1
|
Li C, Li M, Shang Y. Cognitive training with adaptive algorithm improves cognitive ability in older people with MCI. Aging Clin Exp Res 2025; 37:20. [PMID: 39751703 PMCID: PMC11698878 DOI: 10.1007/s40520-024-02913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Recent discoveries indicating that the brain retains its ability to adapt and change throughout life have sparked interest in cognitive training (CT) as a possible means to postpone the development of dementia. Despite this, most research has focused on confirming the efficacy of training outcomes, with few studies examining the correlation between performance and results across various stages of training. In particular, the relationship between initial performance and the extent of improvement, the rate of learning, and the asymptotic performance level throughout the learning curve remains ambiguous. In this study, older adults underwent ten days of selective attention training using an adaptive algorithm, which enabled a detailed analysis of the learning curve's progression. Cognitive abilities were assessed before and after CT using the Mini-mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). The findings indicated that: (1) Initial performance is positively correlated with Learning amount and asymptotic performance level, and negatively correlated with learning speed; (2) Age is negatively correlated with learning speed, while it is positively correlated with the other three parameters. (3) Higher pre-training MMSE scores predicted higher post-training MMSE scores but less improvement; (4) Higher pre-training MoCA scores predicted higher post-training MoCA scores and less improvement; (5) The parameters of the learning curve did not correlate with performance on the MMSE or MoCA. These results indicate that: (1)Selective attention training using adaptive algorithms is an effective tool for cognitive intervention; (2) Older individuals with poor baseline cognitive abilities require more diversified cognitive training; (3) The study supports the compensation hypothesis.
Collapse
Affiliation(s)
- Chenxi Li
- School of Nursing, Yueyang Vocational Technical College, Yueyang, 414000, China
| | - Meiyun Li
- School of Management, Guangzhou Xinhua University, Guangzhou, 510006, China
| | - Yunfeng Shang
- Rehabilitation Department, Yueyang Central Hospital, Yueyang, 414000, China.
| |
Collapse
|
2
|
Xin H, Yang B, Jia Y, Qi Q, Wang Y, Wang L, Chen X, Li F, Lu J, Chen N. Graph Metrics Reveal Brain Network Topological Property in Neuropathic Pain Patients: A Systematic Review. J Pain Res 2024; 17:3277-3286. [PMID: 39411193 PMCID: PMC11474538 DOI: 10.2147/jpr.s483466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Neuropathic pain (NP) is a common and persistent disease that leads to immense suffering and serious social burden. Incomplete understanding of the underlying neural basis makes it difficult to achieve significant breakthroughs in the treatment of NP. We aimed to review the functional and structural brain topological properties in patients with NP and consider how graph measures reveal potential mechanisms and are applied to clinical practice. Related studies were searched in PubMed and Web of Science databases. Topological property changes in patients with NP, including small-worldness, functional separation, integration, and centrality metrics, were reviewed. The findings suggest that NP was characterized by retained but declined small-worldness, indicating an insidious imbalance between network integration and segregation. The global-level measures revealed decreased global and local efficiency in the NP, implying decreased information transfer efficiency for both long- and short-range connections. Altered nodal centrality measures involve various brain regions, mostly those associated with pain, cognition, and emotion. Graph theory is a powerful tool for identifying topological properties of patients with NP. These specific brain changes in patients with NP are very helpful in revealing the potential mechanisms of NP, developing new treatment strategies, and evaluating the efficacy and prognosis of NP.
Collapse
Affiliation(s)
- Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Yulong Jia
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Qunya Qi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Yu Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Fang Li
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| |
Collapse
|
3
|
Ruiz T, Brown S, Farivar R. Graph Analysis of the Visual Cortical Network during Naturalistic Movie Viewing Reveals Increased Integration and Decreased Segregation Following Mild TBI. Vision (Basel) 2024; 8:33. [PMID: 38804354 PMCID: PMC11130927 DOI: 10.3390/vision8020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Traditional neuroimaging methods have identified alterations in brain activity patterns following mild traumatic brain injury (mTBI), particularly during rest, complex tasks, and normal vision. However, studies using graph theory to examine brain network changes in mTBI have produced varied results, influenced by the specific networks and task demands analyzed. In our study, we employed functional MRI to observe 17 mTBI patients and 54 healthy individuals as they viewed a simple, non-narrative underwater film, simulating everyday visual tasks. This approach revealed significant mTBI-related changes in network connectivity, efficiency, and organization. Specifically, the mTBI group exhibited higher overall connectivity and local network specialization, suggesting enhanced information integration without overwhelming the brain's processing capabilities. Conversely, these patients showed reduced network segregation, indicating a less compartmentalized brain function compared to healthy controls. These patterns were consistent across various visual cortex subnetworks, except in primary visual areas. Our findings highlight the potential of using naturalistic stimuli in graph-based neuroimaging to understand brain network alterations in mTBI and possibly other conditions affecting brain integration.
Collapse
Affiliation(s)
- Tatiana Ruiz
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 0A4, Canada (S.B.)
- Research Institute of the McGill University Health Center, Montreal, QC H3G 1A4, Canada
| | - Shael Brown
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 0A4, Canada (S.B.)
- Research Institute of the McGill University Health Center, Montreal, QC H3G 1A4, Canada
| | - Reza Farivar
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 0A4, Canada (S.B.)
