1
|
Loh HW, Ooi CP, Oh SL, Barua PD, Tan YR, Acharya UR, Fung DSS. ADHD/CD-NET: automated EEG-based characterization of ADHD and CD using explainable deep neural network technique. Cogn Neurodyn 2024; 18:1609-1625. [PMID: 39104684 PMCID: PMC11297883 DOI: 10.1007/s11571-023-10028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 08/07/2024] Open
Abstract
In this study, attention deficit hyperactivity disorder (ADHD), a childhood neurodevelopmental disorder, is being studied alongside its comorbidity, conduct disorder (CD), a behavioral disorder. Because ADHD and CD share commonalities, distinguishing them is difficult, thus increasing the risk of misdiagnosis. It is crucial that these two conditions are not mistakenly identified as the same because the treatment plan varies depending on whether the patient has CD or ADHD. Hence, this study proposes an electroencephalogram (EEG)-based deep learning system known as ADHD/CD-NET that is capable of objectively distinguishing ADHD, ADHD + CD, and CD. The 12-channel EEG signals were first segmented and converted into channel-wise continuous wavelet transform (CWT) correlation matrices. The resulting matrices were then used to train the convolutional neural network (CNN) model, and the model's performance was evaluated using 10-fold cross-validation. Gradient-weighted class activation mapping (Grad-CAM) was also used to provide explanations for the prediction result made by the 'black box' CNN model. Internal private dataset (45 ADHD, 62 ADHD + CD and 16 CD) and external public dataset (61 ADHD and 60 healthy controls) were used to evaluate ADHD/CD-NET. As a result, ADHD/CD-NET achieved classification accuracy, sensitivity, specificity, and precision of 93.70%, 90.83%, 95.35% and 91.85% for the internal evaluation, and 98.19%, 98.36%, 98.03% and 98.06% for the external evaluation. Grad-CAM also identified significant channels that contributed to the diagnosis outcome. Therefore, ADHD/CD-NET can perform temporal localization and choose significant EEG channels for diagnosis, thus providing objective analysis for mental health professionals and clinicians to consider when making a diagnosis. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10028-2.
Collapse
Affiliation(s)
- Hui Wen Loh
- School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| | - Shu Lih Oh
- Cogninet Australia, Sydney, NSW 2010 Australia
| | - Prabal Datta Barua
- Cogninet Australia, Sydney, NSW 2010 Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007 Australia
- School of Business (Information System), University of Southern Queensland, Darling Heights, Australia
- Australian International Institute of Higher Education, Sydney, NSW 2000 Australia
- School of Science & Technology, University of New England, Armidale, Australia
- School of Biosciences, Taylor’s University, Selangor, Malaysia
- School of Computing, SRM Institute of Science and Technology, Kattankulathur, India
- School of Science and Technology, Kumamoto University, Kumamoto, Japan
- Sydney School of Education and Social work, University of Sydney, Camperdown, Australia
| | - Yi Ren Tan
- Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | - U. Rajendra Acharya
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Darling Heights, Australia
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
- Centre for Health Research, University of Southern Queensland, Springfield, Australia
| | - Daniel Shuen Sheng Fung
- Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
- Lee Kong Chian School of Medicine, DUKE NUS Medical School, Yong Loo Lin School of Medicine, Nanyang Technological University, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Sharma CM, Chariar VM. Diagnosis of mental disorders using machine learning: Literature review and bibliometric mapping from 2012 to 2023. Heliyon 2024; 10:e32548. [PMID: 38975193 PMCID: PMC11225745 DOI: 10.1016/j.heliyon.2024.e32548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Background Mental disorders (MDs) are becoming a leading burden in non-communicable diseases (NCDs). As per the World Health Organization's 2022 assessment report, there was a steep increase of 25 % in MDs during the COVID-19 pandemic. Early diagnosis of MDs can significantly improve treatment outcome and save disability-adjusted life years (DALYs). In recent times, the application of machine learning (ML) and deep learning (DL)) has shown promising results in the diagnosis of MDs, and the field has witnessed a huge research output in the form of research publications. Therefore, a