonstrated significant benefits in improving upper limb functions and quality of life in individuals after stroke.
Collapse
Affiliation(s)
- İrem Akgün
- Department of Physiothearpy and Rehabilitation, Faculty of Health Sciences, University of Marmara, Istanbul, Turkey
| | - İlkşan Demirbüken
- Department of Physiothearpy and Rehabilitation, Faculty of Health Sciences, University of Marmara, Istanbul, Turkey
| | - Eren Timurtaş
- Department of Physiothearpy and Rehabilitation, Faculty of Health Sciences, University of Marmara, Istanbul, Turkey
| | | | | | - Mine Gülden Polat
- Department of Physiothearpy and Rehabilitation, Faculty of Health Sciences, University of Marmara, Istanbul, Turkey
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, The NeuroRecovery Research Center at TIRR Memorial Hermann, Houston, TX, USA
| | - Nuray Yozbatiran
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, The NeuroRecovery Research Center at TIRR Memorial Hermann, Houston, TX, USA
| |
Collapse
|
9
|
Williamson JN, Mulyana B, Peng RHT, Jain S, Hassaneen W, Miranpuri A, Yang Y. How the Somatosensory System Adapts to the Motor Change in Stroke: A Hemispheric Shift? Med Hypotheses 2024; 192:111487. [PMID: 39525858 PMCID: PMC11542668 DOI: 10.1016/j.mehy.2024.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Previous studies found that post-stroke motor impairments are associated with damage to the lesioned corticospinal tract and a maladaptive increase in indirect contralesional motor pathways. How the somatosensory system adapts to the change in the use of motor pathways and the role of adaptive sensory feedback to the abnormal movement control of the paretic arm remains largely unknown. We hypothesize that following a unilateral stroke, there is an adaptive hemispheric shift of somatosensory processing toward the contralesional sensorimotor areas to provide sensory feedback support to the contralesional indirect motor pathways. This research could provide new insights related to somatosensory reorganization after stroke, which could enrich future hypothesis-driven therapeutic rehabilitation strategies from a sensory or sensory-motor perspective. Understanding how somatosensory information shifts may provide a target for a novel method to therapeutically prevent and mitigate the emergence and expression of upper limb motor impairments, following a stroke.
Collapse
Affiliation(s)
- Jordan N. Williamson
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
| | - Beni Mulyana
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
| | - Rita Huan-Ting Peng
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
| | - Sanjiv Jain
- Carle Foundation Hospital, Dr. Elizabeth Hosick Rehabilitation Center, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Wael Hassaneen
- Carle Illinois College of Medicine, Urbana, IL, USA
- Carle Foundation Hospital, Neuroscience Institute, Urbana, IL, USA
| | - Amrendra Miranpuri
- Carle Illinois College of Medicine, Urbana, IL, USA
- Carle Foundation Hospital, Neuroscience Institute, Urbana, IL, USA
| | - Yuan Yang
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Northwestern University, Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA
| |
Collapse
|
10
|
Yokoi A, Miyasaka H, Ogawa H, Itoh S, Okazaki H, Sonoda S. Effect of combining an upper limb rehabilitation support robot with task-oriented training on severe upper limb paralysis after spinal cord infarction: A case report. JAPANESE JOURNAL OF COMPREHENSIVE REHABILITATION SCIENCE 2024; 15:42-48. [PMID: 39435361 PMCID: PMC11493488 DOI: 10.11336/jjcrs.15.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/23/2024]
Abstract
Yokoi A, Miyasaka H, Ogawa H, Itoh S, Okazaki H, Sonoda S. Effect of combining an upper limb rehabilitation support robot with task-oriented training on severe upper limb paralysis after spinal cord infarction: A case report. Jpn J Compr Rehabil Sci 2024; 15: 42-48. Objective This study examined the effect of an upper limb rehabilitation support robot and task-oriented training on treating a patient with severe upper limb paralysis after spinal cord infarction who required total assistance with self-care. Case A 60-year-old man was diagnosed with watershed infarction in the C5-7 spinal cord region. He was admitted to our hospital 18 days after onset of the disease. The patient had severe paralysis of both upper limbs, and the total score for the Functional Independence Measure (FIM) motor items was 25 points. Regarding the Canadian Occupational Performance Measure (COPM), three goals were listed: "eating," "going to the toilet," and "raising one's hand in a meeting." The performance of "going to the toilet" was rated three points, and the performance and satisfaction of other items were one point. The intervention was practiced for 1 h/day, mainly items selected from COPM. The training using an upper limb rehabilitation support robot was added for 1 h/day. The upper limb rehabilitation support robot adjusted the range of motion and dosage according to the patient's motor function level and recovery status. About three months after admission, he improved until his upper limbs could be held in space on activities of daily living (ADL), and the total score for the FIM motor items improved to 81 points. The satisfaction and performance of all items listed as goals in COPM at the time of admission improved to ten points, and the patient was discharged 108 days after admission. Conclusions The upper limb rehabilitation support robot training that matched the level of motor function improved the motor function and active range of motion (ROM). ADL generalization through task-oriented training helped improve self-care. The use of COPM for the training to enable the patient to acquire the ability to perform meaningful activities led to improved COPM performance and satisfaction.
Collapse
Affiliation(s)
| | - Hiroyuki Miyasaka
- Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie, Japan
| | - Hiroki Ogawa
- Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie, Japan
| | - Shota Itoh
- Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Hideto Okazaki
- Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie, Japan
- Department of Liaison Rehabilitation Medicine, School of Medicine, Fujita Health University, Tsu, Mie, Japan
| | - Shigeru Sonoda
- Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie, Japan
- Department of Rehabilitation Medicine II, School of Medicine, Fujita Health University, Tsu, Mie, Japan
| |
Collapse
|
11
|
Samuelkamaleshkumar S, Annpatriciacatherine S, Jithu A, Jeromedanypraveenraj J, Senthilvelkumar T, Augustine TA, Chalageri PH, George J, Thomas R. Comparative Scoping Review: Robot-Assisted Upper Limb Stroke Rehabilitation in Low- and Middle-Income Countries Versus High-Income Nations. Arch Phys Med Rehabil 2024:S0003-9993(24)01266-8. [PMID: 39395709 DOI: 10.1016/j.apmr.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE To examine robotic interventions for upper limb rehabilitation poststroke, focusing on geographic distribution, stroke chronicity, outcome measures, outcomes of robotic interventions, and publication trends in low- and middle-income countries (LMICs) compared with high-income countries (HICs). DATA SOURCES Using Joanna Briggs Institute methodology and Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews guidelines, PubMed, CENTRAL, Embase, CINAHL, and PEDro databases were searched for studies on upper extremity rehabilitation with robotics poststroke. STUDY SELECTION This review focused on randomized controlled trials (RCTs) published between 2012 and 2024 that examined rehabilitation robots for upper limb impairments caused by stroke. The studies included adults aged ≥18 years in the acute, subacute, or chronic recovery phases. Eligible trials involved using robotic devices, independently or combined with other interventions. Only RCTs with 2 or more arms were considered, and all included studies were published in English. DATA EXTRACTION Reviewers independently extracted data on study characteristics, stroke chronicity, outcome measures, outcomes of robotic interventions, and temporal trends. DATA SYNTHESIS Of 129 articles meeting the criteria, 107 were from HICs, and 22 were from LMICs. Major contributors from HICs included Italy, Taiwan, and the USA, whereas China was a significant contributor among LMICs. Most studies focused on patients with chronic stroke, with varying assessment tools, the most common being the Fugl-Meyer Upper Extremity Evaluation. Positive outcomes were reported across studies, and recent research activity has increased in both settings. CONCLUSIONS This review underscores the expanding research on robotic therapy for upper limb rehabilitation in patients with stroke, primarily from HICs with limited input from low- and middle-income nations. Although positive outcomes were frequently observed, disparities between high-income and low-and middle-income countries were clear. The growing research indicates rising interest and advancements in this domain.
Collapse
Affiliation(s)
| | | | - Abrahamalex Jithu
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | - Thomas Anand Augustine
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| | - Prashanth H Chalageri
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jacob George
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| | - Raji Thomas
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Tay SS, Zhang F, Visperas CA, Koh XH, Lau B, Neo JRE. Robot-mediated impairment-oriented and task-specific training on upper limb post stroke: feasibility and preliminary effects on physical function and quality of life. Front Neurol 2024; 15:1415773. [PMID: 39463787 PMCID: PMC11505121 DOI: 10.3389/fneur.2024.1415773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024] Open
Abstract
Objective To assess the feasibility and safety of conducting robot-mediated impairment training (RMIT) and robot-mediated task-specific training (RMTT). The device deployed is the Optimo Regen (OR®), capable of delivering both impairment-oriented training and task-specific training. Methods This was a single-centre, randomized, single-blinded, two-arm, parallel group, controlled trial. Patients fulfilling criteria were randomized into either the RMIT or RMIT + RMTT group and provided with 20 h of robotic therapy on top of standard care. Results A total of 4 patients were recruited, with 2 patients receiving treatment in each arm. The study was feasible, with a 66.7% enrolment rate, 75% completion rate, and 100% attendance for each intervention session. We achieved a 90% satisfaction rate with no serious adverse effects. All patients had improvement of motor power, Fugl-Meyer Assessment-Upper Extremity (FMA-UE), Functional Independence Measure (FIM), Hospital Anxiety and Depression Scale (HADS), and quality of life scores at 1 month. FIM continued to improve at 3 months post-commencement of intervention. There was relative ease of use of the device. Conclusion This trial is feasible. A full-scale study is warranted, to compare RMIT against RMTT, which is a novel application.
