1
|
Cleland BT, Giffhorn M, Jayaraman A, Madhavan S. Understanding corticomotor mechanisms for activation of non-target muscles during unilateral isometric contractions of leg muscles after stroke. Int J Neurosci 2024; 134:1332-1341. [PMID: 37750212 PMCID: PMC10963339 DOI: 10.1080/00207454.2023.2263817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Muscle activation often occurs in muscles ipsilateral to a voluntarily activated muscle and to a greater extent after stroke. In this study, we measured muscle activation in non-target, ipsilateral leg muscles and used transcranial magnetic stimulation (TMS) to provide insight into whether corticomotor pathways contribute to involuntary activation. MATERIALS AND METHODS Individuals with stroke performed unilateral isometric ankle dorsiflexion, ankle plantarflexion, knee extension, and knee flexion. To quantify involuntary muscle activation in non-target muscles, muscle activation was measured during contractions from the ipsilateral tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), and biceps femoris (BF) and normalized to resting muscle activity. To provide insight into mechanisms of involuntary non-target muscle activation, TMS was applied to the contralateral hemisphere, and motor evoked potentials (MEPs) were recorded. RESULTS We found significant muscle activation in nearly every non-target muscle during isometric unilateral contractions. MEPs were frequently observed in non-target muscles, but greater non-target MEP amplitude was not associated with greater non-target muscle activation. CONCLUSIONS Our results suggest that non-target muscle activation occurs frequently in individuals with chronic stroke. The lack of association between non-target TMS responses and non-target muscle activation suggests that non-target muscle activation may have a subcortical or spinal origin. Non-target muscle activation has important clinical implications because it may impair torque production, out-of-synergy movement, and muscle activation timing.
Collapse
Affiliation(s)
- Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois Chicago, Chicago, IL, USA
| | - Matt Giffhorn
- Max Nader Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Arun Jayaraman
- Max Nader Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Sakamoto D, Hamaguchi T, Kanemura N, Yasojima T, Kubota K, Suwabe R, Nakayama Y, Abo M. Feature analysis of joint motion in paralyzed and non-paralyzed upper limbs while reaching the occiput: A cross-sectional study in patients with mild hemiplegia. PLoS One 2024; 19:e0295101. [PMID: 38781257 PMCID: PMC11115294 DOI: 10.1371/journal.pone.0295101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The reaching motion to the back of the head with the hand is an important movement for daily living. The scores of upper limb function tests used in clinical practice alone are difficult to use as a reference when planning exercises for movement improvements. This cross-sectional study aimed to clarify in patients with mild hemiplegia the kinematic characteristics of paralyzed and non-paralyzed upper limbs reaching the occiput. Ten patients with post-stroke hemiplegia who attended the Department of Rehabilitation Medicine of the Jikei University Hospital and met the eligibility criteria were included. Reaching motion to the back of the head by the participants' paralyzed and non-paralyzed upper limbs was measured using three-dimensional motion analysis, and the motor time, joint angles, and angular velocities were calculated. Repeated measures multivariate analysis of covariance was performed on these data. After confirming the fit to the binomial logistic regression model, the cutoff values were calculated using receiver operating characteristic curves. Pattern identification using random forest clustering was performed to analyze the pattern of motor time and joint angles. The cutoff values for the movement until the hand reached the back of the head were 1.6 s for the motor time, 55° for the maximum shoulder joint flexion angle, and 145° for the maximum elbow joint flexion angle. The cutoff values for the movement from the back of the head to the hand being returned to its original position were 1.6 s for the motor time, 145° for the maximum elbow joint flexion angle, 53°/s for the maximum angular velocity of shoulder joint abduction, and 62°/s for the maximum angular velocity of elbow joint flexion. The numbers of clusters were three, four, and four for the outward non-paralyzed side, outward and return paralyzed side, and return non-paralyzed side, respectively. The findings obtained by this study can be used for practice planning in patients with mild hemiplegia who aim to improve the reaching motion to the occiput.
Collapse
Affiliation(s)
- Daigo Sakamoto
- Department of Rehabilitation Medicine, The Jikei University School of Medicine Hospital, Tokyo, Japan
- Department of Rehabilitation, Graduate School of Health Science, Saitama Prefectural University, Saitama, Japan
| | - Toyohiro Hamaguchi
- Department of Rehabilitation, Graduate School of Health Science, Saitama Prefectural University, Saitama, Japan
| | - Naohiko Kanemura
- Department of Rehabilitation, Graduate School of Health Science, Saitama Prefectural University, Saitama, Japan
| | - Takashi Yasojima
- Department of Rehabilitation, Graduate School of Health Science, Saitama Prefectural University, Saitama, Japan
| | - Keisuke Kubota
- Research Development Center, Saitama Prefectural University, Saitama, Japan
| | - Ryota Suwabe
- Department of Rehabilitation Medicine, The Jikei University School of Medicine Hospital, Tokyo, Japan
| | - Yasuhide Nakayama
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Bartloff JN, Ochs WL, Nichols KM, Gruben KG. Frequency-dependent behavior of paretic and non-paretic leg force during standing post stroke. J Biomech 2024; 164:111953. [PMID: 38309133 PMCID: PMC11758816 DOI: 10.1016/j.jbiomech.2024.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Maintaining upright posture in quiet standing is an important skill that is often disrupted by stroke. Despite extensive study of human standing, current understanding is incomplete regarding the muscle coordination strategies that produce the ground-on-foot force (F) that regulates translational and rotational accelerations of the body. Even less is understood about how stroke disrupts that coordination. Humans produce sagittal plane variations in the location (center of pressure, xCP) and orientation (Fx/Fz) of F that, along with the force of gravity, produce sagittal plane body motions. As F changes during quiet standing there is a strong correlation between the xCP and Fx/Fz time-varying signals within narrow frequency bands. The slope of the correlation varies systematically with frequency in non-disabled populations, is sensitive to changes in both environmental and neuromuscular control factors, and emerges from the interaction of body mechanics and neural control. This study characterized the xCP versus Fx/Fz relationship as frequency-dependent Intersection Point (IP) heights for the paretic and non-paretic legs of individuals with history of a stroke (n = 12) as well as in both legs of non-disabled controls (n = 22) to reveal distinguishing motor coordination patterns. No inter-leg difference of IP height was present in the control group. The paretic leg IP height was lower than the non-paretic, and differences from control legs were in opposite directions. These results quantify disrupted coordination that may characterize the paretic leg balance deficit and non-paretic leg compensatory behavior, providing a means of monitoring balance impairment and a target for therapeutic interventions.