- Research Institute of the McGill University Health Center, Montreal, QC H3G 1A4, Canada
| |
Collapse
|
4
|
Zhang Y. The optimization of college tennis training and teaching under deep learning. Heliyon 2024; 10:e25954. [PMID: 38390121 PMCID: PMC10881878 DOI: 10.1016/j.heliyon.2024.e25954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
To enhance the integration of deep learning into tennis education and instigate reforms in sports programs, this paper employs deep learning techniques to analyze tennis tactics. The experiments initially introduce the concepts of sports science and backpropagation neural networks. Subsequently, these theories are applied to formulate a comprehensive system of tennis tactical diagnostic indicators, encompassing construction principles, basic requirements, diagnostic indicator content, and evaluation indicator design. Simultaneously, a Back Propagation Neural Network (BPNN) is utilized to construct a tennis tactical diagnostic model. The paper concludes with a series of experiments conducted to validate the effectiveness of the constructed indicator system and diagnostic model. The results indicate the excellent performance of the neural network model when trained on tennis match data, with a mean squared error of 0.00037146 on the validation set and 0.0104 on the training set. This demonstrates the outstanding predictive capability of the model. Additionally, the system proves capable of providing detailed tactical application analysis when employing the tennis tactical diagnostic indicator system for real-time athlete diagnosis. This functionality offers robust support for effective training and coaching during matches. In summary, this paper aims to evaluate athletes' performance by constructing a diagnostic system, providing a solid reference for optimizing tennis training and education. The insights offered by this paper have the potential to drive reforms in sports programs, particularly in the realm of tennis education.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Social Sciences, Zhejiang College of Security Technology, Wenzhou, 325016, China
| |
Collapse
|
5
|
Khokhar SK, Kumar M, Kumar S, Manae T, Thanissery N, Ramakrishnan S, Arshad F, Nagaraj C, Mangalore S, Alladi S, Gandhi TK, Bharath RD. Alzheimer's Disease Is Associated with Increased Network Assortativity: Evidence from Metabolic Connectivity. Brain Connect 2023; 13:610-620. [PMID: 37930734 DOI: 10.1089/brain.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction: Unraveling the network pathobiology in neurodegenerative disorders is a popular and promising field in research. We use a relatively newer network measure of assortativity in metabolic connectivity to understand network differences in patients with Alzheimer's Disease (AD), compared with those with mild cognitive impairment (MCI). Methods: Eighty-three demographically matched patients with dementia (56 AD and 27 MCI) who underwent positron emission tomography-magnetic resonance imaging (PET-MRI) study were recruited for this exploratory study. Global and nodal network measures obtained using the BRain Analysis using graPH theory toolbox were used to derive group-level differences (corrected p < 0.05). The methods were validated in age, and gender-matched 23 cognitively normal, 25 MCI, and 53 AD patients from the publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) data. Regions that revealed significant differences were correlated with the Addenbrooke's Cognitive Examination-III (ACE-III) scores. Results: Patients with AD revealed significantly increased global assortativity compared with the MCI group. In addition, they also revealed increased modularity and decreased participation coefficient. These findings were validated in the ADNI data. We also found that the regional standard uptake values of the right superior parietal and left superior temporal lobes were proportional to the ACE-III memory subdomain scores. Conclusion: Global errors associated with network assortativity are found in patients with AD, making the networks more regular and less resilient. Since the regional measures of these network errors were proportional to memory deficits, these measures could be useful in understanding the network pathobiology in AD.
Collapse
Affiliation(s)
- Sunil Kumar Khokhar
- Department of Neuroimaging and Interventional Radiology, and National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, and National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Sandeep Kumar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Tejaswini Manae
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nithin Thanissery
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Subasree Ramakrishnan
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Faheem Arshad
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology, and National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Sandhya Mangalore
- Department of Neuroimaging and Interventional Radiology, and National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Suvarna Alladi
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Tapan K Gandhi
- Department of Electrical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, Delhi, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, and National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Kryza-Lacombe M, Santiago R, Hwang A, Raptentsetsang S, Maruyama BA, Chen J, Cassar M, Abrams G, Novakovic-Agopian T, Mukherjee P. Resting-State Connectivity Changes After Goal-Oriented Attentional Self-Regulation Training in Veterans With Mild Traumatic Brain Injury: Preliminary Findings from a Randomized Controlled Trial. Neurotrauma Rep 2023; 4:420-432. [PMID: 37405257 PMCID: PMC10316036 DOI: 10.1089/neur.2022.0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
Mild traumatic brain injury (mTBI) can have lasting consequences on cognitive functioning and well-being. Goal-Oriented Attentional Self-Regulation (GOALS) training has been shown to improve attention and executive functioning, as well as emotional functioning, in veterans with chronic TBI. An ongoing clinical trial (NCT02920788) is further evaluating GOALS training, including underlying neural mechanisms of change. The present study aimed to examine training-induced neuroplasticity by resting-state functional connectivity (rsFC) changes in GOALS versus active control. Veterans with a history of mTBI ≥6 months post-injury (N = 33) were randomly assigned to GOALS (n = 19) or an intensity-matched active control group (Brain Health Education [BHE] training; n = 14). GOALS consists of attention regulation and problem solving applied to individually defined, relevant goals through a combination of group, individual, and home practice sessions. Participants underwent multi-band resting-state functional magnetic resonance imaging at baseline and post-intervention. Exploratory 2 × 2 mixed analyses of variance identified pre-to-post changes in seed-based connectivity for GOALS versus BHE in five significant clusters. GOALS versus BHE demonstrated a significant increase in right lateral pre-frontal cortex connectivity with the right frontal pole and right middle temporal gyrus, as well as increased posterior cingulate connectivity with the pre-central gyrus. Rostral pre-frontal cortex connectivity with the right precuneus and the right frontal pole decreased in GOALS versus BHE. These GOALS-related changes in rsFC point to potential neural mechanisms underlying the intervention. This training-induced neuroplasticity may play a role in improved cognitive and emotional functioning post-GOALS.
Collapse
Affiliation(s)
- Maria Kryza-Lacombe
- Mental Illness Research Education and Clinical Centers, Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Rachel Santiago
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
| | - Anna Hwang
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Sky Raptentsetsang
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Brian A. Maruyama
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
| | - Jerry Chen
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
| | | | - Gary Abrams
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Tatjana Novakovic-Agopian
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Pratik Mukherjee
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Zhang H, Di X, Rypma B, Yang H, Meng C, Biswal B. Interaction Between Memory Load and Experimental Design on Brain Connectivity and Network Topology. Neurosci Bull 2023; 39:631-644. [PMID: 36565381 PMCID: PMC10073362 DOI: 10.1007/s12264-022-00982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/18/2022] [Indexed: 12/25/2022] Open
Abstract
The conventional approach to investigating functional connectivity in the block-designed study usually concatenates task blocks or employs residuals of task activation. While providing many insights into brain functions, the block design adds more manipulation in functional network analysis that may reduce the purity of the blood oxygenation level-dependent signal. Recent studies utilized one single long run for task trials of the same condition, the so-called continuous design, to investigate functional connectivity based on task functional magnetic resonance imaging. Continuous brain activities associated with the single-task condition can be directly utilized for task-related functional connectivity assessment, which has been examined for working memory, sensory, motor, and semantic task experiments in previous research. But it remains unclear how the block and continuous design influence the assessment of task-related functional connectivity networks. This study aimed to disentangle the separable effects of block/continuous design and working memory load on task-related functional connectivity networks, by using repeated-measures analysis of variance. Across 50 young healthy adults, behavioral results of accuracy and reaction time showed a significant main effect of design as well as interaction between design and load. Imaging results revealed that the cingulo-opercular, fronto-parietal, and default model networks were associated with not only task activation, but significant main effects of design and load as well as their interaction on intra- and inter-network functional connectivity and global network topology. Moreover, a significant behavior-brain association was identified for the continuous design. This work has extended the evidence that continuous design can be used to study task-related functional connectivity and subtle brain-behavioral relationships.