Collapse
Affiliation(s)
- San San Tay
- Department of Rehabilitation Medicine, Changi General Hospital, Singapore, Singapore
| | - Fuquan Zhang
- Department of Rehabilitation Medicine, Changi General Hospital, Singapore, Singapore
| | | | - Xuan Han Koh
- Department of Health Services Research, Changi General Hospital, Singapore, Singapore
| | - Borisut Lau
- Department of Rehabilitative Services, Changi General Hospital, Singapore, Singapore
| | - Jin Rui Edmund Neo
- Department of Rehabilitation Medicine, Changi General Hospital, Singapore, Singapore
| |
Collapse
|
13
|
Bernal-Jiménez JJ, Dileone M, Mordillo-Mateos L, Martín-Conty JL, Durantez-Fernández C, Viñuela A, Martín-Rodríguez F, Lerin-Calvo A, Alcántara-Porcuna V, Polonio-López B. Combining Transcranial Direct Current Stimulation With Hand Robotic Rehabilitation in Chronic Stroke Patients: A Double-Blind Randomized Clinical Trial. Am J Phys Med Rehabil 2024; 103:875-882. [PMID: 38363693 DOI: 10.1097/phm.0000000000002446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
OBJECTIVE This study aimed to assess the impact of combining transcranial direct current stimulation with end-effector robot-assisted treatment on upper limb function, spasticity, and hand dexterity in chronic stroke patients. DESIGN This was a prospective, double-blind randomized trial with 20 equally allocated stroke patients. The experimental group received dual transcranial direct current stimulation (anode over affected M1, cathode over contralateral M1) alongside robot-assisted treatment, while the control group received sham transcranial direct current stimulation with the same electrode placement + robot-assisted treatment. Each patient underwent 20 combined transcranial direct current stimulation and robot-assisted treatment sessions. The primary outcome measure was the Fugl-Meyer Upper Limb motor score, with secondary outcomes including AMADEO kinematic measures, Action Research Arm Test, and Functional Independence Measure. Assessments were conducted at baseline, after rehabilitation, and 3 mos later. RESULTS Combining bilateral transcranial direct current stimulation with robot-assisted treatment did not yield additional improvements in Fugl-Meyer Upper Limb motor score, Functional Independence Measure, or Action Research Arm Test scores among stroke patients. However, the real transcranial direct current stimulation group showed enhanced finger flexion in the affected hand based on AMADEO kinematic measures. CONCLUSIONS The addition of transcranial direct current stimulation to robot-assisted treatment did not result in significant overall functional improvements in chronic stroke patients. However, a benefit was observed in finger flexion of the affected hand.
Collapse
Affiliation(s)
- Juan J Bernal-Jiménez
- From the Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain (JJB-J, MD, LM-M, JLM-C, AV, VA-P, BP-L); Technological Innovation Applied to Health Research Group (ITAS), Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain (JJB-J, MD, LM-M, JLM-C, AV, VA-P, BP-L); Neurology Department, Hospital Nuestra Señora del Prado, SESCAM Servicio de Salud de Castilla-La Mancha, Talavera de la Reina, Spain (DM); Department of Nursing, Faculty of Nursing, University of Valladolid, Valladolid, Spain (CD-F); Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain (FM-R); Prehospital Early Warning Scoring-System Investigation Group, Valladolid, Spain (FM-R); Advanced Life Support, Emergency Medical Services (SACYL), Valladolid, Spain (FM-R); Neuron Neurobotic, Madrid, Spain (AL-C); and Department of Physiotherapy, Faculty of Health Sciences, University La Salle, Madrid, Spain (AL-C)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Egger M, Bergmann J, Krewer C, Jahn K, Müller F. Sensory Stimulation and Robot-Assisted Arm Training After Stroke: A Randomized Controlled Trial. J Neurol Phys Ther 2024; 48:178-187. [PMID: 38912852 DOI: 10.1097/npt.0000000000000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND PURPOSE Functional recovery after stroke is often limited, despite various treatment methods such as robot-assisted therapy. Repetitive sensory stimulation (RSS) might be a promising add-on therapy that is thought to directly drive plasticity processes. First positive effects on sensorimotor function have been shown. However, clinical studies are scarce, and the effect of RSS combined with robot-assisted training has not been evaluated yet. Therefore, our objective was to investigate the feasibility and sensorimotor effects of RSS (compared to a control group receiving sham stimulation) followed by robot-assisted arm therapy. METHODS Forty participants in the subacute phase (4.4-23.9 weeks) after stroke with a moderate to severe arm paresis were randomized to RSS or control group. Participants received 12 sessions of (sham-) stimulation within 3 weeks. Stimulation of the fingertips and the robot-assisted therapy were each applied in 45-min sessions. Motor and sensory outcome assessments (e.g. Fugl-Meyer-Assessment, grip strength) were measured at baseline, post intervention and at a 3-week follow-up. RESULTS Participants in both groups improved their sensorimotor function from baseline to post and follow-up measurements, as illustrated by most motor and sensory outcome assessments. However, no significant group effects were found for any measures at any time ( P > 0.058). Stimulations were well accepted, no safety issues arose. DISCUSSION AND CONCLUSIONS Feasibility of robot-assisted therapy with preceding RSS in persons with moderate to severe paresis was demonstrated. However, RSS preceding robot-assisted training failed to show a preliminary effect compared to the control intervention. Participants might have been too severely affected to identify changes driven by the RSS, or these might have been diluted or more difficult to identify because of the additional robotic training and neurorehabilitation. VIDEO ABSTRACT AVAILABLE for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A478 ).
Collapse
Affiliation(s)
- Marion Egger
- Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany (M.E., J.B., C.K., K.J., F.M.); Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany (M.E.); German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität in Munich, Munich, Germany (J.B., K.J.); and Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany (C.K.)
| | | | | | | | | |
Collapse
|
15
|
Xu F, Dai Z, Ye Y, Hu P, Cheng H. Bibliometric and visualized analysis of the application of artificial intelligence in stroke. Front Neurosci 2024; 18:1411538. [PMID: 39323917 PMCID: PMC11422388 DOI: 10.3389/fnins.2024.1411538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Background Stroke stands as a prominent cause of mortality and disability worldwide, posing a major public health concern. Recent years have witnessed rapid advancements in artificial intelligence (AI). Studies have explored the utilization of AI in imaging analysis, assistive rehabilitation, treatment, clinical decision-making, and outcome and risk prediction concerning stroke. However, there is still a lack of systematic bibliometric analysis to discern the current research status, hotspots, and possible future development trends of AI applications in stroke. Methods The publications on the application of AI in stroke were retrieved from the Web of Science Core Collection, spanning 2004-2024. Only articles or reviews published in English were included in this study. Subsequently, a manual screening process was employed to eliminate literature not pertinent to the topic. Visualization diagrams for comprehensive and in-depth analysis of the included literature were generated using CiteSpace, VOSviewer, and Charticulator. Results This bibliometric analysis included a total of 2,447 papers, and the annual publication volume shows a notable upward trajectory. The most prolific authors, countries, and institutions are Dukelow, Sean P., China, and the University of Calgary, respectively, making significant contributions to the advancement of this field. Notably, stable collaborative networks among authors and institutions have formed. Through clustering and citation burst analysis of keywords and references, the current research hotspots have been identified, including machine learning, deep learning, and AI applications in stroke rehabilitation and imaging for early diagnosis. Moreover, emerging research trends focus on machine learning as well as stroke outcomes and risk prediction. Conclusion This study provides a comprehensive and in-depth analysis of the literature regarding AI in stroke, facilitating a rapid comprehension of the development status, cooperative networks, and research priorities within the field. Furthermore, our analysis may provide a certain reference and guidance for future research endeavors.
Collapse
Affiliation(s)
- Fangyuan Xu
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Ziliang Dai
- Department of Rehabilitation Medicine, The Second Hospital of Wuhan Iron and Steel (Group) Corp., Wuhan, China
| | - Yu Ye
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Peijia Hu
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hongliang Cheng
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Meridian Viscera Correlationship, Hefei, China
| |
Collapse
|
16
|
Chiu YT, Liang CC, Yu Cheng H, Lin CH, Chen JC. Alternating Hot-Cold Water Immersion Facilitates Motor Function Recovery in the Paretic Upper Limb After Stroke: A Pilot Randomized Controlled Trial. Arch Phys Med Rehabil 2024; 105:1642-1648. [PMID: 38734047 DOI: 10.1016/j.apmr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE To assess the effectiveness of alternating hot-cold water immersion (AHCWI) in patients with acute stroke. DESIGN A single-blind pilot randomized controlled trial. SETTING Department of Rehabilitation Medicine of a medical center. PARTICIPANTS Early stroke survivors (N=24) with moderate-to-severe arm paresis. INTERVENTIONS In addition to conventional rehabilitation, eligible patients were randomly assigned to an AHCWI group (n=12, for AHCWI) or a control group (n=12, for upper limb [UL] cycling exercises) 5 times per week for 6 weeks. MAIN OUTCOME MEASURES The Fugl-Meyer Assessment motor-UL (FMA-UL) score, Motricity Index-UL (MI-UL) score, modified Motor Assessment Scale (MMAS; including its UL sections, MMAS-UL) score, Berg Balance Scale score, Barthel Index (BI), and modified Ashworth Scale score were assessed by the same uninvolved physical therapist at baseline and after 4 and 6 weeks of intervention. RESULTS Compared with the control group, the AHCWI group performed better, with significant group effects (P<.05), and exhibited significant improvements in FMA-UL, MI-UL, and MMAS-UL scores at 4 and 6 weeks (P<.05). Although the remaining outcomes were not significantly different, they favored the AHCWI group. Notably, a significant difference was observed in the BI at 4 weeks (P=.032). Significant changes in the muscle tone or adverse effects were not observed in either group after the intervention. CONCLUSIONS AHCWI with stroke rehabilitation is feasible and may facilitate motor function recovery of the paretic UL after a stroke.
Collapse
Affiliation(s)
- Yu-Ting Chiu
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chung-Chao Liang
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hung- Yu Cheng
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Hsiang Lin
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Physical Therapy, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jia-Ching Chen
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Physical Therapy, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
17
|
Banyai AD, Brișan C. Robotics in Physical Rehabilitation: Systematic Review. Healthcare (Basel) 2024; 12:1720. [PMID: 39273744 PMCID: PMC11395122 DOI: 10.3390/healthcare12171720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
As the global prevalence of motor disabilities continues to rise, there is a pressing need for advanced solutions in physical rehabilitation. This systematic review examines the progress and challenges of implementing robotic technologies in the motor rehabilitation of patients with physical disabilities. The integration of robotic technologies such as exoskeletons, assistive training devices, and brain-computer interface systems holds significant promise for enhancing functional recovery and patient autonomy. The review synthesizes findings from the most important studies, focusing on the clinical effectiveness of robotic interventions in comparison to traditional rehabilitation methods. The analysis reveals that robotic therapies can significantly improve motor function, strength, co-ordination, and dexterity. Robotic systems also support neuroplasticity, enabling patients to relearn lost motor skills through precise, controlled, and repetitive exercises. However, the adoption of these technologies is hindered by high costs, the need for specialized training, and limited accessibility. Key insights from the review highlight the necessity of personalizing robotic therapies to meet individual patient needs, alongside addressing technical, economic, social, and cultural barriers. The review also underscores the importance of continued research to optimize these technologies and develop effective implementation strategies. By overcoming these challenges, robotic technologies can revolutionize motor rehabilitation, improving quality of life and social integration for individuals with motor disabilities.