Collapse
Affiliation(s)
- Jennifer N Bartloff
- Department of Mechanical Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA.
| | - Wendy L Ochs
- Trek Bicycle Corporation, Waterloo, WI 53594, USA
| | - Kieran M Nichols
- Department of Mechanical Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Kreg G Gruben
- Department of Mechanical Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA; Department of Kinesiology, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Zhou J, Peng H, Zheng M, Wei Z, Fan T, Song R. Trajectory Deformation-Based Multi-Modal Adaptive Compliance Control for a Wearable Lower Limb Rehabilitation Robot. IEEE Trans Neural Syst Rehabil Eng 2024; 32:314-324. [PMID: 38165796 DOI: 10.1109/tnsre.2023.3348332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Adaptive compliance control is critical for rehabilitation robots to cope with the varying rehabilitation needs and enhance training safety. This article presents a trajectory deformation-based multi-modal adaptive compliance control strategy (TD-MACCS) for a wearable lower limb rehabilitation robot (WLLRR), which includes a high-level trajectory planner and a low-level position controller. Dynamic motion primitives (DMPs) and a trajectory deformation algorithm (TDA) are integrated into the high-level trajectory planner, generating multi-joint synchronized desired trajectories through physical human-robot interaction (pHRI). In particular, the amplitude modulation factor of DMPs and the deformation factor of TDA are adapted by a multi-modal adaptive regulator, achieving smooth switching of human-dominant mode, robot-dominant mode, and soft-stop mode. Besides, a linear active disturbance rejection controller is designed as the low-level position controller. Four healthy participants and two stroke survivors are recruited to conduct robot-assisted walking experiments using the TD-MACCS. The results show that the TD-MACCS can smoothly switch three control modes while guaranteeing trajectory tracking accuracy. Moreover, we find that appropriately increasing the upper bound of the deformation factor can enhance the average walking speed (AWS) and root mean square of trajectory deviation (RMSTD).
Collapse
|
5
|
Shen KH, Borrelli J, Gray VL, Rogers MW, Hsiao HY. Lower limb vertical stiffness and frontal plane angular impulse during perturbation-induced single limb stance and their associations with gait in individuals post-stroke. J Biomech 2024; 163:111917. [PMID: 38184906 PMCID: PMC10932872 DOI: 10.1016/j.jbiomech.2023.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/30/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
After stroke, deficits in paretic single limb stance (SLS) are commonly observed and affect walking performance. During SLS, the hip abductor musculature is critical in providing vertical support and regulating balance. Although disrupted paretic hip abduction torque production has been identified in individuals post-stroke, interpretation of previous results is limited due to the discrepancies in weight-bearing conditions. Using a novel perturbation-based assessment that could induce SLS by removing the support surface underneath one limb, we aim to investigate whether deficits in hip abduction torque production, vertical body support, and balance regulation remain detectable during SLS when controlling for weight-bearing, and whether these measures are associated with gait performance. Our results showed that during the perturbation-induced SLS, individuals post-stroke had lower hip abduction torque, less vertical stiffness, and increased frontal plane angular impulse at the paretic limb compared to the non-paretic limb, while no differences were found between the paretic limb and healthy controls. In addition, vertical stiffness during perturbation-induced SLS was positively correlated with single support duration during gait at the paretic limb and predicted self-selected and fast walking speeds in individuals post-stroke. The findings indicate that reduced paretic hip abduction torque during SLS likely affects vertical support and balance control. Enhancing SLS hip abduction torque production could be an important rehabilitation target to improve walking function for individuals post-stroke.
Collapse
Affiliation(s)
- Keng-Hung Shen
- Department of Kinesiology and Health Education, The University of Texas at Austin, TX, USA
| | - James Borrelli
- Department of Biomedical Engineering, Stevenson University, MD, USA; Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Vicki L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Mark W Rogers
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Hao-Yuan Hsiao
- Department of Kinesiology and Health Education, The University of Texas at Austin, TX, USA; Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA.
| |
Collapse
|
6
|
Zhou J, Peng H, Su S, Song R. Spatiotemporal Compliance Control for a Wearable Lower Limb Rehabilitation Robot. IEEE Trans Biomed Eng 2023; 70:1858-1868. [PMID: 37015454 DOI: 10.1109/tbme.2022.3230784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Compliance control is crucial for physical human-robot interaction, which can enhance the safety and comfort of robot-assisted rehabilitation. In this study, we designed a spatiotemporal compliance control strategy for a new self-designed wearable lower limb rehabilitation robot (WLLRR), allowing the users to regulate the spatiotemporal characteristics of their motion. The high-level trajectory planner consists of a trajectory generator, an interaction torque estimator, and a gait speed adaptive regulator, which can provide spatial and temporal compliance for the WLLRR. A radial basis function neural network adaptive controller is adopted as the low-level position controller. Over-ground walking experiments with passive control, spatial compliance control, and spatiotemporal compliance control strategies were conducted on five healthy participants, respectively. The results demonstrated that the spatiotemporal compliance control strategy allows participants to adjust reference trajectory through physical human-robot interaction, and can adaptively modify gait speed according to participants' motor performance. It was found that the spatiotemporal compliance control strategy could provide greater enhancement of motor variability and reduction of interaction torque than other tested control strategies. Therefore, the spatiotemporal compliance control strategy has great potential in robot-assisted rehabilitation training and other fields involving physical human-robot interaction.
Collapse
|
7
|
Devetak GF, Bohrer RCD, Rinaldin C, Rodacki ALF, Manffra EF. Time profile of kinematic synergies of stroke gait. Clin Biomech (Bristol, Avon) 2023; 106:105990. [PMID: 37209470 DOI: 10.1016/j.clinbiomech.2023.105990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND In stroke subjects, the motor skills differ between sides and among subjects with different levels of motor recovery, impacting inter-joint coordination. How these factors can affect the kinematic synergies over time during gait has not been investigated yet. This work aimed to determine the time profile of kinematic synergies of stroke patients throughout the single support phase of gait. METHODS Kinematic data from 17 stroke and 11 healthy individuals was recorded using a Vicon System. The Uncontrolled Manifold approach was employed to determine the distribution of components of variability and the synergy index. To analyze the time profile of kinematic synergies, we applied the statistical parametric mapping method. Comparisons were made within the stroke group (paretic and non-paretic limbs) and between groups (stroke and healthy). The stroke group was also subdivided into subgroups with worse and better motor recovery. FINDINGS There are significant differences in synergy index at the end of the single support phase between stroke and healthy subjects; paretic and non-paretic limbs; and paretic limb according to the motor recovery. Comparisons of mean values showed significantly larger values of synergy index for the paretic limb compared to the non-paretic and healthy. INTERPRETATION Despite the sensory-motor deficits and the atypical kinematic behavior, stroke patients can produce joint covariations to control the center of mass trajectory in the forward progression plane, but the modulation of the synergy is impaired, reflecting altered adjustments, especially in the paretic limb of subjects with worse levels of motor recovery.