Collapse
Affiliation(s)
- Heming Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, 07102, USA
| | - Bart Rypma
- Department of Psychology, University of Texas at Dallas, Dallas, 75390, USA
| | - Hang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, 07102, USA.
| |
Collapse
|
8
|
Augmentation of Cognitive Training With Vortioxetine Opens New Avenues for Targeting Age-Related Changes in Brain Connectivity. Am J Geriatr Psychiatry 2023; 31:398-400. [PMID: 36828690 DOI: 10.1016/j.jagp.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
|
9
|
McLean E, Cornwell MA, Bender HA, Sacks-Zimmerman A, Mandelbaum S, Koay JM, Raja N, Kohn A, Meli G, Spat-Lemus J. Innovations in Neuropsychology: Future Applications in Neurosurgical Patient Care. World Neurosurg 2023; 170:286-295. [PMID: 36782427 DOI: 10.1016/j.wneu.2022.09.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 02/11/2023]
Abstract
Over the last century, collaboration between clinical neuropsychologists and neurosurgeons has advanced the state of the science in both disciplines. These advances have provided the field of neuropsychology with many opportunities for innovation in the care of patients prior to, during, and following neurosurgical intervention. Beyond giving a general overview of how present-day advances in technology are being applied in the practice of neuropsychology within a neurological surgery department, this article outlines new developments that are currently unfolding. Improvements in remote platform, computer interface, "real-time" analytics, mobile devices, and immersive virtual reality have the capacity to increase the customization, precision, and accessibility of neuropsychological services. In doing so, such innovations have the potential to improve outcomes and ameliorate health care disparities.
Collapse
Affiliation(s)
- Erin McLean
- Department of Psychology, Hofstra University, Hempstead, New York, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Melinda A Cornwell
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - H Allison Bender
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA.
| | | | - Sarah Mandelbaum
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Clinical Psychology with Health Emphasis, Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York, USA
| | - Jun Min Koay
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida, USA
| | - Noreen Raja
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Graduate School of Applied and Professional Psychology, Rutgers University, Piscataway, New Jersey, USA
| | - Aviva Kohn
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Clinical Psychology with Health Emphasis, Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York, USA
| | - Gabrielle Meli
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Jessica Spat-Lemus
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
10
|
Abdolalizadeh A, Ohadi MAD, Ershadi ASB, Aarabi MH. Graph theoretical approach to brain remodeling in multiple sclerosis. Netw Neurosci 2023; 7:148-159. [PMID: 37334009 PMCID: PMC10270718 DOI: 10.1162/netn_a_00276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/05/2022] [Indexed: 03/21/2024] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder damaging structural connectivity. Natural remodeling processes of the nervous system can, to some extent, restore the damage caused. However, there is a lack of biomarkers to evaluate remodeling in MS. Our objective is to evaluate graph theory metrics (especially modularity) as a biomarker of remodeling and cognition in MS. We recruited 60 relapsing-remitting MS and 26 healthy controls. Structural and diffusion MRI, plus cognitive and disability evaluations, were done. We calculated modularity and global efficiency from the tractography-derived connectivity matrices. Association of graph metrics with T2 lesion load, cognition, and disability was evaluated using general linear models adjusting for age, gender, and disease duration wherever applicable. We showed that MS subjects had higher modularity and lower global efficiency compared with controls. In the MS group, modularity was inversely associated with cognitive performance but positively associated with T2 lesion load. Our results indicate that modularity increase is due to the disruption of intermodular connections in MS because of the lesions, with no improvement or preserving of cognitive functions.
Collapse
Affiliation(s)
- AmirHussein Abdolalizadeh
- Students’ Scientific Research Program, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Dabbagh Ohadi
- Students’ Scientific Research Program, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Sasan Bayani Ershadi
- Students’ Scientific Research Program, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Liu LY, Xing Y, Zhang ZH, Zhang QG, Dong M, Wang H, Cai L, Wang X, Tang Y. Validation of a Computerized Cognitive Training Tool to Assess Cognitive Impairment and Enable Differentiation Between Mild Cognitive Impairment and Dementia. J Alzheimers Dis 2023; 96:93-101. [PMID: 37742644 DOI: 10.3233/jad-230416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Age-related cognitive decline is a chronic, progressive process that requires active clinical management as cognitive status changes. Computerized cognitive training (CCT) provides cognitive exercises targeting specific cognitive domains delivered by computer or tablet. Meanwhile, CCT can be used to regularly monitor the cognitive status of patients, but it is not clear whether CCT can reliably assess cognitive ability or be used to diagnose different stages of cognitive impairment. OBJECTIVE To investigate whether CCT can accurately monitor the cognitive status of patients with cognitive impairment as well as distinguish patients with dementia from patients with mild cognitive impairment (MCI). METHOD We included 116 patients (42 dementia and 74 MCI) in final analysis. Cognitive ability was assessed by averaging the patient performance on the CCT to determine the Cognitive Index. The validity of the Cognitive Index was evaluated by its correlation with neuropsychological tests, and internal consistency was measured to assess the reliability. Additionally, we determined the diagnostic ability of the Cognitive Index to detect dementia using receiver operating characteristic (ROC) analysis. RESULTS The Cognitive Index was highly correlated with the Montreal Cognitive Assessment (r = 0.812) and the Mini-Mental State Examination (r = 0.694), indicating good convergent validity, and the Cronbach's alpha coefficient was 0.936, indicating excellent internal consistency. The area under the ROC curve, sensitivity, and specificity of the Cognitive Index to diagnose dementia were 0.943, 83.3%, and 91.9%, respectively. CONCLUSIONS CCT can be used to assess cognitive status and detect dementia in patients with cognitive impairment.