Collapse
Affiliation(s)
- Adriana Daniela Banyai
- Department of Mechatronics and Machine Dynamics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cornel Brișan
- Department of Mechatronics and Machine Dynamics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Wang J, Li Y, Qi L, Mamtilahun M, Liu C, Liu Z, Shi R, Wu S, Yang GY. Advanced rehabilitation in ischaemic stroke research. Stroke Vasc Neurol 2024; 9:328-343. [PMID: 37788912 PMCID: PMC11420926 DOI: 10.1136/svn-2022-002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 10/05/2023] Open
Abstract
At present, due to the rapid progress of treatment technology in the acute phase of ischaemic stroke, the mortality of patients has been greatly reduced but the number of disabled survivors is increasing, and most of them are elderly patients. Physicians and rehabilitation therapists pay attention to develop all kinds of therapist techniques including physical therapy techniques, robot-assisted technology and artificial intelligence technology, and study the molecular, cellular or synergistic mechanisms of rehabilitation therapies to promote the effect of rehabilitation therapy. Here, we discussed different animal and in vitro models of ischaemic stroke for rehabilitation studies; the compound concept and technology of neurological rehabilitation; all kinds of biological mechanisms of physical therapy; the significance, assessment and efficacy of neurological rehabilitation; the application of brain-computer interface, rehabilitation robotic and non-invasive brain stimulation technology in stroke rehabilitation.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Lin Qi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Li X, He Y, Wang D, Rezaei MJ. Stroke rehabilitation: from diagnosis to therapy. Front Neurol 2024; 15:1402729. [PMID: 39193145 PMCID: PMC11347453 DOI: 10.3389/fneur.2024.1402729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Stroke remains a significant global health burden, necessitating comprehensive and innovative approaches in rehabilitation to optimize recovery outcomes. This paper provides a thorough exploration of rehabilitation strategies in stroke management, focusing on diagnostic methods, acute management, and diverse modalities encompassing physical, occupational, speech, and cognitive therapies. Emphasizing the importance of early identification of rehabilitation needs and leveraging technological advancements, including neurostimulation techniques and assistive technologies, this manuscript highlights the challenges and opportunities in stroke rehabilitation. Additionally, it discusses future directions, such as personalized rehabilitation approaches, neuroplasticity concepts, and advancements in assistive technologies, which hold promise in reshaping the landscape of stroke rehabilitation. By delineating these multifaceted aspects, this manuscript aims to provide insights and directions for optimizing stroke rehabilitation practices and enhancing the quality of life for stroke survivors.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanjin He
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dawu Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
20
|
Kannenberg A, Rupp R, Wurdeman SR, Frossard L. Editorial: Advances in technology-assisted rehabilitation. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1465671. [PMID: 39165605 PMCID: PMC11334218 DOI: 10.3389/fresc.2024.1465671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Affiliation(s)
- Andreas Kannenberg
- Department of Clinical Research & Services, Otto Bock Healthcare LP, Austin, TX, United States
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Shane R. Wurdeman
- Hanger Institute of Clinical Research & Education, Hanger, Inc., Austin, TX, United States
| | - Laurent Frossard
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
21
|
Curtis S, Sheehan L, Buchman E, Bhattacharjya S. Clinicians' perspectives and usage of rehabilitation technology: a survey. Disabil Rehabil Assist Technol 2024; 19:2298-2305. [PMID: 37987735 DOI: 10.1080/17483107.2023.2284365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE The aim of this study was to investigate clinicians' perspectives regarding their usage of rehabilitation technology in their day-to-day practice and uncover the factors that impact clinicians' use of rehabilitation technology in their daily practice. MATERIALS AND METHODS An online survey was used to gather cross-sectional data from American occupational therapists, occupational therapy assistants, physical therapists, physical therapy assistants, and speech language pathologists. This survey used Likert-scale, multiple choice, and free-response questions. RESULTS Approximately half (n = 56/105, 53.3%) of our clinicians reported using rehabilitation in their daily practice. Less than 20% (n = 18/105, 17.1%) of the respondents strongly agreed that they felt comfortable implementing new rehabilitation technology, and few reported that their workplace encouraged (n = 16/85, 18.8%) or strongly encouraged (n = 14/85, 16.5%) the use of rehabilitation technology in practice. Additionally, excluding the 2011-2020 graduate clinicians that reported that they had not learned about rehabilitation technology in school or fieldwork, few reported feeling prepared (n = 14/97, 14.4%) or very prepared (n = 4/97, 4.1%) to use rehabilitation technology after graduation. CONCLUSIONS Our findings have revealed a sizable knowledge-to-practice gap in regard to clinicians' preparedness to engage with and advocate for rehabilitation technology in their day-to-day practice.
Collapse
Affiliation(s)
- Sarah Curtis
- Department of Occupational Therapy, GA State University, Atlanta, GA, USA
| | | | - Emily Buchman
- Department of Occupational Therapy, GA State University, Atlanta, GA, USA
| | | |
Collapse
|
22
|
Takenaka K, Shima K, Shimatani K. Investigation of Motor Learning Effects Using a Hybrid Rehabilitation System Based on Motion Estimation. SENSORS (BASEL, SWITZERLAND) 2024; 24:3496. [PMID: 38894287 PMCID: PMC11175305 DOI: 10.3390/s24113496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Upper-limb paralysis requires extensive rehabilitation to recover functionality for everyday living, and such assistance can be supported with robot technology. Against such a background, we have proposed an electromyography (EMG)-driven hybrid rehabilitation system based on motion estimation using a probabilistic neural network. The system controls a robot and functional electrical stimulation (FES) from movement estimation using EMG signals based on the user's intention, enabling intuitive learning of joint motion and muscle contraction capacity even for multiple motions. In this study, hybrid and visual-feedback training were conducted with pointing movements involving the non-dominant wrist, and the motor learning effect was examined via quantitative evaluation of accuracy, stability, and smoothness. The results show that hybrid instruction was as effective as visual feedback training in all aspects. Accordingly, passive hybrid instruction using the proposed system can be considered effective in promoting motor learning and rehabilitation for paralysis with inability to perform voluntary movements.
Collapse
Affiliation(s)
- Kensuke Takenaka
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan
| | - Keisuke Shima
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan
| | - Koji Shimatani
- Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan;
| |
Collapse
|
23
|
Li Y, Wang M, Wang L, Cao Y, Liu Y, Zhao Y, Yuan R, Yang M, Lu S, Sun Z, Zhou F, Qian Z, Kang H. Advances in the Application of AI Robots in Critical Care: Scoping Review. J Med Internet Res 2024; 26:e54095. [PMID: 38801765 PMCID: PMC11165292 DOI: 10.2196/54095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND In recent epochs, the field of critical medicine has experienced significant advancements due to the integration of artificial intelligence (AI). Specifically, AI robots have evolved from theoretical concepts to being actively implemented in clinical trials and applications. The intensive care unit (ICU), known for its reliance on a vast amount of medical information, presents a promising avenue for the deployment of robotic AI, anticipated to bring substantial improvements to patient care. OBJECTIVE This review aims to comprehensively summarize the current state of AI robots in the field of critical care by searching for previous studies, developments, and applications of AI robots related to ICU wards. In addition, it seeks to address the ethical challenges arising from their use, including concerns related to safety, patient privacy, responsibility delineation, and cost-benefit analysis. METHODS Following the scoping review framework proposed by Arksey and O'Malley and the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we conducted a scoping review to delineate the breadth of research in this field of AI robots in ICU and reported the findings. The literature search was carried out on May 1, 2023, across 3 databases: PubMed, Embase, and the IEEE Xplore Digital Library. Eligible publications were initially screened based on their titles and abstracts. Publications that passed the preliminary screening underwent a comprehensive review. Various research characteristics were extracted, summarized, and analyzed from the final publications. RESULTS Of the 5908 publications screened, 77 (1.3%) underwent a full review. These studies collectively spanned 21 ICU robotics projects, encompassing their system development and testing, clinical trials, and approval processes. Upon an expert-reviewed classification framework, these were categorized into 5 main types: therapeutic assistance robots, nursing assistance robots, rehabilitation assistance robots, telepresence robots, and logistics and disinfection robots. Most of these are already widely deployed and commercialized in ICUs, although a select few remain under testing. All robotic systems and tools are engineered to deliver more personalized, convenient, and intelligent medical services to patients in the ICU, concurrently aiming to reduce the substantial workload on ICU medical staff and promote therapeutic and care procedures. This review further explored the prevailing challenges, particularly focusing on ethical and safety concerns, proposing viable solutions or methodologies, and illustrating the prospective capabilities and potential of AI-driven robotic technologies in the ICU environment. Ultimately, we foresee a pivotal role for robots in a future scenario of a fully automated continuum from admission to discharge within the ICU. CONCLUSIONS This review highlights the potential of AI robots to transform ICU care by improving patient treatment, support, and rehabilitation processes. However, it also recognizes the ethical complexities and operational challenges that come with their implementation, offering possible solutions for future development and optimization.