Collapse
Affiliation(s)
- Gisele Francini Devetak
- Clinics Hospital, Federal University of Paraná (UFPR/EBSERH), Brazil; Graduate Program on Health Technology, Pontifícia Universidade Católica do Paraná (PUCPR), Brazil.
| | | | - Carla Rinaldin
- Graduate Program on Health Technology, Pontifícia Universidade Católica do Paraná (PUCPR), Brazil
| | | | | |
Collapse
|
8
|
Shen KH, Borrelli J, Gray VL, Rogers MW, Hsiao HY. Lower Limb Vertical Stiffness and Frontal Plane Angular Impulse during Perturbation-Induced Single Limb Stance and Their Associations with Gait in Individuals Post-Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536288. [PMID: 37090545 PMCID: PMC10120673 DOI: 10.1101/2023.04.10.536288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background After stroke, deficits in paretic single limb stance (SLS) are commonly observed and affect walking performance. During SLS, the hip abductor musculature is critical in providing vertical support and regulating balance. Although disrupted paretic hip abduction torque production has been identified in individuals post-stroke, interpretation of previous results is limited due to the discrepancies in weight-bearing conditions. Objective To investigate whether deficits in hip abduction torque production, vertical body support, and balance regulation remain during SLS when controlling for weight-bearing using a perturbation-based assessment, and whether these measures are associated with gait performance. Methods We compared hip abduction torque, vertical stiffness, and frontal plane angular impulse between individuals post-stroke and healthy controls when SLS was induced by removing the support surface underneath one limb. We also tested for correlations between vertical stiffness and angular impulse during perturbation-induced SLS and gait parameters during overground walking. Results During the perturbation-induced SLS, lower hip abduction torque, less vertical stiffness, and increased frontal plane angular impulse were observed at the paretic limb compared to the non-paretic limb, while no differences were found between the paretic limb and healthy controls. Vertical stiffness during perturbation-induced SLS was positively correlated with single support duration during gait at the paretic limb and predicted self-selected and fast walking speeds in individuals post-stroke. Conclusions Reduced paretic hip abduction torque during SLS likely affects vertical support and balance control. Enhancing SLS hip abduction torque production could be an important rehabilitation target to improve walking function for individuals post-stroke.
Collapse
Affiliation(s)
- Keng-Hung Shen
- Department of Kinesiology and Health Education, The University of Texas at Austin, TX, USA
| | - James Borrelli
- Department of Biomedical Engineering, Stevenson University, MD, USA
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Vicki L. Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Mark W. Rogers
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Hao-Yuan Hsiao
- Department of Kinesiology and Health Education, The University of Texas at Austin, TX, USA
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| |
Collapse
|
9
|
Goyal V, Dragunas A, Askew RL, Sukal-Moulton T, López-Rosado R. Altered biomechanical strategies of the paretic hip and knee joints during a step-up task. Top Stroke Rehabil 2023; 30:137-145. [PMID: 36744516 PMCID: PMC9902751 DOI: 10.1080/10749357.2021.2008596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Stroke often leads to chronic motor impairments in the paretic lower limb that can constrain lower extremity movement and negatively impact the ability to navigate stairs or curbs. This cross-sectional study investigated the differences in hip and knee biomechanical strategies during a step-up task between five adults with hemiparetic stroke and five age-matched adults without stroke. METHODS Participants were instructed to step up onto a 10.2 cm platform, where joint biomechanics were quantified for the hip in the frontal plane and the hip and knee in the sagittal plane. Peak joint kinematics were identified during the leading limb swing phase, and peak joint moments and power were identified during the leading limb pull-up phase of stance. Mixed effects regression models estimated fixed effects of limb (three levels: control dominant, stroke non-paretic, and stroke paretic) on biomechanical outcomes, while a random effect of participant controlled for within-participant correlations. RESULTS Repeated assessments within participants (approximately 60 trials per lower limb) increased the effective sample size to between 12.0 and 19.6. Altered biomechanical strategies of the paretic lower limb included reduced flexion angles and increased pelvic obliquity angles during swing, decreased power generation in the hip frontal plane during stance, and decreased moment and power generation in the knee sagittal plane during stance. A strategy of substantial interest was the elevated hip sagittal plane moment and power generation in both stroke limbs. CONCLUSIONS Our findings suggest that chronic motor impairments following stroke can lead to inefficient biomechanical strategies when stepping up.
Collapse
Affiliation(s)
- Vatsala Goyal
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N. Michigan Ave., Chicago, Illinois, USA, 60611
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, E310, Evanston, Illinois, USA 60208
| | - Andrew Dragunas
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N. Michigan Ave., Chicago, Illinois, USA, 60611
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, E310, Evanston, Illinois, USA 60208
| | - Robert L. Askew
- Department of Psychology, Stetson University, 421 N. Woodland Blvd., Unit 8281, DeLand, Florida, USA, 32723
| | - Theresa Sukal-Moulton
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N. Michigan Ave., Chicago, Illinois, USA, 60611
- Department of Pediatrics, Northwestern University, 255 E. Chicago Avenue, Box 86, Chicago, Illinois, USA 60611
| | - Roberto López-Rosado
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N. Michigan Ave., Chicago, Illinois, USA, 60611
| |
Collapse
|
10
|
Kettlety SA, Finley JM, Reisman DS, Schweighofer N, Leech KA. Speed-dependent biomechanical changes vary across individual gait metrics post-stroke relative to neurotypical adults. J Neuroeng Rehabil 2023; 20:14. [PMID: 36703214 PMCID: PMC9881336 DOI: 10.1186/s12984-023-01139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Gait training at fast speeds is recommended to reduce walking activity limitations post-stroke. Fast walking may also reduce gait kinematic impairments post-stroke. However, it is unknown if differences in gait kinematics between people post-stroke and neurotypical adults decrease when walking at faster speeds. OBJECTIVE To determine the effect of faster walking speeds on gait kinematics post-stroke relative to neurotypical adults walking at similar speeds. METHODS We performed a secondary analysis with data from 28 people post-stroke and 50 neurotypical adults treadmill walking at multiple speeds. We evaluated the effects of speed and group on individual spatiotemporal and kinematic metrics and performed k-means clustering with all metrics at self-selected and fast speeds. RESULTS People post-stroke decreased step length asymmetry and trailing limb angle impairment, reducing between-group differences at fast speeds. Speed-dependent changes in peak swing knee flexion, hip hiking, and temporal asymmetries exaggerated between-group differences. Our clustering analyses revealed two clusters. One represented neurotypical gait behavior, composed of neurotypical and post-stroke participants. The other characterized stroke gait behavior-comprised entirely of participants post-stroke with smaller lower extremity Fugl-Meyer scores than the post-stroke participants in the neurotypical gait behavior cluster. Cluster composition was largely consistent at both speeds, and the distance between clusters increased at fast speeds. CONCLUSIONS The biomechanical effect of fast walking post-stroke varied across individual gait metrics. For participants within the stroke gait behavior cluster, walking faster led to an overall gait pattern more different than neurotypical adults compared to the self-selected speed. This suggests that to potentiate the biomechanical benefits of walking at faster speeds and improve the overall gait pattern post-stroke, gait metrics with smaller speed-dependent changes may need to be specifically targeted within the context of fast walking.