Collapse
Affiliation(s)
- Li-Yang Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yi Xing
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Zi-Heng Zhang
- Beijing Wisdom Spirit Technology Co., Ltd., Beijing, China
| | - Qing-Ge Zhang
- Beijing Wisdom Spirit Technology Co., Ltd., Beijing, China
| | - Ming Dong
- Beijing Wisdom Spirit Technology Co., Ltd., Beijing, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Longjun Cai
- Beijing Wisdom Spirit Technology Co., Ltd., Beijing, China
| | - Xiaoyi Wang
- Beijing Wisdom Spirit Technology Co., Ltd., Beijing, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| |
Collapse
|
12
|
Schumm SN, Gabrieli D, Meaney DF. Plasticity impairment alters community structure but permits successful pattern separation in a hippocampal network model. Front Cell Neurosci 2022; 16:977769. [PMID: 36505514 PMCID: PMC9729278 DOI: 10.3389/fncel.2022.977769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Patients who suffer from traumatic brain injury (TBI) often complain of learning and memory problems. Their symptoms are principally mediated by the hippocampus and the ability to adapt to stimulus, also known as neural plasticity. Therefore, one plausible injury mechanism is plasticity impairment, which currently lacks comprehensive investigation across TBI research. For these studies, we used a computational network model of the hippocampus that includes the dentate gyrus, CA3, and CA1 with neuron-scale resolution. We simulated mild injury through weakened spike-timing-dependent plasticity (STDP), which modulates synaptic weights according to causal spike timing. In preliminary work, we found functional deficits consisting of decreased firing rate and broadband power in areas CA3 and CA1 after STDP impairment. To address structural changes with these studies, we applied modularity analysis to evaluate how STDP impairment modifies community structure in the hippocampal network. We also studied the emergent function of network-based learning and found that impaired networks could acquire conditioned responses after training, but the magnitude of the response was significantly lower. Furthermore, we examined pattern separation, a prerequisite of learning, by entraining two overlapping patterns. Contrary to our initial hypothesis, impaired networks did not exhibit deficits in pattern separation with either population- or rate-based coding. Collectively, these results demonstrate how a mechanism of injury that operates at the synapse regulates circuit function.
Collapse
Affiliation(s)
- Samantha N. Schumm
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - David Gabrieli
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - David F. Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
13
|
Osmanlıoğlu Y, Parker D, Alappatt JA, Gugger JJ, Diaz-Arrastia RR, Whyte J, Kim JJ, Verma R. Connectomic assessment of injury burden and longitudinal structural network alterations in moderate-to-severe traumatic brain injury. Hum Brain Mapp 2022; 43:3944-3957. [PMID: 35486024 PMCID: PMC9374876 DOI: 10.1002/hbm.25894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem. Caused by external mechanical forces, a major characteristic of TBI is the shearing of axons across the white matter, which causes structural connectivity disruptions between brain regions. This diffuse injury leads to cognitive deficits, frequently requiring rehabilitation. Heterogeneity is another characteristic of TBI as severity and cognitive sequelae of the disease have a wide variation across patients, posing a big challenge for treatment. Thus, measures assessing network-wide structural connectivity disruptions in TBI are necessary to quantify injury burden of individuals, which would help in achieving personalized treatment, patient monitoring, and rehabilitation planning. Despite TBI being a disconnectivity syndrome, connectomic assessment of structural disconnectivity has been relatively limited. In this study, we propose a novel connectomic measure that we call network normality score (NNS) to capture the integrity of structural connectivity in TBI patients by leveraging two major characteristics of the disease: diffuseness of axonal injury and heterogeneity of the disease. Over a longitudinal cohort of moderate-to-severe TBI patients, we demonstrate that structural network topology of patients is more heterogeneous and significantly different than that of healthy controls at 3 months postinjury, where dissimilarity further increases up to 12 months. We also show that NNS captures injury burden as quantified by posttraumatic amnesia and that alterations in the structural brain network is not related to cognitive recovery. Finally, we compare NNS to major graph theory measures used in TBI literature and demonstrate the superiority of NNS in characterizing the disease.
Collapse
Affiliation(s)
- Yusuf Osmanlıoğlu
- Department of Computer Science, College of Computing and Informatics, Drexel University, Philadelphia, Pennsylvania, USA
| | - Drew Parker
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacob A Alappatt
- Speech and hearing, bioscience and technology program, Harvard Medical School, Harvard University, Boston, MA, USA
| | - James J Gugger
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon R Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Whyte
- Moss Rehabilitation Research Institute, TBI Rehabilitation Research LaboratoryEinstein Medical Center, Elkins Park, Pennsylvania, USA
| | - Junghoon J Kim
- Department of Molecular, Cellular, and Biomedical Sciences, CUNY School of Medicine, The City College of New York, New York, New York, USA
| | - Ragini Verma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Lindsey HM, Lazar M, Mercuri G, Rath JF, Bushnik T, Flanagan S, Voelbel GT. The effects of plasticity-based cognitive rehabilitation on resting-state functional connectivity in chronic traumatic brain injury: A pilot study. NeuroRehabilitation 2022; 51:133-150. [DOI: 10.3233/nre-210264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Traumatic brain injury (TBI) often results in chronic impairments to cognitive function, and these may be related to disrupted functional connectivity (FC) of the brain at rest. OBJECTIVE: To investigate changes in default mode network (DMN) FC in adults with chronic TBI following 40 hours of auditory processing speed training. METHODS: Eleven adults with chronic TBI underwent 40-hours of auditory processing speed training over 13-weeks and seven adults with chronic TBI were assigned to a non-intervention control group. For all participants, resting-state FC and cognitive and self-reported function were measured at baseline and at a follow-up visit 13-weeks later. RESULTS: No significant group differences in cognitive function or resting-state FC were observed at baseline. Following training, the intervention group demonstrated objective and subjective improvements on cognitive measures with moderate-to-large effect sizes. Repeated measures ANCOVAs revealed significant (p < 0.001) group×time interactions, suggesting training-related changes in DMN FC, and semipartial correlations demonstrated that these were associated with changes in cognitive functioning. CONCLUSIONS: Changes in the FC between the DMN and other resting-state networks involved in the maintenance and manipulation of internal information, attention, and sensorimotor functioning may be facilitated through consistent participation in plasticity-based auditory processing speed training in adults with chronic TBI.