Collapse
Affiliation(s)
- Yun Li
- Medical School of Chinese PLA, Beijing, China
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Medical School of Chinese PLA, Beijing, China
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lu Wang
- Medical School of Chinese PLA, Beijing, China
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuan Cao
- The Second Hospital, Hebei Medical University, Hebei, China
| | - Yuyan Liu
- Medical School of Chinese PLA, Beijing, China
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhao
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Rui Yuan
- Medical School of Chinese PLA, Beijing, China
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Mengmeng Yang
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Siqian Lu
- Beidou Academic & Research Center, Beidou Life Science, Guangzhou, China
| | - Zhichao Sun
- Beidou Academic & Research Center, Beidou Life Science, Guangzhou, China
| | - Feihu Zhou
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhirong Qian
- Beidou Academic & Research Center, Beidou Life Science, Guangzhou, China
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fujian, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongjun Kang
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Al-Dujailii AQ, Hasan AF, Humaidi AJ, Al-Jodah A. Anti-disturbance control design of Exoskeleton Knee robotic system for rehabilitative care. Heliyon 2024; 10:e28911. [PMID: 38694091 PMCID: PMC11061691 DOI: 10.1016/j.heliyon.2024.e28911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 05/03/2024] Open
Abstract
In this study, Active Disturbance Rejection Control (ADRC) has been designed for motion control of knee-joint based on exoskeleton medical robot. The extended state observer (ESO) is the main part of ADRC structure, which is responsible for estimating both actual states and system uncertainties. The proposed control scheme has adopted two versions of observers as disturbance estimators: linear extended state observer (LESO) and nonlinear extended state observer (NESO). The efficacy of proposed ADRC is strongly related to the performance of used ESO. As such, a comparison study has been conducted to evaluate the performance of two ADRCs in terms of disturbance-rejection capability and robustness to variation in system parameters under two version of ESO (LSO and NLESO). In order to enhance the dynamic performance of ADRC, Particle Swarm Optimization (PSO) algorithm has been used to optimally tune the design parameters of control scheme. To show the effectiveness of proposed LESO-based ADRC and NLESO-based ADRC, numerical simulation have been conducted. The proposed controllers have tested for an uncertain exoskeleton-knee system, where a 20% change in parameters was permitted over their nominal values. The results indicate that the ADRC algorithm based on LESO outperforms the one based on NESO in terms of disturbances rejection ability and robustness to parameters' variations.
Collapse
Affiliation(s)
- Ayad Q. Al-Dujailii
- Electrical Engineering Technical College, Middle Technical University, Baghdad, 10022, Iraq
| | - Alaq F. Hasan
- Technical Engineering College, Middle Technical University, Baghdad, Iraq
| | - Amjad J. Humaidi
- Control and Systems Engineering Department, University of Technology, Baghdad, Iraq
| | - Ammar Al-Jodah
- University of Western Australia, Perth, WA 6907, Australia
| |
Collapse
|
25
|
Feingold-Polak R, Barzel O, Levy-Tzedek S. Socially Assistive Robot for Stroke Rehabilitation: A Long-Term in-the-Wild Pilot Randomized Controlled Trial. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1616-1626. [PMID: 38598401 DOI: 10.1109/tnsre.2024.3387320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Socially assistive robots (SARs) have been suggested as a platform for post-stroke training. It is not yet known whether long-term interaction with a SAR can lead to an improvement in the functional ability of individuals post-stroke. The aim of this pilot study was to compare the changes in motor ability and quality of life following a long-term intervention for upper-limb rehabilitation of post-stroke individuals using three approaches: 1) training with a SAR in addition to usual care; 2) training with a computer in addition to usual care; and 3) usual care with no additional intervention. Thirty-three post-stroke patients with moderate-severe to mild impairment were randomly allocated into three groups: two intervention groups - one with a SAR (ROBOT group) and one with a computer (COMPUTER group) - and one control group with no intervention (CONTROL group). The intervention sessions took place three times/week, for a total of 15 sessions/participant; The study was conducted over a period of two years, during which 306 sessions were held. Twenty-six participants completed the study. Participants in the ROBOT group significantly improved in their kinematic and clinical measures which included smoothness of movement, action research arm test (ARAT), and Fugl-Meyer upper-extremity assessment (FMA-UE). No significant improvement in these measures was found in the COMPUTER or the control groups. 100% of the participants in the SAR group gained improvement which reached - or exceeded - the minimal clinically important difference in the ARAT, the gold standard for upper-extremity activity performance post-stroke. This study demonstrates both the feasibility and the clinical benefit of using a SAR for long-term interaction with post-stroke individuals as part of their rehabilitation program. Trial Registration: ClinicalTrials.gov NCT03651063.
Collapse
|
26
|
Jeon SY, Ki M, Shin JH. Resistive versus active assisted robotic training for the upper limb after a stroke: A randomized controlled study. Ann Phys Rehabil Med 2024; 67:101789. [PMID: 38118340 DOI: 10.1016/j.rehab.2023.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Selection of a suitable training modality according to the status of upper limb function can maximize the effects of robotic rehabilitation; therefore, it is necessary to identify the optimal training modality. OBJECTIVES This study aimed to compare robotic rehabilitation approaches incorporating either resistance training (RET) or active-assisted training (AAT) using the same rehabilitation robot in people with stroke and moderate impairment. METHODS In this randomized controlled trial, we randomly allocated 34 people with stroke who had moderate impairment to either the experimental group (RET, n = 18) or the control group (AAT, n = 16). Both groups performed robot-assisted therapy for 30 min, 5 days per week, for 4 weeks. The same rehabilitation robot provided resistance to the RET group and assistance to the AAT group. Body function and structure, activity, and participation outcomes were evaluated before, during, and after the intervention. RESULTS RET led to greater improvements than AAT in terms of smoothness (p = 0.006). The Fugl-Meyer Assessment (FMA)-upper extremity (p < 0.001), FMA-proximal (p < 0.001), Action Research Arm Test-gross movement (p = 0.011), and kinematic variables of joint independence (p = 0.017) and displacement (p = 0.011) also improved at the end of intervention more in the RET group. CONCLUSIONS Robotic RET was more effective than AAT in improving upper limb function, structure, and activity among participants with stroke who had moderate impairment.
Collapse
Affiliation(s)
- Sun Young Jeon
- Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, 58, Samgaksan-ro, Gangbuk-gu, Seoul, Republic of Korea
| | - Myung Ki
- Department of Global Community Health, Graduate School of Public Health, Korea University, Republic of Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Joon-Ho Shin
- Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, 58, Samgaksan-ro, Gangbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Ahn SY, Bok SK, Lee JY, Ryoo HW, Lee HY, Park HJ, Oh HM, Kim TW. Benefits of Robot-Assisted Upper-Limb Rehabilitation from the Subacute Stage after a Stroke of Varying Severity: A Multicenter Randomized Controlled Trial. J Clin Med 2024; 13:808. [PMID: 38337500 PMCID: PMC10856364 DOI: 10.3390/jcm13030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The aim of this study was to compare the clinical effectiveness of robot-assisted therapy with that of conventional occupational therapy according to the onset and severity of stroke. METHODS In this multicenter randomized controlled trial, stroke patients were randomized (1:1) to receive robot-assisted therapy or conventional occupational therapy. The robot-assisted training group received 30 min of robot-assisted therapy twice and 30 min of conventional occupational therapy daily, while the conventional therapy group received 90 min of occupational therapy. Therapy was conducted 5 days/week for 4 weeks. The primary outcome was the Wolf Motor Function Test (WMFT) score after 4 and 8 weeks of therapy. RESULTS Overall, 113 and 115 patients received robot-assisted and conventional therapy, respectively. The WMFT score after robot-assisted therapy was not significantly better than that after conventional therapy, but there were significant improvements in the Motricity Index (trunk) and the Fugl-Meyer Assessment. After robot-assisted therapy, wrist strength significantly improved in the subacute or moderate-severity group of stroke patients. CONCLUSIONS Robot-assisted therapy improved the upper-limb functions and activities of daily living (ADL) performance as much as conventional occupational therapy. In particular, it showed signs of more therapeutic effectiveness in the subacute stage or moderate-severity group.
Collapse
Affiliation(s)
- So Young Ahn
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
- Department of Rehabilitation Medicine, College of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Soo-Kyung Bok
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
- Department of Rehabilitation Medicine, College of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Ji Young Lee
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Hyeon Woo Ryoo
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Hoo Young Lee
- Department of Brain Injury Rehabilitation, National Traffic Injury Rehabilitation Hospital, Yangpyeong 12564, Republic of Korea (H.J.P.); (T.-W.K.)
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Hye Jung Park
- Department of Brain Injury Rehabilitation, National Traffic Injury Rehabilitation Hospital, Yangpyeong 12564, Republic of Korea (H.J.P.); (T.-W.K.)
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Hyun Mi Oh
- Department of Brain Injury Rehabilitation, National Traffic Injury Rehabilitation Hospital, Yangpyeong 12564, Republic of Korea (H.J.P.); (T.-W.K.)
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Tae-Woo Kim
- Department of Brain Injury Rehabilitation, National Traffic Injury Rehabilitation Hospital, Yangpyeong 12564, Republic of Korea (H.J.P.); (T.-W.K.)
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
28
|
Ti CHE, Hu C, Yuan K, Chu WCW, Tong RKY. Uncovering the Neural Mechanisms of Inter-Hemispheric Balance Restoration in Chronic Stroke Through EMG-Driven Robot Hand Training: Insights From Dynamic Causal Modeling. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1-11. [PMID: 38051622 DOI: 10.1109/tnsre.2023.3339756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
EMG-driven robot hand training can facilitate motor recovery in chronic stroke patients by restoring the interhemispheric balance between motor networks. However, the underlying mechanisms of reorganization between interhemispheric regions remain unclear. This study investigated the effective connectivity (EC) between the ventral premotor cortex (PMv), supplementary motor area (SMA), and primary motor cortex (M1) using Dynamic Causal Modeling (DCM) during motor tasks with the paretic hand. Nineteen chronic stroke subjects underwent 20 sessions of EMG-driven robot hand training, and their Action Reach Arm Test (ARAT) showed significant improvement ( β =3.56, [Formula: see text]). The improvement was correlated with the reduction of inhibitory coupling from the contralesional M1 to the ipsilesional M1 (r=0.58, p=0.014). An increase in the laterality index was only observed in homotopic M1, but not in the premotor area. Additionally, we identified an increase in resting-state functional connectivity (FC) between bilateral M1 ( β =0.11, p=0.01). Inter-M1 FC demonstrated marginal positive relationships with ARAT scores (r=0.402, p=0.110), but its changes did not correlate with ARAT improvements. These findings suggest that the improvement of hand functions brought about by EMG-driven robot hand training was driven explicitly by task-specific reorganization of motor networks. Particularly, the restoration of interhemispheric balance was induced by a reduction in interhemispheric inhibition from the contralesional M1 during motor tasks of the paretic hand. This finding sheds light on the mechanistic understanding of interhemispheric balance and functional recovery induced by EMG-driven robot training.