Collapse
Affiliation(s)
- Sarah A Kettlety
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E Alcazar St, CHP 155, Los Angeles, CA, 90033, USA
| | - James M Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E Alcazar St, CHP 155, Los Angeles, CA, 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, 540 S College Ave, Suite 160, Newark, DE, 19713, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - Nicolas Schweighofer
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E Alcazar St, CHP 155, Los Angeles, CA, 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Kristan A Leech
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E Alcazar St, CHP 155, Los Angeles, CA, 90033, USA.
| |
Collapse
|
11
|
Liu C, McNitt-Gray JL, Finley JM. Impairments in the mechanical effectiveness of reactive balance control strategies during walking in people post-stroke. Front Neurol 2022; 13:1032417. [PMID: 36388197 PMCID: PMC9659909 DOI: 10.3389/fneur.2022.1032417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 01/26/2023] Open
Abstract
People post-stroke have an increased risk of falls compared to neurotypical individuals, partly resulting from an inability to generate appropriate reactions to restore balance. However, few studies investigated the effect of paretic deficits on the mechanics of reactive control strategies following forward losses of balance during walking. Here, we characterized the biomechanical consequences of reactive control strategies following perturbations induced by the treadmill belt accelerations. Thirty-eight post-stroke participants and thirteen age-matched and speed-matched neurotypical participants walked on a dual-belt treadmill while receiving perturbations that induced a forward loss of balance. We computed whole-body angular momentum and angular impulse using segment kinematics and reaction forces to quantify the effect of impulse generation by both the leading and trailing limbs in response to perturbations in the sagittal plane. We found that perturbations to the paretic limb led to larger increases in forward angular momentum during the perturbation step than perturbations to the non-paretic limb or to neurotypical individuals. To recover from the forward loss of balance, neurotypical individuals coordinated reaction forces generated by both legs to decrease the forward angular impulse relative to the pre-perturbation step. They first decreased the forward pitch angular impulse during the perturbation step. Then, during the first recovery step, they increased the backward angular impulse by the leading limb and decreased the forward angular impulse by the trailing limb. In contrast to neurotypical participants, people post-stroke did not reduce the forward angular impulse generated by the stance limb during the perturbed step. They also did not increase leading limb angular impulse or decrease the forward trailing limb angular impulse using their paretic limb during the first recovery step. Lastly, post-stroke individuals who scored poorer on clinical assessments of balance and had greater motor impairment made less use of the paretic limb to reduce forward momentum. Overall, these results suggest that paretic deficits limit the ability to recover from forward loss of balance. Future perturbation-based balance training targeting reactive stepping response in stroke populations may benefit from improving the ability to modulate paretic ground reaction forces to better control whole-body dynamics.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States,*Correspondence: Chang Liu
| | - Jill L. McNitt-Gray
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States,Department of Biological Science, University of Southern California, Los Angeles, CA, United States
| | - James M. Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States,James M. Finley
| |
Collapse
|
12
|
Johnson RT, Bianco NA, Finley JM. Patterns of asymmetry and energy cost generated from predictive simulations of hemiparetic gait. PLoS Comput Biol 2022; 18:e1010466. [PMID: 36084139 PMCID: PMC9491609 DOI: 10.1371/journal.pcbi.1010466] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/21/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Hemiparesis, defined as unilateral muscle weakness, often occurs in people post-stroke or people with cerebral palsy, however it is difficult to understand how this hemiparesis affects movement patterns as it often presents alongside a variety of other neuromuscular impairments. Predictive musculoskeletal modeling presents an opportunity to investigate how impairments affect gait performance assuming a particular cost function. Here, we use predictive simulation to quantify the spatiotemporal asymmetries and changes to metabolic cost that emerge when muscle strength is unilaterally reduced and how reducing spatiotemporal symmetry affects metabolic cost. We modified a 2-D musculoskeletal model by uniformly reducing the peak isometric muscle force unilaterally. We then solved optimal control simulations of walking across a range of speeds by minimizing the sum of the cubed muscle excitations. Lastly, we ran additional optimizations to test if reducing spatiotemporal asymmetry would result in an increase in metabolic cost. Our results showed that the magnitude and direction of effort-optimal spatiotemporal asymmetries depends on both the gait speed and level of weakness. Also, the optimal speed was 1.25 m/s for the symmetrical and 20% weakness models but slower (1.00 m/s) for the 40% and 60% weakness models, suggesting that hemiparesis can account for a portion of the slower gait speed seen in people with hemiparesis. Modifying the cost function to minimize spatiotemporal asymmetry resulted in small increases (~4%) in metabolic cost. Overall, our results indicate that spatiotemporal asymmetry may be optimal for people with hemiparesis. Additionally, the effect of speed and the level of weakness on spatiotemporal asymmetry may help explain the well-known heterogenous distribution of spatiotemporal asymmetries observed in the clinic. Future work could extend our results by testing the effects of other neuromuscular impairments on optimal gait strategies, and therefore build a more comprehensive understanding of the gait patterns observed in clinical populations.