Collapse
Affiliation(s)
- Hannah M. Lindsey
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Department of Psychology, New York University, New York, NY, USA
| | - Mariana Lazar
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Giulia Mercuri
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Psychology, New York University, New York, NY, USA
| | - Joseph F. Rath
- Department of Rehabilitation Medicine, Rusk Rehabilitation at NYU Langone Health, New York, NY, USA
| | - Tamara Bushnik
- Department of Rehabilitation Medicine, Rusk Rehabilitation at NYU Langone Health, New York, NY, USA
| | - Steven Flanagan
- Department of Rehabilitation Medicine, Rusk Rehabilitation at NYU Langone Health, New York, NY, USA
| | - Gerald T. Voelbel
- Department of Rehabilitation Medicine, Rusk Rehabilitation at NYU Langone Health, New York, NY, USA
- Department of Occupational Therapy and Center of Health and Rehabilitation Research, New York University, New York, NY, USA
| |
Collapse
|
15
|
Zhang H, Zhao Y, Qu Y, Huang Y, Chen Z, Lan H, Peng Y, Ren H. The Effect of Repetitive Transcranial Magnetic Stimulation (rTMS) on Cognition in Patients With Traumatic Brain Injury: A Protocol for a Randomized Controlled Trial. Front Neurol 2022; 13:832818. [PMID: 35432165 PMCID: PMC9005968 DOI: 10.3389/fneur.2022.832818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive impairment, defined as a decline in memory and executive function, is one of the most severe complications of traumatic brain injury (TBI). Patients with TBI are often unable to return to work due to cognitive impairment and their overall quality of life is reduced. TBI can bring a serious economic burden to patient's families and to society. Reported findings on the efficacy of repetitive transcranial magnetic stimulation (rTMS) in improving cognitive impairment following TBI are inconsistent. The purpose of the proposed study is to investigate whether rTMS can improve memory and executive function in patients with TBI. Herein, we propose a prospective randomized placebo-controlled (rTMS, sham rTMS, cognitive training), parallel-group, single-center trial. 36 participants with a TBI occurring at least 6 months prior will be recruited from an inpatient rehabilitation center. Participants will be randomly assigned to the real rTMS, sham rTMS, or cognitive training groups with a ratio of 1:1:1. A 20-session transcranial magnetic stimulation protocol will be applied to the left and right dorsolateral prefrontal cortices (DLPFC) at frequencies of 10 Hz and 1 Hz, respectively. Neuropsychological assessments will be performed at four time points: baseline, after the 10th rTMS session, after the 20th rTMS session, and 30 days post-intervention. The primary outcome is change in executive function assessed using the Shape Trail Test (STT). The secondary outcome measures are measures from neuropsychological tests: the Hopkins Verbal Learning Test (HVLT), the Brief Visuospatial Memory Test (BVMT), the Digit Span Test (DST). We report on positive preliminary results in terms of improving memory and executive function as well as beneficial changes in brain connectivity among TBI patients undergoing rTMS and hypothesize that we will obtain similar results in the proposed study.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, China
- *Correspondence: Yun Qu
| | - Yunyun Huang
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Zhu Chen
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hong Lan
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yi Peng
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hongying Ren
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| |
Collapse
|
16
|
Coppola P, Spindler LRB, Luppi AI, Adapa R, Naci L, Allanson J, Finoia P, Williams GB, Pickard JD, Owen AM, Menon DK, Stamatakis EA. Network dynamics scale with levels of awareness. Neuroimage 2022; 254:119128. [PMID: 35331869 DOI: 10.1016/j.neuroimage.2022.119128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/10/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Small world topologies are thought to provide a valuable insight into human brain organisation and consciousness. However, functional magnetic resonance imaging studies in consciousness have not yielded consistent results. Given the importance of dynamics for both consciousness and cognition, here we investigate how the diversity of small world dynamics (quantified by sample entropy; dSW-E1) scales with decreasing levels of awareness (i.e., sedation and disorders of consciousness). Paying particular attention to result reproducibility, we show that dSW-E is a consistent predictor of levels of awareness even when controlling for the underlying functional connectivity dynamics. We find that dSW-E of subcortical and cortical areas are predictive, with the former showing higher and more robust effect sizes across analyses. We find that the network dynamics of intermodular communication in the cerebellum also have unique predictive power for levels of awareness. Consequently, we propose that the dynamic reorganisation of the functional information architecture, in particular of the subcortex, is a characteristic that emerges with awareness and has explanatory power beyond that of the complexity of dynamic functional connectivity.
Collapse
Affiliation(s)
- Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK
| | - Lennart R B Spindler
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK
| | - Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK
| | - Ram Adapa
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Division of Neurosurgery, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Lloyd Building, Dublin 2, Ireland
| | - Judith Allanson
- Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Neurosciences, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Hills Rd., Cambridge, CB2 0QQ, UK
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Division of Neurosurgery, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, UK
| | - John D Pickard
- Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Division of Neurosurgery, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, UK
| | - Adrian M Owen
- The Brain and Mind Institute, Western Interdisciplinary Research Building, University of Western Ontario, London, ON N6A 5B7, Canada
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK.
| |
Collapse
|
17
|
van Balkom TD, van den Heuvel OA, Berendse HW, van der Werf YD, Vriend C. Eight-week multi-domain cognitive training does not impact large-scale resting-state brain networks in Parkinson's disease. Neuroimage Clin 2022; 33:102952. [PMID: 35123203 PMCID: PMC8819471 DOI: 10.1016/j.nicl.2022.102952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
There is meta-analytic evidence for the efficacy of cognitive training (CT) in Parkinson's disease (PD). We performed a randomized controlled trial where we found small positive effects of CT on executive function and processing speed in individuals with PD (ntotal = 140). In this study, we assessed the effects of CT on brain network connectivity and topology in a subsample of the full study population (nmri = 86). Participants were randomized into an online multi-domain CT and an active control condition and performed 24 sessions of either intervention in eight weeks. Resting-state functional MRI scans were acquired in addition to extensive clinical and neuropsychological assessments pre- and post-intervention. In line with our preregistered analysis plan (osf.io/3st82), we computed connectivity between 'cognitive' resting-state networks and computed topological outcomes at the whole-brain and sub-network level. We assessed group differences after the intervention with mixed-model analyses adjusting for baseline performance and analyzed the association between network and cognitive performance changes with repeated measures correlation analyses. The final analysis sample consisted of 71 participants (n CT = 37). After intervention there were no group differences on between-network connectivity and network topological outcomes. No associations between neural network and neuropsychological performance change were found. CT increased segregated network topology in a small sub-sample of cognitively intact participants. Post-hoc nodal analyses showed post-intervention enhanced connectivity of both the dorsal anterior cingulate cortex and dorsolateral prefrontal cortex in the CT group. The results suggest no large-scale brain network effects of eight-week computerized CT, but rather localized connectivity changes of key regions in cognitive function, that potentially reflect the specific effects of the intervention.