bibliometric mapping along with a review of recent advancements is required. Methods This study presents a bibliometric analysis and review of the research, published over the last 10 years. Literature searches were conducted in the Scopus database for the period from January 1, 2012, to June 9, 2023. The data was filtered and screened to include only relevant and reliable publications. A total of 2811 journal articles were found. The data was exported to a comma-separated value (CSV) format for further analysis. Furthermore, a review of 40 selected studies was performed. Results The popularity of ML techniques in diagnosing MDs has been growing, with an annual research growth rate of 17.05 %. The Journal of Affective Disorders published the most documents (n = 97), while Wang Y. (n = 64) has published the most articles. Lotka's law is observed, with a minority of authors contributing the majority of publications. The top affiliating institutes are the West China Hospital of Sichuan University followed by the University of California, with China and the US dominating the top 10 institutes. While China has more publications, papers affiliated with the US receive more citations. Depression and schizophrenia are the primary focuses of ML and deep learning (DL) in mental disease detection. Co-occurrence network analysis reveals that ML is associated with depression, schizophrenia, autism, anxiety, ADHD, obsessive-compulsive disorder, and PTSD. Popular algorithms include support vector machine (SVM) classifier, decision tree classifier, and random forest classifier. Furthermore, DL is linked to neuroimaging techniques such as MRI, fMRI, and EEG, as well as bipolar disorder. Current research trends encompass DL, LSTM, generalized anxiety disorder, feature fusion, and convolutional neural networks.
Collapse
Affiliation(s)
- Chandra Mani Sharma
- CRDT, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
- School of Computer Science, UPES, Dehradun, Uttarakhand, India
| | | |
Collapse
|
3
|
Salazar de Pablo G, Iniesta R, Bellato A, Caye A, Dobrosavljevic M, Parlatini V, Garcia-Argibay M, Li L, Cabras A, Haider Ali M, Archer L, Meehan AJ, Suleiman H, Solmi M, Fusar-Poli P, Chang Z, Faraone SV, Larsson H, Cortese S. Individualized prediction models in ADHD: a systematic review and meta-regression. Mol Psychiatry 2024:10.1038/s41380-024-02606-5. [PMID: 38783054 DOI: 10.1038/s41380-024-02606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
There have been increasing efforts to develop prediction models supporting personalised detection, prediction, or treatment of ADHD. We overviewed the current status of prediction science in ADHD by: (1) systematically reviewing and appraising available prediction models; (2) quantitatively assessing factors impacting the performance of published models. We did a PRISMA/CHARMS/TRIPOD-compliant systematic review (PROSPERO: CRD42023387502), searching, until 20/12/2023, studies reporting internally and/or externally validated diagnostic/prognostic/treatment-response prediction models in ADHD. Using meta-regressions, we explored the impact of factors affecting the area under the curve (AUC) of the models. We assessed the study risk of bias with the Prediction Model Risk of Bias Assessment Tool (PROBAST). From 7764 identified records, 100 prediction models were included (88% diagnostic, 5% prognostic, and 7% treatment-response). Of these, 96% and 7% were internally and externally validated, respectively. None was implemented in clinical practice. Only 8% of the models were deemed at low risk of bias; 67% were considered at high risk of bias. Clinical, neuroimaging, and cognitive predictors were used in 35%, 31%, and 27% of the studies, respectively. The performance of ADHD prediction models was increased in those models including, compared to those models not including, clinical predictors (β = 6.54, p = 0.007). Type of validation, age range, type of model, number of predictors, study quality, and other type of predictors did not alter the AUC. Several prediction models have been developed to support the diagnosis of ADHD. However, efforts to predict outcomes or treatment response have been limited, and none of the available models is ready for implementation into clinical practice. The use of clinical predictors, which may be combined with other type of predictors, seems to improve the performance of the models. A new generation of research should address these gaps by conducting high quality, replicable, and externally validated models, followed by implementation research.