Collapse
|
29
|
Marín-Medina DS, Arenas-Vargas PA, Arias-Botero JC, Gómez-Vásquez M, Jaramillo-López MF, Gaspar-Toro JM. New approaches to recovery after stroke. Neurol Sci 2024; 45:55-63. [PMID: 37697027 PMCID: PMC10761524 DOI: 10.1007/s10072-023-07012-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
After a stroke, several mechanisms of neural plasticity can be activated, which may lead to significant recovery. Rehabilitation therapies aim to restore surviving tissue over time and reorganize neural connections. With more patients surviving stroke with varying degrees of neurological impairment, new technologies have emerged as a promising option for better functional outcomes. This review explores restorative therapies based on brain-computer interfaces, robot-assisted and virtual reality, brain stimulation, and cell therapies. Brain-computer interfaces allow for the translation of brain signals into motor patterns. Robot-assisted and virtual reality therapies provide interactive interfaces that simulate real-life situations and physical support to compensate for lost motor function. Brain stimulation can modify the electrical activity of neurons in the affected cortex. Cell therapy may promote regeneration in damaged brain tissue. Taken together, these new approaches could substantially benefit specific deficits such as arm-motor control and cognitive impairment after stroke, and even the chronic phase of recovery, where traditional rehabilitation methods may be limited, and the window for repair is narrow.
Collapse
Affiliation(s)
- Daniel S Marín-Medina
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Paula A Arenas-Vargas
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan C Arias-Botero
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuela Gómez-Vásquez
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel F Jaramillo-López
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge M Gaspar-Toro
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
30
|
Tang C, Zhou T, Zhang Y, Yuan R, Zhao X, Yin R, Song P, Liu B, Song R, Chen W, Wang H. Bilateral upper limb robot-assisted rehabilitation improves upper limb motor function in stroke patients: a study based on quantitative EEG. Eur J Med Res 2023; 28:603. [PMID: 38115157 PMCID: PMC10729331 DOI: 10.1186/s40001-023-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Upper limb dysfunction after stroke seriously affects quality of life. Bilateral training has proven helpful in recovery of upper limb motor function in these patients. However, studies evaluating the effectiveness of bilateral upper limb robot-assisted training on improving motor function and quality of life in stroke patients are lacking. Quantitative electroencephalography (EEG) is non-invasive, simple, and monitors cerebral cortical activity, which can be used to evaluate the effectiveness of interventions. In this study, EEG was used to evaluate the effect of end-drive bilateral upper extremity robot-assisted training on upper extremity functional recovery in stroke patients. METHODS 24 stroke patients with hemiplegia were randomly divided into a conventional training (CT, n = 12) group or a bilateral upper limb robot-assisted training (BRT, n = 12) group. All patients received 60 min of routine rehabilitation treatment including rolling, transferring, sitting, standing, walking, etc., per day, 6 days a week, for three consecutive weeks. The BRT group added 30 min of bilateral upper limb robot-assisted training per day, while the CT group added 30 min of upper limb training (routine occupational therapy) per day, 6 days a week, for 3 weeks. The primary outcome index to evaluate upper limb motor function was the Fugl-Meyer functional score upper limb component (FMA-UE), with the secondary outcome of activities of daily living (ADL), assessed by the modified Barthel index (MBI) score. Quantitative EEG was used to evaluate functional brain connectivity as well as alpha and beta power current source densities of the brain. RESULTS Significant (p < 0.05) within-group differences were found in FMA-UE and MBI scores for both groups after treatment. A between-group comparison indicated the MBI score of the BRT group was significantly different from that of the CT group, whereas the FMA-UE score was not significantly different from that of the CT group after treatment. The differences of FMA-UE and MBI scores before and after treatment in the BRT group were significantly different as compared to the CT group. In addition, beta rhythm power spectrum energy was higher in the BRT group than in the CT group after treatment. Functional connectivity in the BRT group, under alpha and beta rhythms, was significantly increased in both the bilateral frontal and limbic lobes as compared to the CT group. CONCLUSIONS BRT outperformed CT in improving ADL in stroke patients within three months, and BRT facilitates the recovery of upper limb function by enhancing functional connectivity of the bilateral cerebral hemispheres.
Collapse
Affiliation(s)
- Congzhi Tang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Yun Zhang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Runping Yuan
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Xianghu Zhao
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Ruian Yin
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Pengfei Song
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Bo Liu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Ruyan Song
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Wenli Chen
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China.
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China.
| |
Collapse
|
31
|
Abbate G, Giusti A, Randazzo L, Paolillo A. A mirror therapy system using virtual reality and an actuated exoskeleton for the recovery of hand motor impairments: a study of acceptability, usability, and embodiment. Sci Rep 2023; 13:22881. [PMID: 38129489 PMCID: PMC10739894 DOI: 10.1038/s41598-023-49571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Hand motor impairments are one of the main causes of disabilities worldwide. Rehabilitation procedures like mirror therapy are given crucial importance. In the traditional setup, the patient moves the healthy hand in front of a mirror; the view of the mirrored motion tricks the brain into thinking that the impaired hand is moving as well, stimulating the recovery of the lost hand functionalities. We propose an innovative mirror therapy system that leverages and couples cutting-edge technologies. Virtual reality recreates an immersive and effective mirroring effect; a soft hand exoskeleton accompanies the virtual visual perception by physically inducing the mirrored motion to the real hand. Three working modes of our system have been tested with 21 healthy users. The system is ranked as acceptable by the system usability scale; it does not provoke adverse events or sickness in the users, according to the simulator sickness questionnaire; the three execution modes are also compared w.r.t. the sense of embodiment, evaluated through another customized questionnaire. The achieved results show the potential of our system as a clinical tool and reveal its social and economic impact.
Collapse
Affiliation(s)
- Gabriele Abbate
- Dalle Molle Institute for Artificial Intelligence (IDSIA), USI-SUPSI, Lugano, Switzerland.
| | - Alessandro Giusti
- Dalle Molle Institute for Artificial Intelligence (IDSIA), USI-SUPSI, Lugano, Switzerland
| | - Luca Randazzo
- Emovo Care, EPFL Innovation Park, Lausanne, Switzerland
| | - Antonio Paolillo
- Dalle Molle Institute for Artificial Intelligence (IDSIA), USI-SUPSI, Lugano, Switzerland
| |
Collapse
|
32
|
Li R, Zhang P, Lu J, Zhuang J, Wang M, Fang H, Zhang X, Gao Y, Yang Z, Chin KL. Case report: Ultrasound-guided median nerve electrical stimulation on functional recovery of hemiplegic upper limb after stroke. Front Neurol 2023; 14:1244192. [PMID: 38046582 PMCID: PMC10691377 DOI: 10.3389/fneur.2023.1244192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Background Functional restoration of hemiplegic upper limbs is a difficult area in the field of neurological rehabilitation. Electrical stimulation is one of the treatments that has shown promising advancements and functional improvements. Most of the electrical stimulations used in clinical practice are surface stimulations. In this case, we aimed to investigate the feasibility of a minimally invasive, ultrasound-guided median nerve electrical stimulation (UG-MNES) in improving the upper limb motor function and activity of a patient with right-sided hemiparesis. Case presentation A 65-year-old male recovering from a left massive intracerebral hemorrhage after open debridement hematoma removal had impaired right limb movement, right hemianesthesia, motor aphasia, dysphagia, and complete dependence on his daily living ability. After receiving 3 months of conventional rehabilitation therapy, his cognitive, speech, and swallowing significantly improved but the Brunnstrom Motor Staging (BMS) of his right upper limb and hand was at stage I-I. UG-MNES was applied on the right upper limb for four sessions, once per week, together with conventional rehabilitation. Immediate improvement in the upper limb function was observed after the first treatment. To determine the effect of UG-MNES on long-term functional recovery, assessments were conducted a week after the second and fourth intervention sessions, and motor function recovery was observed after 4-week of rehabilitation. After completing the full rehabilitation course, his BMS was at stage V-IV, the completion time of Jebsen Hand Function Test (JHFT) was shortened, and the scores of Fugl-Meyer Assessment for upper extremity (FMA-UE) and Modified Barthel Index (MBI) were increased. Overall, the motor function of the hemiplegic upper limb had significantly improved, and the right hand was the utility hand. Electromyography (EMG) and nerve conduction velocity (NCV) tests were normal before and after treatment. Conclusion The minimally invasive, UG-MNES could be a new alternative treatment in stroke rehabilitation for functional recovery of the upper limbs.
Collapse
Affiliation(s)
- Rui Li
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Ping Zhang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Jingyi Lu
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Jianlin Zhuang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Meiqi Wang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Hongmei Fang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Xiaowei Zhang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Ying Gao
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Zhufen Yang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Kai Ling Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Borneo Medical and Health Research Centre (BMHRC), Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
33
|
Saragih ID, Everard G, Tzeng HM, Saragih IS, Lee BO. Efficacy of Robots-Assisted Therapy in Patients With Stroke: A Meta-analysis Update. J Cardiovasc Nurs 2023; 38:E192-E217. [PMID: 37816087 DOI: 10.1097/jcn.0000000000000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Robot-assisted therapy (RAT) could address an unmet need to relieve the strain on healthcare providers and intensify treatment in the context of an increasing stroke incidence. A comprehensive meta-analysis could provide firmer data about the topic by considering methodology limitations discovered in previous reviews and providing more rigorous evidence. OBJECTIVE This meta-analysis study identifies RAT's efficacy for patients with stroke. METHODS A systematic search of the 7 databases from January 10 to February 1, 2022, located relevant publications. We used the updated Cochrane risk-of-bias checklist for 52 trials to assess the methodologic quality of the included studies. The efficacy of RAT for patients with stroke was estimated using a pooled random-effects model in the Stata 16 software application. RESULTS The final analysis included 2774 patients with stroke from 52 trials. In those patients, RAT was proven to improve quality of movement (mean difference, 0.15; 95% confidence interval, 0.03-0.28) and to reduce balance disturbances (mean difference, -1.28; 95% confidence interval, -2.48 to -0.09) and pain (standardized mean difference, -0.34; 95% confidence interval, -0.58 to -0.09). CONCLUSIONS Robot-assisted therapy seems to improve the quality of mobility and reduce balance disturbances and pain for patients with stroke. These findings will help develop advanced rehabilitation robots and could improve health outcomes by facilitating health services for healthcare providers and patients with stroke.