Collapse
Affiliation(s)
- Russell T. Johnson
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Nicholas A. Bianco
- Department of Mechanical Engineering, Stanford University, Palo Alto, California, United States of America
| | - James M. Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Shariat A, Nakhostin Ansari N, Honarpishe R, Moradi V, Hakakzadeh A, Cleland JA, Kordi R. Effect of cycling and functional electrical stimulation with linear and interval patterns of timing on gait parameters in patients after stroke: a randomized clinical trial. Disabil Rehabil 2021; 43:1890-1896. [PMID: 31707865 DOI: 10.1080/09638288.2019.1685600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Patients in the chronic phase after a stroke are an underrepresented group in the literature. Therefore, the aim of this study was to compare the effects of cycling and functional electrical stimulation with linear versus interval patterns of timing on gait parameters in patients after stroke. DESIGN A double blinded, parallel, randomized clinical trial. SETTING Neuroscience Institute. PARTICIPANTS Patients with lower limb disability due to stroke (N = 30) with a stroke onset >6 months and <18 months. INTERVENTIONS Twenty-eight minutes of leg cycling with functional electrical stimulation with linear or interval patterns of timing applied to the peroneal and biceps femoris muscles, 3 times/week for 4 weeks. MAIN MEASURES Timed 10-Meter Walk Test and Functional Ambulation Classification were the primary outcome measures. The Modified Modified Ashworth scale, active range of motion, Timed Up and Go Test, and Single Leg Stance Test were the secondary outcome measures. Evaluation was performed at baseline, after 4, and after 8 weeks. RESULTS Thirty participants completed the 4-week intervention (interval group, n = 16; linear group, n = 14). The Functional Ambulation Classification, Timed 10-Meter Walk Test, and the Timed Up and Go Test improved significantly in both groups. The Modified Modified Ashworth scale scores for quadriceps and plantar flexion statistically decreased after 4-weeks in the interval group. Significant group-by-time interaction was shown for Timed Up and Go Test (p = 0.003, np2=0.228), knee flexion active range of motion (p < 0.001, np2=0.256) and dorsiflexion active range of motion (p < 0.001, np2=0.359). Modified Modified Ashworth scale and active range of motion in both the ankle and knee improved significantly in the interval group. CONCLUSIONS The functional electrical stimulation with cycling protocols improved the Functional Ambulation Classification, Timed 10-Meter Walk Test, active range of motion, Timed Up and Go Test, and Modified Modified Ashworth scale. An interval protocol of timing was more effective than the linear protocol in terms of spasticity and active range of motion.Implications for rehabilitationCycling + functional electrical stimulation training with an interval pattern of timing seems superior to cycling + functional electrical stimulation training with a linear pattern.Interval protocol has positive effects on spasticity and range of motion after 12 sessions in patients post stroke.Cycling + functional electrical stimulation improves functional mobility and speed in stroke survivors and the effects of this intervention lasted in follow-up assessment after one month.
Collapse
Affiliation(s)
- Ardalan Shariat
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noureddin Nakhostin Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Honarpishe
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Moradi
- Department of Orthotics and Prosthetics, Faculty of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Hakakzadeh
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
McClure P, Tevald M, Zarzycki R, Kantak S, Malloy P, Day K, Shah K, Miller A, Mangione K. The 4-Element Movement System Model to Guide Physical Therapist Education, Practice, and Movement-Related Research. Phys Ther 2021; 101:6106275. [PMID: 33482006 DOI: 10.1093/ptj/pzab024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/06/2020] [Indexed: 11/13/2022]
Abstract
The movement system has been adopted as the key identity for the physical therapy profession, and recognition of physical therapists' primary expertise in managing movement dysfunction is an important achievement. However, existing movement system models seem inadequate for guiding education, practice, or research. Lack of a clear, broadly applicable model may hamper progress in physical therapists actually adopting this identity. We propose a model composed of 4 primary elements essential to all movement: motion, force, energy, and control. Although these elements overlap and interact, they can each be examined and tested with some degree of specificity. The proposed 4-element model incorporates specific guidance for visual, qualitative assessment of movement during functional tasks that can be used to develop hypotheses about movement dysfunction and serve as a precursor to more quantitative tests and measures. Human movement always occurs within an environmental context and is affected by personal factors, and these concepts are represented within the model. The proposed scheme is consistent with other widely used models within the profession, such as the International Classification of Functioning, Disability and Health and the Patient Management Model. We demonstrate with multiple examples how the model can be applied to a broad spectrum of patients across the lifespan with musculoskeletal, neurologic, and cardiopulmonary disorders.
Collapse
Affiliation(s)
- Philip McClure
- Arcadia University, Department of Physical Therapy, Glenside, Pennsylvania, USA
| | - Michael Tevald
- Arcadia University, Department of Physical Therapy, Glenside, Pennsylvania, USA
| | - Ryan Zarzycki
- Arcadia University, Department of Physical Therapy, Glenside, Pennsylvania, USA
| | - Shailesh Kantak
- Arcadia University, Department of Physical Therapy, Glenside, Pennsylvania, USA.,Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA
| | - Philip Malloy
- Arcadia University, Department of Physical Therapy, Glenside, Pennsylvania, USA
| | - Kristin Day
- Arcadia University, Department of Physical Therapy, Glenside, Pennsylvania, USA
| | - Kshamata Shah
- Arcadia University, Department of Physical Therapy, Glenside, Pennsylvania, USA
| | - Amy Miller
- Arcadia University, Department of Physical Therapy, Glenside, Pennsylvania, USA
| | - Kathleen Mangione
- Arcadia University, Department of Physical Therapy, Glenside, Pennsylvania, USA
| |
Collapse
|
15
|
Hernández ED, Forero SM, Galeano CP, Barbosa NE, Sunnerhagen KS, Alt Murphy M. Intra- and interrater reliability of Fugl-Meyer Assessment of Lower Extremity early after stroke. Braz J Phys Ther 2020; 25:709-718. [PMID: 33358073 PMCID: PMC8721065 DOI: 10.1016/j.bjpt.2020.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The Fugl-Meyer Assessment of Lower Extremity (FMA-LE) is a widely used and recommended scale for evaluation of post-stroke motor impairment. However, the reliability of the scale has only been established by using parametric statistical methods, which ignores the ordinal properties of the scale. OBJECTIVE To determined intra- and inter-rater reliability of the FMA-LE at item and summed score level early after stroke. METHODS Sixty patients (mean age 65.9 years, median FMA-LE 29 points) admitted to the hospital due to stroke were included. The FMA-LE was simultaneously, but independently, scored by three experienced and trained physical therapists randomly assigned into pairs, on two consecutive days, between 4 to 9 days post stroke. A rank-based statistical method for paired ordinal data was used to assess the level of agreement and systematic and random disagreements. RESULTS The item-level reliability was high (percentage of agreement [PA] ≥75%). Two items (ankle dorsiflexion during flexor synergy and normal reflex activity) showed some systematic disagreement in intrarater analysis. A satisfactory intrarater reliability (PA ≥70%) was reached for all summed scores when a 1- or 2-point difference was accepted between ratings. CONCLUSION The FMA-LE is a reliable tool for assessment of motor impairment both within and between raters early after stroke. The scale can be recommended not only for use in Spanish speaking countries, but also internationally. A unified international use of FMA-LE would allow comparison of stroke recovery outcomes worldwide and thereby potentially improve the quality of stroke rehabilitation.