Collapse
Affiliation(s)
- Gonzalo Salazar de Pablo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Child and Adolescent Mental Health Services, South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Psychiatry and Mental Health. Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain
| | - Raquel Iniesta
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
- King's Institute for Artificial Intelligence, King's College London, London, UK
| | - Alessio Bellato
- School of Psychology, University of Nottingham, Nottingham, Malaysia
- Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, Southampton, UK
- School of Psychology, University of Southampton, Southampton, UK
| | - Arthur Caye
- Post-Graduate Program of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- National Center for Research and Innovation (CISM), University of São Paulo, São Paulo, Brazil
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maja Dobrosavljevic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Valeria Parlatini
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, Southampton, UK
- School of Psychology, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
| | - Miguel Garcia-Argibay
- Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, Southampton, UK
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lin Li
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Cabras
- Department of Neurology and Psychiatry, University of Rome La Sapienza, Rome, Italy
| | - Mian Haider Ali
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
| | - Lucinda Archer
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR), Birmingham Biomedical Research Centre, Birmingham, UK
| | - Alan J Meehan
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Halima Suleiman
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, Syracuse, NY, USA
| | - Marco Solmi
- Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, Southampton, UK
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
- Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ontario, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Outreach and Support in South-London (OASIS) service, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Zheng Chang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, Syracuse, NY, USA
| | - Henrik Larsson
- School of Psychology, University of Southampton, Southampton, UK
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Samuele Cortese
- Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, Southampton, UK.
- Solent NHS Trust, Southampton, UK.
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK.
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA.
- DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
4
|
Sathiya E, Rao TD, Kumar TS. Gabor filter-based statistical features for ADHD detection. Front Hum Neurosci 2024; 18:1369862. [PMID: 38660014 PMCID: PMC11039779 DOI: 10.3389/fnhum.2024.1369862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neuropsychological disorder that occurs in children and is characterized by inattention, impulsivity, and hyperactivity. Early and accurate diagnosis of ADHD is very important for effective intervention. The aim of this study is to develop a computer-aided approach to detecting ADHD using electroencephalogram (EEG) signals. Specifically, we explore a Gabor filter-based statistical features approach for the classification of EEG signals into ADHD and healthy control (HC). The EEG signal is processed by a bank of Gabor filters to obtain narrow-band signals. Subsequently, a set of statistical features is extracted. The computed features are then subjected to feature selection. Finally, the obtained feature vector is given to a classifier to detect ADHD and HC. Our approach achieves the highest classification accuracy of 96.4% on a publicly available dataset. Furthermore, our approach demonstrates better classification accuracy than the existing methods.
Collapse
Affiliation(s)
- E. Sathiya
- Division of Mathematics, Vellore Institute of Technology, Chennai, India
| | - T. D. Rao
- Division of Mathematics, Vellore Institute of Technology, Chennai, India
| | - T. Sunil Kumar
- Department of Electrical Engineering, Mathematics and Science, University of Gävle, Gavle, Sweden
| |
Collapse
|
5
|
Ahire N, Awale RN, Wagh A. Classification of attention deficit hyperactivity disorder using machine learning on an EEG dataset. APPLIED NEUROPSYCHOLOGY. CHILD 2024:1-11. [PMID: 38163329 DOI: 10.1080/21622965.2023.2300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The neurodevelopmental disorder, Attention Deficit Hyperactivity Disorder (ADHD), frequently affecting youngsters, is characterized by persistent patterns of inattention, hyperactivity, and impulsivity, the etiology of which may involve a variety of genetic, environmental, and neurological factors. Electroencephalography (EEG) measures the electrical activity in the brain through neuronal activity, which is a function of cognitive processes. In this study, a previously recorded sample set of 121 children containing unbiased data from both ADHD and control group classes and EEG signals were analyzed to classify the ADHD patients. The samples were tested under different cognitive conditions, and multiple features were extracted using Euclidean distance. Many machine learning algorithms use Euclidean distance as their default distance metric to compare two recorded data points. The extracted features were trained using four supervised machine learning algorithms (linear regression, random forest, extreme gradient boosting, and K nearest neighbor (KNN)) based on the results of various frequency bands. The results suggest that the KNN algorithm produces the highest accuracy over other machine learning approaches, and results can be further improved with the application of hyperparameter tuning and used for classifying sub-groups of ADHD to identify the severity of the disorder.