Collapse
|
34
|
Yoo SD, Lee HH. The Effect of Robot-Assisted Training on Arm Function, Walking, Balance, and Activities of Daily Living After Stroke: A Systematic Review and Meta-Analysis. BRAIN & NEUROREHABILITATION 2023; 16:e24. [PMID: 38047093 PMCID: PMC10689857 DOI: 10.12786/bn.2023.16.e24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 12/05/2023] Open
Abstract
This meta-analysis aimed to compare the effects of robot-assisted training (RAT) with those of conventional therapy (CT), considering the potential sources of heterogeneity in the previous studies. We searched three international electronic databases (MEDLINE, Embase, and the Cochrane Library) to identify relevant studies. Risk of bias assessment was performed using the Cochrane's Risk of Bias 1.0 tool. The certainty of the evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluations method. The meta-analyses for each outcome of the respective domains were performed using 24 randomized controlled trials (RCTs) on robot-assisted arm training (RAAT) for arm function, 7 RCTs on RAAT for activities of daily living (ADL), 12 RCTs on robot-assisted gait training (RAGT) for balance, 6 RCTs on RAGT for walking, and 7 RCTs on RAGT for ADL. The random-effects model for the meta-analysis revealed that RAAT has significant superiority over CT in improving arm function, and ADL. We also showed that RAGT has significant superiority over CT in improving balance. Our study provides high-level evidence for the superiority of RAT over CT in terms of functional recovery after stroke. Therefore, physicians should consider RAT as a therapeutic option for facilitating functional recovery after stroke.
Collapse
Affiliation(s)
- Seung Don Yoo
- Department of Rehabilitation Medicine, Kyung Hee University College of Medicine, Seoul, Korea
| | - Hyun Haeng Lee
- Department of Rehabilitation Medicine, Konkuk University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Gunduz ME, Bucak B, Keser Z. Advances in Stroke Neurorehabilitation. J Clin Med 2023; 12:6734. [PMID: 37959200 PMCID: PMC10650295 DOI: 10.3390/jcm12216734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Stroke is one of the leading causes of disability worldwide despite recent advances in hyperacute interventions to lessen the initial impact of stroke. Stroke recovery therapies are crucial in reducing the long-term disability burden after stroke. Stroke recovery treatment options have rapidly expanded within the last decade, and we are in the dawn of an exciting era of multimodal therapeutic approaches to improve post-stroke recovery. In this narrative review, we highlighted various promising advances in treatment and technologies targeting stroke rehabilitation, including activity-based therapies, non-invasive and minimally invasive brain stimulation techniques, robotics-assisted therapies, brain-computer interfaces, pharmacological treatments, and cognitive therapies. These new therapies are targeted to enhance neural plasticity as well as provide an adequate dose of rehabilitation and improve adherence and participation. Novel activity-based therapies and telerehabilitation are promising tools to improve accessibility and provide adequate dosing. Multidisciplinary treatment models are crucial for post-stroke neurorehabilitation, and further adjuvant treatments with brain stimulation techniques and pharmacological agents should be considered to maximize the recovery. Among many challenges in the field, the heterogeneity of patients included in the study and the mixed methodologies and results across small-scale studies are the cardinal ones. Biomarker-driven individualized approaches will move the field forward, and so will large-scale clinical trials with a well-targeted patient population.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Bilal Bucak
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (B.B.); (Z.K.)
| | - Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (B.B.); (Z.K.)
| |
Collapse
|
36
|
Cazenave L, Einenkel M, Yurkewich A, Endo S, Hirche S, Burdet E. Hybrid Robotic and Electrical Stimulation Assistance Can Enhance Performance and Reduce Mental Demand. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4063-4072. [PMID: 37815973 DOI: 10.1109/tnsre.2023.3323370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Combining functional electrical stimulation (FES) and robotics may enhance recovery after stroke, by providing neural feedback with the former while improving quality of motion and minimizing muscular fatigue with the latter. Here, we explored whether and how FES, robot assistance and their combination, affect users' performance, effort, fatigue and user experience. 15 healthy participants performed a wrist flexion/extension tracking task with FES and/or robotic assistance. Tracking performance improved during the hybrid FES-robot and the robot-only assistance conditions in comparison to no assistance, but no improvement is observed when only FES is used. Fatigue, muscular and voluntary effort are estimated from electromyographic recording. Total muscle contraction and volitional activity are lowest with robotic assistance, whereas fatigue level do not change between the conditions. The NASA-Task Load Index answers indicate that participants found the task less mentally demanding during the hybrid and robot conditions than the FES condition. The addition of robotic assistance to FES training might thus facilitate an increased user engagement compared to robot training and allow longer motor training session than with FES assistance.
Collapse
|
37
|
Torell F. Evaluation of stretch reflex synergies in the upper limb using principal component analysis (PCA). PLoS One 2023; 18:e0292807. [PMID: 37824570 PMCID: PMC10569523 DOI: 10.1371/journal.pone.0292807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
The dynamic nature of movement and muscle activation emphasizes the importance of a sound experimental design. To ensure that an experiment determines what we intend, the design must be carefully evaluated. Before analyzing data, it is imperative to limit the number of outliers, biases, and skewness. In the present study, a simple center-out experiment was performed by 16 healthy volunteers. The experiment included three load conditions, two preparatory delays, two perturbations, and four targets placed along a diagonal path on a 2D plane. While the participants performed the tasks, the activity of seven arm muscles were monitored using surface electromyography (EMG). Principal component analysis (PCA) was used to evaluate the study design, identify muscle synergies, and assess the effects of individual quirks. With PCA, we can identify the trials that trigger stretch reflexes and pinpoint muscle synergies. The posterior deltoid, triceps long head, and brachioradialis were engaged when targets were in the direction of muscle shortening and the perturbation was applied in the opposite direction. Similarly, the pectoralis and anterior deltoid were engaged when the targets were in the direction of muscle shortening and the perturbation was applied in the opposite direction. The stretch reflexes were not triggered when the perturbation brought the hand in the direction of, or into the target, except if the muscle was pre-loaded. The use of PCA was also proven valuable when evaluating participant performance. While individual quirks are to be expected, failure to perform trials as expected can adversely affect the study results.
Collapse
Affiliation(s)
- Frida Torell
- Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
38
|
Tang Z, Liu T, Liu Y, Han K, Su W, Zhao J, Chi Q, Zhang X, Zhang H. Different doses of intermittent theta burst stimulation for upper limb motor dysfunction after stroke: a study protocol for a randomized controlled trial. Front Neurosci 2023; 17:1259872. [PMID: 37869516 PMCID: PMC10585036 DOI: 10.3389/fnins.2023.1259872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Background Upper limb motor recovery is one of the important goals of stroke rehabilitation. Intermittent theta burst stimulation (iTBS), a new type of repetitive transcranial magnetic stimulation (rTMS), is considered a potential therapy. However, there is still no consensus on the efficacy of iTBS for upper limb motor dysfunction after stroke. Stimulus dose may be an important factor affecting the efficacy of iTBS. Therefore, we aim to investigate and compare the effects and neural mechanisms of three doses of iTBS on upper limb motor recovery in stroke patients, and our hypothesis is that the higher the dose of iTBS, the greater the improvement in upper limb motor function. Methods This prospective, randomized, controlled trial will recruit 56 stroke patients with upper limb motor dysfunction. All participants will be randomized in a 1:1:1:1 ratio to receive 21 sessions of 600 pulses active iTBS, 1,200 pulses active iTBS, 1,800 pulses active iTBS, or 1,800 pulses sham iTBS in addition to conventional rehabilitation training. The primary outcome is the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score from baseline to end of intervention, and the secondary outcomes are the Wolf Motor Function Test (WMFT), Grip Strength (GS), Modified Barthel Index (MBI), and Stroke Impact Scale (SIS). The FMA-UE, MBI, and SIS are assessed pre-treatment, post-treatment, and at the 3-weeks follow-up. The WMFT, GS, and resting-state functional magnetic resonance imaging (rs-fMRI) data will be obtained pre- and post-treatment. Discussion The iTBS intervention in this study protocol is expected to be a potential method to promote upper limb motor recovery after stroke, and the results may provide supportive evidence for the optimal dose of iTBS intervention.
Collapse
Affiliation(s)
- Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Tianhao Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Ying Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jingdu Zhao
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Qianqian Chi
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Xiaonian Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
39
|
Gnasso R, Palermi S, Picone A, Tarantino D, Fusco G, Messina MM, Sirico F. Robotic-Assisted Rehabilitation for Post-Stroke Shoulder Pain: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8239. [PMID: 37837068 PMCID: PMC10575254 DOI: 10.3390/s23198239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Post-stroke shoulder pain (PSSP) is a debilitating consequence of hemiplegia, often hindering rehabilitation efforts and further limiting motor recovery. With the advent of robotic-assisted therapies in neurorehabilitation, there is potential for innovative interventions for PSSP. This study systematically reviewed the current literature to determine the effectiveness of robotic-assisted rehabilitation in addressing PSSP in stroke patients. A comprehensive search of databases was conducted, targeting articles published up to August 2023. Studies were included if they investigated the impact of robotic-assisted rehabilitation on PSSP. The outcome of interest was pain reduction. The risk of bias was assessed using the Cochrane database. Of the 187 initially identified articles, 3 studies met the inclusion criteria, encompassing 174 patients. The reviewed studies indicated a potential benefit of robotic-assisted rehabilitation in reducing PSSP, with some studies also noting improvements in the range of motion and overall motor function. However, the results varied across studies, with some showing more significant benefits than others, because these use different protocols and robotic equipment.
Collapse
Affiliation(s)
| | - Stefano Palermi
- Public Health Department, University of Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (R.G.); (A.P.); (D.T.); (G.F.); (M.M.M.); (F.S.)
| | | | | | | | | | | |
Collapse
|
40
|
Rozevink SG, Hijmans JM, Horstink KA, van der Sluis CK. Effectiveness of task-specific training using assistive devices and task-specific usual care on upper limb performance after stroke: a systematic review and meta-analysis. Disabil Rehabil Assist Technol 2023; 18:1245-1258. [PMID: 34788166 DOI: 10.1080/17483107.2021.2001061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Task-specific rehabilitation is a key indicator for successful rehabilitation to improve the upper limb performance after stroke. Assistive robotic and non-robotic devices are emerging to provide rehabilitation therapy; however, the effectiveness of task-specific training programs using assistive training devices compared with task-specific usual care training has not been summarized yet. Therefore, the effectiveness of task-specific training using assistive arm devices (TST-AAD) compared with task-specific usual care (TSUC) on the upper limb performance of patients with a stroke was investigated. To assess task specificity, a set of criteria was proposed: participation, program, relevant, repeated, randomized, reconstruction and reinforced. MATERIALS AND METHODS Out of 855 articles, 17 fulfilled the selection criteria. A meta-analysis was performed on the Fugl-Meyer Assessment scores in the subacute and chronic stages after stroke and during follow-up. RESULTS AND CONCLUSION Both TST-AAD and TSUC improved the upper limb performance after stroke. In the sub-acute phase after stroke, TST-AAD was more effective than TSUC in reducing the upper limb impairment, although findings were based on only three studies. In the chronic phase, TST-AAD and TSUC showed similar effectiveness. No differences between the two types of training were found at the follow-up measurements. Future studies should describe training, device usage and criteria of task specificity in a standardized way to ease comparison.Implications for rehabilitationArm or hand function is often undertreated in stroke patients, assistive training devices may be able to improve the upper limb performance.Task-specific training using assistive devices is effective in improving the upper limb performance after stroke.Task-specific training using assistive devices seems to be more effective in reducing impairment compared with task specific usual care in the subacute phase after stroke, but they are equally effective in the chronic phase of stroke.