Collapse
Affiliation(s)
- Edgar D Hernández
- Departamento del Movimiento Corporal Humano, Universidad Nacional de Colombia, Bogota, Colombia
| | | | | | | | - Katharina S Sunnerhagen
- Institute of Neuroscience and Physiology, Clinical Neuroscience, Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margit Alt Murphy
- Institute of Neuroscience and Physiology, Clinical Neuroscience, Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
16
|
Buurke TJW, Liu C, Park S, den Otter R, Finley JM. Maintaining sagittal plane balance compromises frontal plane balance during reactive stepping in people post-stroke. Clin Biomech (Bristol, Avon) 2020; 80:105135. [PMID: 32818902 PMCID: PMC8128665 DOI: 10.1016/j.clinbiomech.2020.105135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Maintaining balance in response to perturbations during walking often requires the use of corrective responses to keep the center of mass within the base of support. The relationship between the center of mass and base of support is often quantified using the margin of stability. Although people post-stroke increase the margin of stability following perturbations, control deficits may lead to asymmetries in regulation of margins of stability, which may also cause maladaptive coupling between the sagittal and frontal planes during balance-correcting responses. METHODS We assessed how paretic and non-paretic margins of stability are controlled during recovery from forward perturbations and determined how stroke-related impairments influence the coupling between the anteroposterior and mediolateral margins of stability. Twenty-one participants with post-stroke hemiparesis walked on a treadmill while receiving slip-like perturbations on both limbs at foot-strike. We assessed anteroposterior and mediolateral margins of stability before perturbations and during perturbation recovery. FINDINGS Participants walked with smaller anteroposterior and larger mediolateral margins of stability on the paretic versus non-paretic sides. When responding to perturbations, participants increased the anteroposterior margin of stability bilaterally by extending the base of support and reducing the excursion of the extrapolated center of mass. The anteroposterior and mediolateral margins of stability in the paretic limb negatively covaried during reactive steps such that increases in anteroposterior were associated with reductions in mediolateral margins of stability. INTERPRETATION Balance training interventions to reduce fall risk post-stroke may benefit from incorporating strategies to reduce maladaptive coupling of frontal and sagittal plane stability.
Collapse
Affiliation(s)
- Tom J W Buurke
- University of Groningen, University Medical Center Groningen, Department of Human Movement Sciences, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| | - Chang Liu
- University of Southern California, Department of Biomedical Engineering, 1042 Downey Way, Los Angeles, CA, USA
| | - Sungwoo Park
- University of Southern California, Division of Biokinesiology and Physical Therapy, 1540 E. Alcazar St, CHP, 155, Los Angeles, CA, USA
| | - Rob den Otter
- University of Groningen, University Medical Center Groningen, Department of Human Movement Sciences, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| | - James M Finley
- University of Southern California, Department of Biomedical Engineering, 1042 Downey Way, Los Angeles, CA, USA; University of Southern California, Division of Biokinesiology and Physical Therapy, 1540 E. Alcazar St, CHP, 155, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Chow JW, Stokic DS. Relations between knee and ankle muscle coactivation and temporospatial gait measures in patients without hypertonia early after stroke. Exp Brain Res 2020; 238:2909-2919. [PMID: 33063171 DOI: 10.1007/s00221-020-05936-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022]
Abstract
It is unclear whether muscle coactivation during gait is altered early after stroke and among which muscles. We sought to characterize muscle coactivation during gait in subacute stroke subjects without hypertonia and explore the relationship with temporospatial parameters. In 70 stroke (23 ± 12 days post-onset) and 29 age-matched healthy subjects, surface electromyography signals were used to calculate coactivation magnitude and duration between rectus femoris and medial hamstring (knee antagonistic coactivation), tibialis anterior and medial gastrocnemius (ankle antagonistic coactivation), and rectus femoris and medial gastrocnemius (extensor synergistic coactivation) during early double-support (DS1), early single-support (SS1), late single-support (SS2), late double-support (DS2), and swing (SW). Compared to both free and very-slow speeds of controls, stroke subjects had bilaterally decreased ankle coactivation magnitude in SS2 and duration in SS1 and SS2 as well as increased extensor coactivation magnitude in DS2 and SW. Both non-paretic knee and ankle coactivation magnitudes in SS2 moderately correlated with most temporospatial parameters (|r| ≥ 0.40). Antagonistic and synergistic coactivation patterns of the knee and ankle muscles during gait are altered bilaterally in subacute stroke subjects without lower limb hypertonia suggesting impairments in motor control. Greater coactivation magnitudes in the non-paretic knee and both ankles during the terminal stance (SS2) are associated with the overall worse gait performance. Unlike previously reported excessive coactivation or no change in chronic stroke, bilaterally decreased and increased coactivation patterns are present in subacute stroke. These findings warrant longitudinal studies to examine the evolution of changes in muscle coactivation from subacute to chronic stroke.
Collapse
Affiliation(s)
- John W Chow
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA.