Collapse
Affiliation(s)
- Nitin Ahire
- Xavier Institute of Engineering, Mumbai, India
| | | | | |
Collapse
|
6
|
Chugh N, Aggarwal S, Balyan A. The Hybrid Deep Learning Model for Identification of Attention-Deficit/Hyperactivity Disorder Using EEG. Clin EEG Neurosci 2024; 55:22-33. [PMID: 37682533 DOI: 10.1177/15500594231193511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Common misbehavior among children that prevents them from paying attention to tasks and interacting with their surroundings appropriately is attention-deficit/hyperactivity disorder (ADHD). Studies of children's behavior presently face a significant problem in the early and timely diagnosis of this disease. To diagnose this disease, doctors often use the patient's description and questionnaires, psychological tests, and the patient's behavior in which reliability is questionable. Convolutional neural network (CNN) is one deep learning technique that has been used for the diagnosis of ADHD. CNN, however, does not account for how signals change over time, which leads to low classification performances and ambiguous findings. In this study, the authors designed a hybrid deep learning model that combines long-short-term memory (LSTM) and CNN to simultaneously extract and learn the spatial features and long-term dependencies of the electroencephalography (EEG) data. The effectiveness of the proposed hybrid deep learning model was assessed using 2 publicly available EEG datasets. The suggested model achieves a classification accuracy of 98.86% on the ADHD dataset and 98.28% on the FOCUS dataset, respectively. The experimental findings show that the proposed hybrid CNN-LSTM model outperforms the state-of-the-art methods to diagnose ADHD using EEG. Hence, the proposed hybrid CNN-LSTM model could therefore be utilized to help with the clinical diagnosis of ADHD patients.
Collapse
Affiliation(s)
- Nupur Chugh
- Netaji Subhas Institute of Technology, New Delhi, India
| | - Swati Aggarwal
- Netaji Subhas University of Technology, New Delhi, India
| | - Arnav Balyan
- Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
7
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Previously Marzena Szkodo MOR, Micai M, Caruso A, Fulceri F, Fazio M, Scattoni ML. Technologies to support the diagnosis and/or treatment of neurodevelopmental disorders: A systematic review. Neurosci Biobehav Rev 2023; 145:105021. [PMID: 36581169 DOI: 10.1016/j.neubiorev.2022.105021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In recent years, there has been a great interest in utilizing technology in mental health research. The rapid technological development has encouraged researchers to apply technology as a part of a diagnostic process or treatment of Neurodevelopmental Disorders (NDDs). With the large number of studies being published comes an urgent need to inform clinicians and researchers about the latest advances in this field. Here, we methodically explore and summarize findings from studies published between August 2019 and February 2022. A search strategy led to the identification of 4108 records from PubMed and APA PsycInfo databases. 221 quantitative studies were included, covering a wide range of technologies used for diagnosis and/or treatment of NDDs, with the biggest focus on Autism Spectrum Disorder (ASD). The most popular technologies included machine learning, functional magnetic resonance imaging, electroencephalogram, magnetic resonance imaging, and neurofeedback. The results of the review indicate that technology-based diagnosis and intervention for NDD population is promising. However, given a high risk of bias of many studies, more high-quality research is needed.