Collapse
Affiliation(s)
- Tim D van Balkom
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| |
Collapse
|
18
|
Qin Y, Liu X, Guo X, Liu M, Li H, Xu S. Low-Frequency Repetitive Transcranial Magnetic Stimulation Restores Dynamic Functional Connectivity in Subcortical Stroke. Front Neurol 2021; 12:771034. [PMID: 34950102 PMCID: PMC8689061 DOI: 10.3389/fneur.2021.771034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/27/2021] [Indexed: 01/09/2023] Open
Abstract
Background and Purpose: Strokes consistently result in brain network dysfunction. Previous studies have focused on the resting-state characteristics over the study period, while dynamic recombination remains largely unknown. Thus, we explored differences in dynamics between brain networks in patients who experienced subcortical stroke and the effects of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) on dynamic functional connectivity (dFC). Methods: A total of 41 patients with subcortical stroke were randomly divided into the LF-rTMS (n = 23) and the sham stimulation groups (n = 18). Resting-state functional MRI data were collected before (1 month after stroke) and after (3 months after stroke) treatment; a total of 20 age- and sex-matched healthy controls were also included. An independent component analysis, sliding window approach, and k-means clustering were used to identify different functional networks, estimate dFC matrices, and analyze dFC states before treatment. We further assessed the effect of LF-rTMS on dFCs in patients with subcortical stroke. Results: Compared to healthy controls, patients with stroke spent significantly more time in state I [p = 0.043, effect size (ES) = 0.64] and exhibited shortened stay in state II (p = 0.015, ES = 0.78); the dwell time gradually returned to normal after LF-rTMS treatment (p = 0.015, ES = 0.55). Changes in dwell time before and after LF-rTMS treatment were positively correlated with changes in the Fugl-Meyer Assessment for Upper Extremity (pr = 0.48, p = 0.028). Moreover, patients with stroke had decreased dFCs between the sensorimotor and cognitive control domains, yet connectivity within the cognitive control network increased. These abnormalities were partially improved after LF-rTMS treatment. Conclusion: Abnormal changes were noted in temporal and spatial characteristics of sensorimotor domains and cognitive control domains of patients who experience subcortical stroke; LF-rTMS can promote the partial recovery of dFC. These findings offer new insight into the dynamic neural mechanisms underlying effect of functional recombination and rTMS in subcortical stroke. Registration: http://www.chictr.org.cn/index.aspx, Unique.identifier: ChiCTR1800019452.
Collapse
Affiliation(s)
- Yin Qin
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Xiaoying Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Xiaoping Guo
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Minhua Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Hui Li
- Department of Radiology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Shangwen Xu
- Department of Radiology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| |
Collapse
|
19
|
Yang Z, Zhu T, Pompilus M, Fu Y, Zhu J, Arjona K, Arja RD, Grudny MM, Plant HD, Bose P, Wang KK, Febo M. Compensatory functional connectome changes in a rat model of traumatic brain injury. Brain Commun 2021; 3:fcab244. [PMID: 34729482 PMCID: PMC8557657 DOI: 10.1093/braincomms/fcab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Penetrating cortical impact injuries alter neuronal communication beyond the injury epicentre, across regions involved in affective, sensorimotor and cognitive processing. Understanding how traumatic brain injury reorganizes local and brain wide nodal interactions may provide valuable quantitative parameters for monitoring pathological progression and recovery. To this end, we investigated spontaneous fluctuations in the functional MRI signal obtained at 11.1 T in rats sustaining controlled cortical impact and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12 879 pairwise correlations between functional MRI signals from 162 regions. Our data indicate that on Days 2 and 30 post-controlled cortical impact there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic and basal forebrain areas. Rats imaged on Day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By Day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality and participation coefficient track early and late traumatic brain injury effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to controlled cortical impact may be unfavourable to brain wide communication in the early post-injury period.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Tian Zhu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Yueqiang Fu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jiepei Zhu
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| | - Kefren Arjona
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rawad Daniel Arja
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matteo M Grudny
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - H Daniel Plant
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Prodip Bose
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility (AMRIS), University of Florida, Gainesville, FL 32611, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Henry JD. Prospective memory impairment in neurological disorders: implications and management. Nat Rev Neurol 2021; 17:297-307. [PMID: 33686303 DOI: 10.1038/s41582-021-00472-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 01/31/2023]
Abstract
Prospective memory is a core neurocognitive ability that refers to memory for future intentions, such as remembering to take medications and to switch off appliances. Any breakdown in prospective memory, therefore, has serious implications for the ability to function independently in everyday life. In many neurological disorders, including Parkinson disease and dementia, prospective memory deficits are common even in the earliest stages and typically become more severe with disease progression. Consequently, clinical assessment of prospective memory is of critical importance. This article provides an overview of the various manifestations and neural bases of prospective memory deficits. To facilitate clinical decision-making, validated measures of this construct are identified and their suitability for clinical practice is discussed, focusing in particular on clinical sensitivity and psychometric properties. The article concludes by reviewing the approaches that can be used to rehabilitate different types of prospective memory impairment, and algorithms to guide the evaluation and treatment of these impairments are provided.
Collapse
Affiliation(s)
- Julie D Henry
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Young LR, Zientz JE, Spence JS, Krawczyk DC, Chapman SB. Efficacy of Cognitive Training When Translated From the Laboratory to the Real World. Mil Med 2021; 186:176-183. [PMID: 33499529 DOI: 10.1093/milmed/usaa501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Research shows that cognitive performance and emotional well-being can be significantly strengthened. A high-performance brain training protocol, Strategic Memory Advanced Reasoning Training (SMART), was developed by cognitive neuroscientists at The University of Texas at Dallas Center for BrainHealth based on 25-plus years of scientific study. Randomized controlled trials with various populations have shown that training and use of nine "SMART" strategies for processing information can improve cognitive performance and psychological health. However, the multi-week intensive training used in the laboratory is not practical for widespread use outside the laboratory. This article examines the efficacy of SMART when translated outside the laboratory to two populations (military/veterans and law enforcement) that received SMART in condensed time frames. MATERIALS AND METHODS In two translation studies with healthy military personnel and veterans, 425 participants received between 6 and 10 hours of SMART over 2 days. In a third translation study, 74 healthy police officers received 9 hours of SMART over 3 days. Training was conducted by clinicians who taught the nine "SMART" strategies related to three core areas-strategic attention, integrated reasoning, and innovation-to groups of up to 25 participants. In all three translation studies, cognitive performance and psychological health data were collected before and immediately following the training. In one of the military/veteran studies, psychological health data were also collected 1 and 4 months following the training. RESULTS In both translations to military personnel and veterans, there were improvements in the complex cognitive domains of integrated reasoning (P < .0001) and innovation (P < .0001) immediately after undergoing SMART. In the translation to police officers, there were improvements in the cognitive domains of innovation (P = .02) and strategic attention (P = .005). Participants in all three translations saw statistically significant improvements in self-reported symptoms of psychological health. The improvements continued among a subset of participants who responded to the later requests for information. CONCLUSIONS The results of translating to these two populations provide evidence supporting the efficacy of SMART delivered in an abbreviated time frame. The improvements in two major domains of cognitive function demonstrate that strategies can be taught and immediately applied by those receiving the training. The immediate psychological health improvements may be transient; however, the continued improvements in psychological health observed in a subset of the participants suggest that benefits may be sustainable even at later intervals.