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| |
Collapse
|
18
|
Scrivener K, Dorsch S, McCluskey A, Schurr K, Graham PL, Cao Z, Shepherd R, Tyson S. Bobath therapy is inferior to task-specific training and not superior to other interventions in improving lower limb activities after stroke: a systematic review. J Physiother 2020; 66:225-235. [PMID: 33069609 DOI: 10.1016/j.jphys.2020.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022] Open
Abstract
QUESTION In adults with stroke, does Bobath therapy improve lower limb activity performance, strength or co-ordination when compared with no intervention or another intervention? DESIGN Systematic review of randomised trials with meta-analyses. PARTICIPANTS Adults after stroke. INTERVENTION Bobath therapy compared with another intervention or no intervention. OUTCOME MEASURES Lower limb activity performance (eg, sit to stand, walking, balance), lower limb strength and lower limb co-ordination. Trial quality was assessed using the PEDro scale. RESULTS Twenty-two trials were included in the review and 17 in the meta-analyses. The methodological quality of the trials varied, with PEDro scale scores ranging from 2 to 8 out of 10. No trials compared Bobath therapy to no intervention. Meta-analyses estimated the effect of Bobath therapy on lower limb activities compared with other interventions, including: task-specific training (nine trials), combined interventions (four trials), proprioceptive neuromuscular facilitation (one trial) and strength training (two trials). The pooled data indicated that task-specific training has a moderately greater benefit on lower limb activities than Bobath therapy (SMD 0.48), although the true magnitude of the benefit may be substantially larger or smaller than this estimate (95% CI 0.01 to 0.95). Bobath therapy did not clearly improve lower limb activities more than a combined intervention (SMD -0.06, 95% CI -0.73 to 0.61) or strength training (SMD 0.35, 95% CI -0.37 to 1.08). In one study, Bobath therapy was more effective than proprioceptive neuromuscular facilitation for improving standing balance (SMD -1.40, 95% CI -1.92 to -0.88), but these interventions did not differ on any other outcomes. Bobath therapy did not improve strength or co-ordination more than other interventions. CONCLUSIONS Bobath therapy was inferior to task-specific training and not superior to other interventions, with the exception of proprioceptive neuromuscular facilitation. Prioritising Bobath therapy over other interventions is not supported by current evidence. REGISTRATION PROSPERO CRD42019112451.
Collapse
Affiliation(s)
| | - Simone Dorsch
- Faculty of Health Sciences, Australian Catholic University, Australia; The StrokeEd Collaboration, Sydney, Australia
| | - Annie McCluskey
- The StrokeEd Collaboration, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Karl Schurr
- The StrokeEd Collaboration, Sydney, Australia
| | - Petra L Graham
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie University, Sydney, Australia
| | | | - Roberta Shepherd
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Sarah Tyson
- School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Goyal V, Sukal-Moulton T, Dewald JPA. A Method to Quantify Multi-Degree-of-Freedom Lower Limb Isometric Joint Torques in Children with Hemiplegia .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1521-1524. [PMID: 31946183 DOI: 10.1109/embc.2019.8856444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pediatric hemiplegia, caused by a unilateral brain injury during childhood, can lead to motor deficits such as weakness and abnormal joint torque coupling patterns which may result in a loss of independent joint control. It is hypothesized that these motor impairments are present in the paretic lower extremity, especially at the hip joint where extension may be abnormally coupled with adduction. Previous studies investigating lower extremity isometric joint torques in children with spastic cerebral palsy used tools that limited data collection to one degree of freedom, making it impossible to quantify these coupling patterns. We describe the adaptation of a multi-joint lower extremity isometric torque measurement device to allow for quantification of weakness and abnormal joint torque coupling patterns at the hip in the pediatric population. We also present preliminary data in three children without hemiplegia to highlight how the presence of atypical femoral bony geometry, often observed in childhood hemiplegia, can be accounted for in the Jacobian transformations and affect joint torque measurements at the hip.
Collapse
|
20
|
Celestino ML, van Emmerik R, Barela JA, Gama GL, Barela AM. Intralimb gait coordination of individuals with stroke using vector coding. Hum Mov Sci 2019; 68:102522. [DOI: 10.1016/j.humov.2019.102522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/14/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
|
21
|
Khan F, Anjamparuthikal H, Chevidikunnan MF. The Comparison between Isokinetic Knee Muscles Strength in the Ipsilateral and Contralateral Limbs and Correlating with Function of Patients with Stroke. J Neurosci Rural Pract 2019; 10:683-689. [PMID: 31831990 PMCID: PMC6906114 DOI: 10.1055/s-0039-1700612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objective The aim of this study is to compare the isokinetic knee muscles peak torque measurements and proprioception between the affected and intact limbs of patients with stroke, in addition to finding the correlation between knee muscles strength and lower limb function. Methods Twelve patients with stroke (mean age 64.33 ± 6.140 years), with 3 to 7 months poststroke who can walk 25 feet independently without using or using assistive devices and full passive range of motion were included in the study. Biodex isokinetic dynamometer was used for measuring isokinetic strength at 90°/s, 120°/s, and 150°/s and isometric strength at 60°/s in both flexors and extensors of the knee, whereas proprioception was measured at 45°/s knee flexion, all for affected and intact limbs. Functional measurements were assessed using the Fugl-Meyer Assessment for Lower Limb scale and Barthel Index (BI). Results The differences shown were found to be statistically significant between affected and intact limbs in isokinetic 90°/s flexion ( p = 0.005), extension ( p = 0.0013), and isometric at 60°/s flexion ( p < 0.0001) knee muscle strengths and also the proprioception ( p = 0.05). Significant positive correlation was found between isokinetic affected side knee flexion at 90°/s ( r = 0.903) with BI ( r = 0.704). Conclusion There is a significant difference in peak torque measurements between affected and normal lower limbs of poststroke patients, as well as a significant correlation between the knee strength and lower limb functions. Furthermore, it can also be concluded that the differences in knee proprioception between the affected and intact limbs were shown to be significant.
Collapse
Affiliation(s)
- Fayaz Khan
- Department of Physical Therapy, Faculty of Medical Rehabilitation Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haris Anjamparuthikal
- Department of Physical Therapy, Faculty of Medical Rehabilitation Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Faisal Chevidikunnan
- Department of Physical Therapy, Faculty of Medical Rehabilitation Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Imbalanced Corticospinal and Reticulospinal Contributions to Spasticity in Humans with Spinal Cord Injury. J Neurosci 2019; 39:7872-7881. [PMID: 31413076 DOI: 10.1523/jneurosci.1106-19.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 07/25/2019] [Indexed: 02/04/2023] Open
Abstract
Damage to the corticospinal and reticulospinal tract has been associated with spasticity in humans with upper motor neuron lesions. We hypothesized that these descending motor pathways distinctly contribute to the control of a spastic muscle in humans with incomplete spinal cord injury (SCI). To test this hypothesis, we examined motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the leg representation of the primary motor cortex, maximal voluntary contractions (MVCs), and the StartReact response (shortening in reaction time evoked by a startling stimulus) in the quadriceps femoris muscle in male and females with and without incomplete SCI. A total of 66.7% of the SCI participants showed symptoms of spasticity, whereas the other 33.3% showed no or low levels of spasticity. We found that participants with spasticity had smaller MEPs and MVCs and larger StartReact compared with participants with no or low spasticity and control subjects. These results were consistently present in spastic subjects but not in the other populations. Clinical scores of spasticity were negatively correlated with MEP-max and MVC values and positively correlated with shortening in reaction time. These findings provide evidence for lesser corticospinal and larger reticulospinal influences to spastic muscles in humans with SCI and suggest that these imbalanced contributions are important for motor recovery.SIGNIFICANCE STATEMENT Although spasticity is one of the most common symptoms manifested in humans with spinal cord injury (SCI) to date, its mechanisms of action remain poorly understood. We provide evidence, for the first time, of imbalanced contributions of the corticospinal and reticulospinal tract to control a spastic muscle in humans with chronic incomplete SCI. We found that participants with SCI with spasticity showed small corticospinal responses and maximal voluntary contractions and larger reticulospinal gain compared with participants with no or low spasticity and control subjects. These results were consistently present in spastic subjects but not in the other populations. We showed that imbalanced corticospinal and reticulospinal tract contributions are more pronounced in participants with chronic incomplete SCI with lesser recovery.