Collapse
Affiliation(s)
| | - Martina Micai
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Fulceri
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maria Fazio
- Department of Mathematics, Computer Science, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
10
|
Mengi M, Malhotra D. A systematic literature review on traditional to artificial intelligence based socio-behavioral disorders diagnosis in India: Challenges and future perspectives. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
ADHD detection using dynamic connectivity patterns of EEG data and ConvLSTM with attention framework. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Loh HW, Ooi CP, Barua PD, Palmer EE, Molinari F, Acharya UR. Automated detection of ADHD: Current trends and future perspective. Comput Biol Med 2022; 146:105525. [DOI: 10.1016/j.compbiomed.2022.105525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
|
13
|
Ray A, Bhardwaj A, Malik YK, Singh S, Gupta R. Artificial intelligence and Psychiatry: An overview. Asian J Psychiatr 2022; 70:103021. [PMID: 35219978 PMCID: PMC9760544 DOI: 10.1016/j.ajp.2022.103021] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/06/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
The burden of mental illness both in world and India is increasing at an alarming rate. Adding to it, there has been an increase in mental health challenges during covid-19 pandemic with a rise in suicide, loneliness and substance use. Artificial intelligence can act as a potential solution to address this shortage. The use of artificial intelligence is increasingly being employed in various fields of mental health like affective disorders, psychosis, and geriatric psychiatry. The benefits are various like lower costs, wider reach but at the same time it comes with its own disadvantages. This article reviews the current understanding of artificial intelligence, the types of Artificial intelligence, its current use in various mental health disorders, current status in India, advantages, disadvantages and future potentials. With the passage of time and digitalization of the modern age, there will be an increase in the use of artificial intelligence in psychiatry hence a detailed understanding will be thoughtful. For this, we searched PubMed, Google Scholar, and Science Direct, China national Knowledge Infrastructure (CNKI), Globus Index Medicus search engines by using keywords. Initial searches involved the use of each individual keyword while the later searches involved the use of more than one word in different permutation combinations.
Collapse
Affiliation(s)
- Adwitiya Ray
- Department of Psychiatry, Institute of Mental Health, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Akansha Bhardwaj
- Department of Psychiatry, Institute of Mental Health, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Yogender Kumar Malik
- Department of Psychiatry, Institute of Mental Health, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India.
| | - Shipra Singh
- Department of Psychiatry, Institute of Mental Health, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Rajiv Gupta
- Department of Psychiatry, Institute of Mental Health, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| |
Collapse
|
14
|
Machine learning models effectively distinguish attention-deficit/hyperactivity disorder using event-related potentials. Cogn Neurodyn 2022; 16:1335-1349. [PMID: 36408064 PMCID: PMC9666608 DOI: 10.1007/s11571-021-09746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/18/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022] Open
Abstract
Accurate diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) is a significant challenge. Misdiagnosis has significant negative medical side effects. Due to the complex nature of this disorder, there is no computational expert system for diagnosis. Recently, automatic diagnosis of ADHD by machine learning analysis of brain signals has received an increased attention. This paper aimed to achieve an accurate model to discriminate between ADHD patients and healthy controls by pattern discovery. Event-Related Potentials (ERP) data were collected from ADHD patients and healthy controls. After pre-processing, ERP signals were decomposed and features were calculated for different frequency bands. The classification was carried out based on each feature using seven machine learning algorithms. Important features were then selected and combined. To find specific patterns for each model, the classification was repeated using the proposed patterns. Results indicated that the combination of complementary features can significantly improve the performance of the predictive models. The newly developed features, defined based on band power, were able to provide the best classification using the Generalized Linear Model, Logistic Regression, and Deep Learning with the average accuracy and Receiver operating characteristic curve > %99.85 and > 0.999, respectively. High and low frequencies (Beta, Delta) performed better than the mid, frequencies in the discrimination of ADHD from control. Altogether, this study developed a machine learning expert system that minimises misdiagnosis of ADHD and is beneficial for the evaluation of treatment efficacy.