Collapse
Affiliation(s)
- Samantha G Rozevink
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Juha M Hijmans
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Koen A Horstink
- University of Groningen, University Medical Center Groningen, Department of Human Movement Sciences, Groningen, The Netherlands
| | - Corry K van der Sluis
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| |
Collapse
|
41
|
Gasperina SD, Ratschat AL, Marchal-Crespo L. Quantitative and Qualitative Evaluation of Exoskeleton Transparency Controllers for Upper-Limb Neurorehabilitation. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941246 DOI: 10.1109/icorr58425.2023.10304703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
High transparency is a fundamental requirement for upper-limb exoskeletons to promote active patient participation. Although various control strategies have been suggested to improve the transparency of these robots, there are still some limitations, such as the need for precise dynamic models and potential safety issues when external forces are applied to the robot. This study presents a novel hybrid controller designed to tackle these limitations by combining a traditional zero-torque controller with an interaction torque observer that compensates for residual undesired disturbances. The transparency of the proposed controller was evaluated using both quantitative-e.g., residual joint torques and movement smoothness-and qualitative measures-e.g., comfort, agency, and perceived resistance-in a pilot study with six healthy participants. The performance of the new controller was compared to that of two conventional controllers: a zero-torque closed-loop controller and a velocity-based disturbance observer. Our preliminary results show that the proposed hybrid controller may be a good alternative to state-of-the-art controllers as it allows participants to perform precise and smooth movements with low interaction joint torques. Importantly, participants rated the new controller higher in comfort and agency, and lower in perceived resistance. This study highlights the importance of incorporating both quantitative and qualitative assessments in evaluating control strategies developed to enhance the transparency of rehabilitation robots.
Collapse
|
42
|
Yang X, Shi X, Xue X, Deng Z. Efficacy of Robot-Assisted Training on Rehabilitation of Upper Limb Function in Patients With Stroke: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2023; 104:1498-1513. [PMID: 36868494 DOI: 10.1016/j.apmr.2023.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVE To systematically evaluate the effect of robot-assisted training (RAT) on upper limb function recovery in patients with stroke, providing the evidence-based medical basis for the clinical application of RAT. DATA SOURCES We searched online electronic databases up to June 2022, including PubMed, The Cochrane Library, Scopus, Web of Science, EMBASE, WanFang Data, CNKI, and VIP full-text databases. STUDY SELECTION Randomized controlled trials of the effect of RAT on upper extremity functional recovery in patients with stroke. DATA EXTRACTION The Cochrane Collaboration Tool for Assessing the Risk of Bias was used to assess study quality and risk of bias. DATA SYNTHESIS Fourteen randomized controlled trials involving 1275 patients were included for review. Compared with the control group, RAT significantly improved upper limb motor function and daily living ability. The overall differences were statistically significant, Fugl-Meyer Assessment for the Upper Extremity (FMA-UE; standard mean difference=0.69; 95% confidence interval, 0.34, 1.05; P=.0001), modified Barthel Index (standard mean difference=0.95; 95% confidence interval, 0.75, 1.15; P<.00001), whereas the differences in modified Ashworth Scale, FIM, and Wolf Motor Function Test scores were not statistically significant. SUBGROUP ANALYSIS Compared with the control group, the differences between FMA-UE and modified Barthel Index at 4 and 12 weeks of RAT, there were statistically significant, the differences of FMA-UE and modified Ashworth Scale in patients with stroke in the acute and chronic phases were statistically significant. CONCLUSION The present study showed that RAT can significantly enhance the upper limb motor function and activities of daily life in patients with stroke undergoing upper limb rehabilitation.
Collapse
Affiliation(s)
- Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiubo Shi
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Xiali Xue
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China.
| | - Zhongyi Deng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Ratschat A, Lomba TMC, Gasperina SD, Marchal-Crespo L. Development and Validation of a Kinematically Accurate Upper-Limb Exoskeleton Digital Twin for Stroke Rehabilitation. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941263 DOI: 10.1109/icorr58425.2023.10304719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Rehabilitation robotics combined with virtual reality using head-mounted displays enable naturalistic, immersive, and motivating therapy for people after stroke. There is growing interest in employing digital twins in robotic neurore-habilitation, e.g., in telerehabilitation for virtual coaching and monitoring, as well as in immersive virtual reality applications. However, the kinematic matching of the robot's visualization with the real robot movements is hardly validated, potentially affecting the users' experience while immersed in the virtual environment due to a visual-proprioceptive mismatch. The kinematic mismatch may also limit the validity of assessment measures recorded with the digital twin. We present the development and low-cost kinematic validation of a digital twin of a seven active degrees-of-freedom exoskeleton for stroke rehabilitation. We validated the kinematic accuracy of the digital twin end-effector by performing two tasks-a planar reaching task and a 3D functional task-performed by a single healthy participant. We computed the end-effector position and rotation from the forward kinematics of the robot, the digital twin, and data recorded from the real robot using a low-cost tracking system based on HTC VIVE trackers and compared them pair-wise. We found that the digital twin closely matches the forward kinematics and tracked movement of the real robot and thus provides a reliable platform for future research on digital twins for stroke rehabilitation.
Collapse
|
44
|
Takenaka K, Shima K, Shimatani K. Hybrid Rehabilitation System with Motion Estimation Based on EMG Signals. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941241 DOI: 10.1109/icorr58425.2023.10304746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Patients with upper limb paralysis undergo various types of rehabilitation to reconstruct upper limb functions necessary for their return to daily life and social activities. Therefore, it is necessary to develop an effective rehabilitation support system using robotic technologies. In this study, we propose an EMG-driven hybrid rehabilitation system based on the estimation of intended motion using a probabilistic neural network. In the proposed system, the developed robot and functional electrical stimulation are controlled by estimating the patient's intention, which enables the intuitive learning of the appropriate control abilities of joint motions and muscle contraction patterns. In the experiments, hybrid and visual feedback training were conducted for pointing movements of the wrist joint of the non-dominant hand. The results confirmed that the proposed method provides effective training and has great potential for use in rehabilitation.
Collapse
|
45
|
Li B, Cunha AB, Lobo MA. Effectiveness and Users' Perceptions of Upper Extremity Exoskeletons and Robot-Assisted Devices in Children with Physical Disabilities: Systematic Review. Phys Occup Ther Pediatr 2023; 44:336-379. [PMID: 37635151 DOI: 10.1080/01942638.2023.2248241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
AIM Systematically determine the effectiveness and users' perceptions of upper extremity (UE) exoskeletons and robot-assisted devices for pediatric rehabilitation. METHODS PubMed/Medline, Web of Science, Scopus, and Cochrane Library were searched for studies with "exoskeletons"/"robot-assisted devices", children with disabilities, effectiveness data, and English publication. Intervention effectiveness outcomes were classified within components of the International Classification of Functioning, Disability, and Health, Children and Youth Version (ICF-CY). Secondary data (users' perceptions; implementation setting) were extracted. Risk of bias and methodological quality were assessed. Descriptive analyses were performed. RESULTS Seventy-two articles were included. Most evaluated body structure and function and activity outcomes with less emphasis on participation. Most effects across all ICF-CY levels were positive. Devices were primarily evaluated in clinical or laboratory rather than natural environments. Perceptions about device effectiveness were mostly positive, while those about expression, accessibility, and esthetics were mostly negative. A need for increased rigor in research study design was detected. CONCLUSIONS Across populations, devices, settings, interventions, and dosing schedules, UE exoskeletons and robot-assisted devices may improve function, activity, and perhaps participation for children with physical disabilities. Future work should transition devices into natural environments, design devices and implementation strategies to address users' negative perceptions, and increase research rigor.
Collapse
Affiliation(s)
- Bai Li
- Department of Physical Therapy, Biomechanics & Movement Science Program, University of Delaware, Newark, DE, USA
| | - Andrea B Cunha
- Department of Physical Therapy, Biomechanics & Movement Science Program, University of Delaware, Newark, DE, USA
- Department of Physical Therapy, Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michele A Lobo
- Department of Physical Therapy, Biomechanics & Movement Science Program, University of Delaware, Newark, DE, USA
| |
Collapse
|
46
|
Goikoetxea-Sotelo G, van Hedel HJA. Defining, quantifying, and reporting intensity, dose, and dosage of neurorehabilitative interventions focusing on motor outcomes. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1139251. [PMID: 37637933 PMCID: PMC10457006 DOI: 10.3389/fresc.2023.1139251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Introduction Determining the minimal amount of therapy needed for positive neurorehabilitative outcomes is important for optimizing active treatment interventions to improve motor outcomes. However, there are various challenges when quantifying these relationships: first, several consensuses on the definition and usage of the terms intensity, dose, and dosage of motor interventions have been proposed, but there seems to be no agreement, and the terms are still used inconsistently. Second, randomized controlled trials frequently underreport items relevant to determining the intensity, dose, and dosage of the interventions. Third, there is no universal measure to quantify therapy intensity accurately. This "perspectives" paper aims to increase awareness of these topics among neurorehabilitation specialists. Defining quantifying and reporting We searched the literature for definitions of intensity, dose, and dosage and adapted the ones we considered the most appropriate to fit the needs of neurorehabilitative interventions. Furthermore, we suggest refining the template for intervention description and replication (TIDieR) to enhance the reporting of randomized controlled trials. Finally, we performed a systematic literature search to provide a list of intensity measures and complemented these with some novel candidate measures. Discussion The proposed definitions of intensity, dose, and dosage could improve the communication between neurorehabilitation specialists and the reporting of dose and dosage in interventional studies. Quantifying intensity is necessary to improve our understanding of the minimal intensity, dose, and dosage of therapy needed to improve motor outcomes in neurorehabilitation. We consider the lack of appropriate intensity measures a significant gap in knowledge requiring future research.