Collapse
|
23
|
Ardestani MM, Henderson CE, Salehi SH, Mahtani GB, Schmit BD, Hornby TG. Kinematic and Neuromuscular Adaptations in Incomplete Spinal Cord Injury after High- versus Low-Intensity Locomotor Training. J Neurotrauma 2019; 36:2036-2044. [PMID: 30362878 DOI: 10.1089/neu.2018.5900] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent data demonstrate improved locomotion with high-intensity locomotor training (LT) in individuals with incomplete spinal cord injury (iSCI), although concerns remain regarding reinforcement of abnormal motor strategies. The present study evaluated the effects of LT intensity on kinematic and neuromuscular coordination in individuals with iSCI. Using a randomized, crossover design, participants with iSCI received up to 20 sessions of high-intensity LT, with attempts to achieve 70-85% of age-predicted maximum heart rate (HRmax), or low-intensity LT (50-65% HRmax), following which the other intervention was performed. Specific measures included spatiotemporal variables, sagittal-plane gait kinematics, and neuromuscular synergies from electromyographic (EMG) recordings. Correlation analyses were conducted to evaluate associations between variables. Significant improvements in sagittal-plane joint excursions and intralimb hip-knee coordination were observed following high- but not low-intensity LT when comparing peak treadmill (TM) speed before and after LT. Neuromuscular complexity (i.e., number of synergies to explain >90% of EMG variance) was also increased following high- but not low-intensity LT. Comparison of speed-matched trials confirmed significant improvements in the knee excursion of the less impaired limb and intralimb hip-knee coordination, as well as improvements in neuromuscular complexity following high-intensity LT. These findings suggest greater neuromuscular complexity may be due to LT and not necessarily differences in speeds. Only selected kinematic changes (i.e., weak hip excursion) was correlated to improvements in treadmill speed. In conclusion, LT intensity can facilitate gains in kinematic variables and neuromuscular synergies in individuals with iSCI.
Collapse
Affiliation(s)
- Marzieh M Ardestani
- 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Christopher E Henderson
- 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Seyed H Salehi
- 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Gordhan B Mahtani
- 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Brian D Schmit
- 2 Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois.,3 Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - T George Hornby
- 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana.,2 Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| |
Collapse
|
24
|
Sánchez N, Acosta AM, López-Rosado R, Dewald JPA. Neural Constraints Affect the Ability to Generate Hip Abduction Torques When Combined With Hip Extension or Ankle Plantarflexion in Chronic Hemiparetic Stroke. Front Neurol 2018; 9:564. [PMID: 30050495 PMCID: PMC6050392 DOI: 10.3389/fneur.2018.00564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/22/2018] [Indexed: 12/02/2022] Open
Abstract
Stroke lesions interrupt descending corticofugal fibers that provide the volitional control of the upper and lower extremities. Despite the evident manifestation of movement impairments post-stroke during standing and gait, neural constraints in the ability to generate joint torque combinations in the lower extremities are not yet well determined. Twelve chronic hemiparetic participants and 8 age-matched control individuals participated in the present study. In an isometric setup, participants were instructed to combine submaximal hip extension or ankle plantarflexion torques with maximal hip abduction torques. Statistical analyses were run using linear mixed effects models. Results for the protocol combining hip extension and abduction indicate that participants post-stroke have severe limitations in the amount of hip abduction torque they can generate, dependent upon hip extension torque magnitude. These effects are manifested in the paretic extremity by the appearance of hip adduction torques instead of hip abduction at higher levels of hip extension. In the non-paretic extremity, significant reductions of hip abduction were also observed. In contrast, healthy control individuals were capable of combining varied levels of hip extension with maximal hip abduction. When combining ankle plantarflexion and hip abduction, only the paretic extremity showed reductions in the ability to generate hip abduction torques at increased levels of ankle plantarflexion. Our results provide insight into the neural mechanisms controlling the lower extremity post-stroke, supporting previously hypothesized increased reliance on postural brainstem motor pathways. These pathways have a greater dominance in the control of proximal joints (hip) compared to distal joints (ankle) and lead to synergistic activation of musculature due to their diffuse, bilateral connections at multiple spinal cord levels. We measured, for the first time, bilateral constraints in hip extension/abduction coupling in hemiparetic stroke, again in agreement with the expected increased reliance on bilateral brainstem motor pathways. Understanding of these neural constraints in the post-stroke lower extremities is key in the development of more effective rehabilitation interventions that target abnormal joint torque coupling patterns.
Collapse
Affiliation(s)
- Natalia Sánchez
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Ana M Acosta
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Roberto López-Rosado
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| |
Collapse
|
25
|
Abstract
The review demonstrates that control of posture and locomotion is provided by systems across the caudal-to-rostral extent of the neuraxis. A common feature of the neuroanatomic organization of the postural and locomotor control systems is the presence of key nodes for convergent input of multisensory feedback in conjunction with efferent copies of the motor command. These nodes include the vestibular and reticular nuclei and interneurons in the intermediate zone of the spinal cord (Rexed's laminae VI-VIII). This organization provides both spatial and temporal coordination of the various goals of the system and ensures that the large repertoire of voluntary movements is appropriately coupled to either anticipatory or reactive postural adjustments that ensure stability and provide the framework to support the intended action. Redundancies in the system allow adaptation and compensation when sensory modalities are impaired. These alterations in behavior are learned through reward- and error-based learning processes implemented through basal ganglia and cerebellar pathways respectively. However, neurodegenerative processes or lesions of these systems can greatly compromise the capacity to sufficiently adapt and sometimes leads to maladaptive changes that impair movement control. When these impairments occur, the risk of falls can be significantly increased and interventions are required to reduce morbidity.
Collapse
Affiliation(s)
- Colum D MacKinnon
- Department of Neurology and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|