Collapse
Affiliation(s)
- Leanne R Young
- Applied Research Associates, Inc., Dallas, TX 75252, USA
| | - Jennifer E Zientz
- The University of Texas at Dallas Center for BrainHealth, Dallas, TX 75235, USA
| | - Jeffrey S Spence
- The University of Texas at Dallas Center for BrainHealth, Dallas, TX 75235, USA
| | - Daniel C Krawczyk
- The University of Texas at Dallas Center for BrainHealth, Dallas, TX 75235, USA
| | - Sandra B Chapman
- The University of Texas at Dallas Center for BrainHealth, Dallas, TX 75235, USA
| |
Collapse
|
22
|
Maleki N, Finkel A, Cai G, Ross A, Moore RD, Feng X, Androulakis XM. Post-traumatic Headache and Mild Traumatic Brain Injury: Brain Networks and Connectivity. Curr Pain Headache Rep 2021; 25:20. [PMID: 33674899 DOI: 10.1007/s11916-020-00935-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Post-traumatic headache (PTH) consequent to mild traumatic brain injury (mTBI) is a complex, multidimensional, chronic neurological disorder. The purpose of this review is to evaluate the current neuroimaging studies on mTBI and PTH with a specific focus on brain networks and connectivity patterns. RECENT FINDINGS We present findings on PTH incidence and prevalence, as well as the latest neuroimaging research findings on mTBI and PTH. Additionally, we propose a new strategy in studying PTH following mTBI. The diversity and heterogeneity of pathophysiological mechanisms underlying mild traumatic brain injury pose unique challenges on how we interpret neuroimaging findings in PTH. Evaluating alterations in the intrinsic brain network connectivity patterns using novel imaging and analytical techniques may provide additional insights into PTH disease state and therefore inform effective treatment strategies.
Collapse
Affiliation(s)
- Nasim Maleki
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Alan Finkel
- Carolina Headache Institute, 6114 Fayetteville Rd, Suite 109, Durham, NC, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Alexandra Ross
- University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - R Davis Moore
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Xuesheng Feng
- Navy Region Mid-Atlantic, Reserve Component Command, 1683 Gilbert Street, Norfolk, VA, 23511, USA
| | - X Michelle Androulakis
- University of South Carolina School of Medicine, Columbia, SC, 29209, USA. .,Columbia VA Health Care System, Columbia, SC, 20208, USA.
| |
Collapse
|
23
|
Scheiber B, Schiefermeier-Mach N, Wiederin C. Wirksamkeit manualtherapeutischer Techniken in Kombination mit vestibulärer Rehabilitation nach sportbedingten Gehirnerschütterungen – Eine systematische Übersichtsarbeit randomisiert kontrollierter Studien. PHYSIOSCIENCE 2020. [DOI: 10.1055/a-1098-8140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Zusammenfassung
Hintergrund Die Rehabilitation nach leichter, sportbedingter Gehirnerschütterung erfordert eine komplexe Behandlung unter Berücksichtigung der muskuloskelettalen, insbesondere zervikogenen, und vestibulären Beteiligung. Das empfohlene Rehabilitationskonzept der vollständigen Ruhe bis zur Beschwerdefreiheit wird inzwischen neu bewertet. Aktuelle Studien deuten auf positive Auswirkungen einer frühen Mobilisierung und multimodaler Physiotherapie hin. Der medizinische Nutzen ausgewählter manualtherapeutischer Techniken wird in mehreren klinischen Studien untersucht. Bisher konnten jedoch keine eindeutigen Empfehlungen für manualtherapeutische Techniken nach einer Gehirnerschütterung ausgesprochen werden.
Ziel Analyse und Zusammenfassung vorhandener randomisiert kontrollierter Studien (RCTs) zur Untersuchung der Wirksamkeit manualtherapeutischer Techniken in Kombination mit vestibulärer Rehabilitation auf Symptomfreiheit und Wiedererlangung der sportlichen Belastbarkeit bei Patienten nach sportbedingten Gehirnerschütterungen.
Methode Systematische Recherche in den Datenbanken ClinicalTrials.gov, WHO-ICTRP, EBSCO, PubMed und PEDro mit den Suchbegriffen concussion, physiotherapy, manual therapy und mild traumatic brain injury. Eingeschlossen wurden RCTs zur Untersuchung manualtherapeutischer Techniken nach sportbedingten Gehirnerschütterungen oder milden Formen eines Schädelhirntraumas. Die Bewertung der methodischen Qualität erfolgte Anhand der PEDro-Skala.
Ergebnisse Publikationen zu 2 RCTs mit guter und moderater methodischer Qualität (PEDro-Skala: 7–8/10 Punkten) sowie eine Folgestudie wurden inkludiert. Als primärer Outcome-Parameter wurde in allen Studien der Zeitraum der ärztlichen Freigabe zur Rückkehr zum Sport angegeben. Sekundäre Outcome-Parameter bezogen sich auf Symptomfreiheit, Postconcussion Scale, Numeric Pain Rating Scale, Balance Confidence Scale, Dizziness-Handicap-Index, Sport Concussion Assessment Tool 2 und Joint-Position-Error-Test. Die Ergebnisse aller inkludierten Studien ergaben signifikante Unterschiede zugunsten der Interventionsgruppen. Die eingeschlossenen klinischen Studien waren jedoch in Bezug auf Design, Methodik und Auswahl der Techniken heterogen, was einen direkten Vergleich erschwerte.
Schlussfolgerung Abgeschlossene klinische Studien deuten darauf hin, dass manualtherapeutische Techniken als Teil eines multimodalen Rehabilitationsprogramms nach Gehirnerschütterungen und leichten Schädelhirntraumata von Nutzen sein können. Aufgrund der geringen Anzahl an RCTs und deren heterogenen Studiendesigns ist eine Bewertung der Wirksamkeit spezifischer manualtherapeutischer Techniken derzeit nicht möglich. Weitere hochwertige Studien sind erforderlich.