Collapse
Affiliation(s)
- Gaizka Goikoetxea-Sotelo
- Swiss Children’s Rehab, University Children’s Hospital Zurich, University of Zurich, Affoltern am Albis, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Hubertus J. A. van Hedel
- Swiss Children’s Rehab, University Children’s Hospital Zurich, University of Zurich, Affoltern am Albis, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Koh K, Oppizzi G, Kehs G, Zhang LQ. Abnormal coordination of upper extremity during target reaching in persons post stroke. Sci Rep 2023; 13:12838. [PMID: 37553412 PMCID: PMC10409717 DOI: 10.1038/s41598-023-39684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Understanding abnormal synergy of the upper extremity (UE) in stroke survivors is critical for better identification of motor impairment. Here, we investigated to what extent stroke survivors retain the ability to coordinate multiple joints of the arm during a reaching task. Using an exoskeleton robot, 37 stroke survivors' arm joint angles (θ) and torques (τ) during hand reaching in the horizontal plane was compared to that of 13 healthy controls. Kinematic and kinetic coordination patterns were quantified as variances of the multiple-joint angles and multiple-joint torques across trials, respectively, that were partitioned into task-irrelevant variance (TIVθ and TIVτ) and task-relevant variance (TRVθ and TRVτ). TIVθ and TRVθ (or TIVτ and TRVτ) led to consistent and inconsistent hand position (or force), respectively. The index of synergy (ISθ and ISτ) was determined as [Formula: see text] and [Formula: see text] for kinematic and kinetic coordination patterns, respectively. Both kinematic ISθ and kinetic ISτ in the stroke group were significantly lower than that of the control group, indicating stroke survivors had impaired reaching abilities in utilizing the multiple joints of the UE for successful completion of a reaching task. The reduction of kinematic ISθ in the stroke group was mainly attributed to the lower TIVθ as compared to the control group, while the reduction of kinetic ISτ was mainly due to the higher [Formula: see text] as well as lower TIVτ. Our results also indicated that stroke may lead to motor deficits in formation of abnormal kinetic synergistic movement of UE, especially during outward movement. The findings in abnormal synergy patterns provides a better understanding of motor impairment, suggesting that impairment-specific treatment could be identified to help improve UE synergies, focusing on outward movements.
Collapse
Affiliation(s)
- Kyung Koh
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Giovanni Oppizzi
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, 100 Penn St, Baltimore, MD, 21201, USA
| | - Glenn Kehs
- University of Maryland Rehabilitation and Orthopaedic Institute, Baltimore, MD, 21207, USA
- Department of Neurology, University of Maryland, Baltimore, MD, 21201, USA
| | - Li-Qun Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, 100 Penn St, Baltimore, MD, 21201, USA.
- Department of Orthopaedics, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
48
|
Chen ZJ, He C, Xu J, Zheng CJ, Wu J, Xia N, Hua Q, Xia WG, Xiong CH, Huang XL. Exoskeleton-Assisted Anthropomorphic Movement Training for the Upper Limb After Stroke: The EAMT Randomized Trial. Stroke 2023; 54:1464-1473. [PMID: 37154059 DOI: 10.1161/strokeaha.122.041480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/07/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Robot-assisted arm training is generally delivered in the robot-like manner of planar or mechanical 3-dimensional movements. It remains unclear whether integrating upper extremity (UE) natural coordinated patterns into a robotic exoskeleton can improve outcomes. The study aimed to compare conventional therapist-mediated training to the practice of human-like gross movements derived from 5 typical UE functional activities managed with exoskeletal assistance as needed for patients after stroke. METHODS In this randomized, single-blind, noninferiority trial, patients with moderate-to-severe UE motor impairment due to subacute stroke were randomly assigned (1:1) to receive 20 sessions of 45-minute exoskeleton-assisted anthropomorphic movement training or conventional therapy. Treatment allocation was masked from independent assessors, but not from patients or investigators. The primary outcome was the change in the Fugl-Meyer Assessment for Upper Extremity from baseline to 4 weeks against a prespecified noninferiority margin of 4 points. Superiority would be tested if noninferiority was demonstrated. Post hoc subgroup analyses of baseline characteristics were performed for the primary outcome. RESULTS Between June 2020 and August 2021, totally 80 inpatients (67 [83.8%] males; age, 51.9±9.9 years; days since stroke onset, 54.6±38.0) were enrolled, randomly assigned to the intervention, and included in the intention-to-treat analysis. The mean Fugl-Meyer Assessment for Upper Extremity change in exoskeleton-assisted anthropomorphic movement training (14.73 points; [95% CI, 11.43-18.02]) was higher than that of conventional therapy (9.90 points; [95% CI, 8.15-11.65]) at 4 weeks (adjusted difference, 4.51 points [95% CI, 1.13-7.90]). Moreover, post hoc analysis favored the patient subgroup (Fugl-Meyer Assessment for Upper Extremity score, 23-38 points) with moderately severe motor impairment. CONCLUSIONS Exoskeleton-assisted anthropomorphic movement training appears to be effective for patients with subacute stroke through repetitive practice of human-like movements. Although the results indicate a positive sign for exoskeleton-assisted anthropomorphic movement training, further investigations into the long-term effects and paradigm optimization are warranted. REGISTRATION URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2100044078.
Collapse
Affiliation(s)
- Ze-Jian Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.-J.C., J.X., N.X., X.-L.H.)
- World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China (Z.-J.C., J.X., N.X., X.-L.H.)
| | - Chang He
- Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan, China (C.H., C.-H.X.)
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China (C.H., C.-H.X.)
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.-J.C., J.X., N.X., X.-L.H.)
- World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China (Z.-J.C., J.X., N.X., X.-L.H.)
| | - Chan-Juan Zheng
- Department of Rehabilitation Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China (C.-J.Z., J.W., Q.H.)
| | - Jing Wu
- Department of Rehabilitation Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China (C.-J.Z., J.W., Q.H.)
| | - Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.-J.C., J.X., N.X., X.-L.H.)
- World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China (Z.-J.C., J.X., N.X., X.-L.H.)
| | - Qiang Hua
- Department of Rehabilitation Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China (C.-J.Z., J.W., Q.H.)
| | - Wen-Guang Xia
- Hubei Rehabilitation Hospital, Wuhan, China (W.-G.X.)
| | - Cai-Hua Xiong
- Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan, China (C.H., C.-H.X.)
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China (C.H., C.-H.X.)
| | - Xiao-Lin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.-J.C., J.X., N.X., X.-L.H.)
- World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China (Z.-J.C., J.X., N.X., X.-L.H.)
| |
Collapse
|
49
|
Kim SY, Kim YM, Koo SW, Park HB, Yoon YS. Effects of Therapist Intervention during Upper-Extremity Robotic Rehabilitation in Patients with Stroke. Healthcare (Basel) 2023; 11:healthcare11101369. [PMID: 37239654 DOI: 10.3390/healthcare11101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to determine whether the treatment effect differs for patients with stroke who perform robot-assisted upper-extremity rehabilitation by themselves compared to those whose rehabilitation is actively assisted by a therapist. Stroke patients with hemiplegia were randomly divided into two groups and received robot-assisted upper-limb rehabilitation for four weeks. In the experimental group, a therapist actively intervened in the treatment, while in the control group, the therapist only observed. After four weeks of rehabilitation, the manual muscle strength, Brunnstrom stage, Fugl-Meyer assessment of the upper-extremity (FMA-UE), box and block test, and functional independence measure (FIM) showed significant improvement in both groups compared to that before treatment; however, no interval change in spasticity was noted. The post-treatment values showed that the FMA-UE and box and block tests were significantly improved in the experimental group compared to those in the control group. Comparing the changes in the pre- and post-treatment values, the FMA-UE, box and block test, and FIM of the experimental group were significantly improved compared to those in the control group. Our results suggest that active intervention by therapists during robot-assisted upper-limb rehabilitation positively impacts upper-extremity function outcomes in patients with stroke.
Collapse
Affiliation(s)
- Si-Yun Kim
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Jeonju 54987, Republic of Korea
| | - Yu-Mi Kim
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Jeonju 54987, Republic of Korea
| | - See-Won Koo
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Jeonju 54987, Republic of Korea
| | - Hyun-Bin Park
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Jeonju 54987, Republic of Korea
| | - Yong-Soon Yoon
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Jeonju 54987, Republic of Korea
| |
Collapse
|
50
|
Huo Y, Wang X, Zhao W, Hu H, Li L. Effects of EMG-based robot for upper extremity rehabilitation on post-stroke patients: a systematic review and meta-analysis. Front Physiol 2023; 14:1172958. [PMID: 37256069 PMCID: PMC10226272 DOI: 10.3389/fphys.2023.1172958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Objective: A growing body of research shows the promise and efficacy of EMG-based robot interventions in improving the motor function in stroke survivors. However, it is still controversial whether the effect of EMG-based robot is more effective than conventional therapies. This study focused on the effects of EMG-based robot on upper limb motor control, spasticity and activity limitation in stroke survivors compared with conventional rehabilitation techniques. Methods: We searched electronic databases for relevant randomized controlled trials. Outcomes included Fugl-Meyer assessment scale (FMA), Modified Ashworth Scale (MAS), and activity level. Result: Thirteen studies with 330 subjects were included. The results showed that the outcomes post intervention was significantly improved in the EMG-based robot group. Results from subgroup analyses further revealed that the efficacy of the treatment was better in patients in the subacute stage, those who received a total treatment time of less than 1000 min, and those who received EMG-based robotic therapy combined with electrical stimulation (ES). Conclusion: The effect of EMG-based robot is superior to conventional therapies in terms of improving upper extremity motor control, spasticity and activity limitation. Further research should explore optimal parameters of EMG-based robot therapy and its long-term effects on upper limb function in post-stroke patients. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/; Identifier: 387070.
Collapse
Affiliation(s)
- Yunxia Huo
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Xiaohan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Weihua Zhao
- Northwestern Polytechnical University Hospital, Xi’an, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| |
Collapse
|