Collapse
Affiliation(s)
- Barbara Scheiber
- FH Gesundheit Tirol/Health University of Applied Sciences Tyrol, Physiotherapie, Innsbruck, Österreich
| | - Natalia Schiefermeier-Mach
- FH Gesundheit Tirol/Health University of Applied Sciences Tyrol, Gesundheits- und Krankenpflege, Innsbruck, Österreich
| | - Claudia Wiederin
- FH Gesundheit Tirol/Health University of Applied Sciences Tyrol, Physiotherapie, Innsbruck, Österreich
| |
Collapse
|
24
|
Samuelson KW, Engle K, Abadjian L, Jordan J, Bartel A, Talbot M, Powers T, Bryan L, Benight C. Cognitive Training for Mild Traumatic Brain Injury and Posttraumatic Stress Disorder. Front Neurol 2020; 11:569005. [PMID: 33324318 PMCID: PMC7726225 DOI: 10.3389/fneur.2020.569005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/23/2020] [Indexed: 01/17/2023] Open
Abstract
Although there is evidence of mild cognitive impairments for many individuals with mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD), little research evaluating the effectiveness of cognitive training interventions has been conducted. This randomized controlled trial examined the effectiveness of a 9-h group cognitive training targeting higher-order functions, Strategic Memory Advanced Reasoning Training (SMART), compared to a 9-h psychoeducational control group in improving neurocognitive functioning in adults with mTBI and PTSD. A sample of 124 adults with histories of mild TBI (n = 117) and/or current diagnoses of PTSD (n = 84) were randomized into SMART (n = 66) or Brain Health Workshop (BHW; n = 58) and assessed at three time points: baseline, following training, and 6 months later. Participants completed a battery of neurocognitive tests, including a test of gist reasoning (a function directly targeted by SMART) as well as tests of verbal, visual, and working memory and executive functioning, functions commonly found to be mildly impaired in mTBI and PTSD. The two groups were compared on trajectories of change over time using linear mixed-effects models with restricted maximum likelihood (LMM). Contrary to our hypothesis that SMART would result in superior improvements compared to BHW, both groups displayed statistically and clinically significant improvements on measures of memory, executive functioning, and gist reasoning. Over 60% of the sample showed clinically significant improvements, indicating that gains can be found through psychoeducation alone. A longer SMART protocol may be warranted for clinical samples in order to observe gains over the comparison group.
Collapse
Affiliation(s)
- Kristin W Samuelson
- Department of Psychology, National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Krista Engle
- Department of Psychology, National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Linda Abadjian
- Department of Psychology, National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Joshua Jordan
- Department of Psychiatry, University of California San Francisco, San Francisco, San Francisco, CA, United States
| | - Alisa Bartel
- Department of Psychology, National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Margaret Talbot
- Department of Psychology, National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Tyler Powers
- Department of Psychology, National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Lori Bryan
- Department of Psychology, National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Charles Benight
- Department of Psychology, National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
25
|
|
26
|
Moore AL, Carpenter DM, James RL, Miller TM, Moore JJ, Disbrow EA, Ledbetter CR. Neuroimaging and Neuropsychological Outcomes Following Clinician-Delivered Cognitive Training for Six Patients With Mild Brain Injury: A Multiple Case Study. Front Hum Neurosci 2020; 14:229. [PMID: 32670040 PMCID: PMC7326946 DOI: 10.3389/fnhum.2020.00229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Nearly half of all mild brain injury sufferers experience long-term cognitive impairment, so an important goal in rehabilitation is to address their multiple cognitive deficits to help them return to prior levels of functioning. Cognitive training, or the use of repeated mental exercises to enhance cognition, is one remediation method for brain injury. The primary purpose of this hypothesis-generating pilot study was to explore the statistical and clinical significance of cognitive changes and transfer of training to real-life functioning following 60 h of Brain Booster, a clinician-delivered cognitive training program, for six patients with mild traumatic brain injury (TBI) or non-traumatic acquired brain injury (ABI). The secondary purpose was to explore changes in functional connectivity and neural correlates of cognitive test gains following the training. We used a multiple case study design to document significant changes in cognitive test scores, overall IQ score, and symptom ratings; and we used magnetic resonance imaging (MRI) to explore trends in functional network connectivity and neural correlates of cognitive change. All cognitive test scores showed improvement with statistically significant changes on five of the seven measures (long-term memory, processing speed, reasoning, auditory processing, and overall IQ score). The mean change in IQ score was 20 points, from a mean of 108 to a mean of 128. Five themes emerged from the qualitative data analysis including improvements in cognition, mood, social identity, performance, and Instrumental Activities of Daily Living (IADLs). With MRI, we documented significant region-to-region changes in connectivity following cognitive training including those involving the cerebellum and cerebellar networks. We also found significant correlations between changes in IQ score and change in white matter integrity of bilateral corticospinal tracts (CST) and the left uncinate fasciculus. This study adds to the growing body of literature examining the effects of cognitive training for mild TBI and ABI, and to the collection of research on the benefits of cognitive training in general. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02918994.
Collapse
Affiliation(s)
- Amy Lawson Moore
- Department of Psychology, Gibson Institute of Cognitive Research, Colorado Springs, CO, United States
| | - Dick M. Carpenter
- College of Education, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | | | - Terissa Michele Miller
- Department of Psychology, Gibson Institute of Cognitive Research, Colorado Springs, CO, United States
| | - Jeffrey J. Moore
- School of Nursing, Colorado State University-Pueblo, Pueblo, CO, United States
| | - Elizabeth A. Disbrow
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Louisiana State University Health Sciences Center, Center for Brain Health, Shreveport, LA, United States
| | - Christina R. Ledbetter
- Louisiana State University Health Sciences Center, Center for Brain Health, Shreveport, LA, United States
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
27
|
Biagianti B, Stocchetti N, Brambilla P, Vleet TV. Brain dysfunction underlying prolonged post-concussive syndrome: A systematic review. J Affect Disord 2020; 262:71-76. [PMID: 31710931 PMCID: PMC6917917 DOI: 10.1016/j.jad.2019.10.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/04/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND One out of 4 patients who sustains a mild traumatic brain injury (mTBI) experiences persistent complaints, despite the absence of structural brain damage on conventional neuroimaging. Susceptibility to develop post concussive symptoms (PCS) is thought to originate from occult brain dysfunction. However, the influence of such neural changes on the development of persistent PCS is poorly characterized. METHODS In this article, we aim to integrate findings from longitudinal studies that investigated across the spectrum of neuroimaging modalities the changes within the first twelve months following a mTBI, with the goal of identifying possible predictors or biomarkers of persistent PCS. RESULTS Nine studies met inclusion criteria: 5 that used resting state functional MRI, 2 that used Diffusion Weighted Imaging, and 2 that used 1H-MR Spectroscopy. All studies indicate significant structural, functional and/or metabolic aberrations that occur in the acute and early subacute phases following a mTBI. However, in patients with persistent PCS, these mTBI-induced damages linger and relate to the severity of PCS. These biomarkers include: decreased diffusion along white matter fiber tracts, alteration of perfusion, disrupted metabolism, and reduced connectivity within several resting state networks. Additionally, in PCS patients, disruptions of brain function can manifest exclusively in the chronic phase. CONCLUSION This review support the ongoing use of neuroimaging modalities to understand the brain changes that occur throughout the time course of mTBI. Based on the complexity of mTBI, however, more work is required to characterize injury and recovery mechanisms that could impact the emergence and persistence of PCS.
Collapse
Affiliation(s)
- Bruno Biagianti
- Department of R&D, Posit Science Corporation, 160 Pine Street, Suite 200, San Francisco, CA 94111, USA; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Nino Stocchetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy;,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy;,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tom Van Vleet
- Department of R&D, Posit Science Corporation, San Francisco, CA, USA
| |
Collapse
|