Collapse
|
15
|
Koh JEW, Ooi CP, Lim-Ashworth NS, Vicnesh J, Tor HT, Lih OS, Tan RS, Acharya UR, Fung DSS. Automated classification of attention deficit hyperactivity disorder and conduct disorder using entropy features with ECG signals. Comput Biol Med 2022; 140:105120. [PMID: 34896884 DOI: 10.1016/j.compbiomed.2021.105120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The most prevalent neuropsychiatric disorder among children is attention deficit hyperactivity disorder (ADHD). ADHD presents with a high prevalence of comorbid disorders such as conduct disorder (CD). The lack of definitive confirmatory diagnostic tests for ADHD and CD make diagnosis challenging. The distinction between ADHD, ADHD + CD and CD is important as the course and treatment are different. Electrocardiography (ECG) signals may become altered in behavioral disorders due to brain-heart autonomic interactions. We have developed a software tool to categorize ADHD, ADHD + CD and CD automatically on ECG signals. METHOD ECG signals from participants were decomposed using empirical wavelet transform into various modes, from which entropy features were extracted. Robust ten-fold cross-validation with adaptive synthetic sampling (ADASYN) and z-score normalization were performed at each fold. Analysis of variance (ANOVA) technique was employed to determine the variability within the three classes, and obtained the most discriminatory features. Highly significant entropy features were then fed to classifiers. RESULTS Our model yielded the best classification results with the bagged tree classifier: 87.19%, 87.71% and 86.29% for accuracy, sensitivity and specificity, respectively. CONCLUSION The proposed expert system can potentially assist mental health professionals in the stratification of the three classes, for appropriate intervention using accessible ECG signals.
Collapse
Affiliation(s)
- Joel E W Koh
- School of Engineering, Ngee Ann Polytechnic, Singapore
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore
| | | | | | - Hui Tian Tor
- School of Science and Technology, Singapore University of Social Sciences, Singapore
| | - Oh Shu Lih
- School of Engineering, Ngee Ann Polytechnic, Singapore
| | - Ru-San Tan
- National Heart Centre Singapore, Singapore.
| | - U Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore; School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan, ROC; School of Management and Enterprise University of Southern Queensland, Springfield, Australia.
| | | |
Collapse
|
16
|
Saeidi M, Karwowski W, Farahani FV, Fiok K, Taiar R, Hancock PA, Al-Juaid A. Neural Decoding of EEG Signals with Machine Learning: A Systematic Review. Brain Sci 2021; 11:1525. [PMID: 34827524 PMCID: PMC8615531 DOI: 10.3390/brainsci11111525] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Electroencephalography (EEG) is a non-invasive technique used to record the brain's evoked and induced electrical activity from the scalp. Artificial intelligence, particularly machine learning (ML) and deep learning (DL) algorithms, are increasingly being applied to EEG data for pattern analysis, group membership classification, and brain-computer interface purposes. This study aimed to systematically review recent advances in ML and DL supervised models for decoding and classifying EEG signals. Moreover, this article provides a comprehensive review of the state-of-the-art techniques used for EEG signal preprocessing and feature extraction. To this end, several academic databases were searched to explore relevant studies from the year 2000 to the present. Our results showed that the application of ML and DL in both mental workload and motor imagery tasks has received substantial attention in recent years. A total of 75% of DL studies applied convolutional neural networks with various learning algorithms, and 36% of ML studies achieved competitive accuracy by using a support vector machine algorithm. Wavelet transform was found to be the most common feature extraction method used for all types of tasks. We further examined the specific feature extraction methods and end classifier recommendations discovered in this systematic review.
Collapse
Affiliation(s)
- Maham Saeidi
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (F.V.F.); (K.F.)
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (F.V.F.); (K.F.)
| | - Farzad V. Farahani
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (F.V.F.); (K.F.)
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Krzysztof Fiok
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (F.V.F.); (K.F.)
| | - Redha Taiar
- MATIM, Moulin de la Housse, Université de Reims Champagne Ardenne, CEDEX 02, 51687 Reims, France;
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA;
| | - Awad Al-Juaid
- Industrial Engineering Department, Taif University, Taif 26571, Saudi Arabia;
| |
Collapse
|
17
|
Preetha P, Mallika R. Normalization and deep learning based attention deficit hyperactivity disorder classification. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-189581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is one of the major mental-health disorders worldwide. ADHD is typically characterized by impaired executive function, impulsivity, hyperactivity and with respect to these behavioral symptoms, diagnosis of ADHD is performed. These symptoms are obviously seen at in early stage. Serious impairments and substantial burdens are induced for society as well as to families. However, for ADHD, there is no diagnostic laboratory in current scenario. Psychological tests like Brown Attention Deficit Disorder Scale (BADDS), Conners Parent Rating Scale and ADHD Rating Scale (ADHD-RS) are carried out for ADHD diagnosis. Tedious and complex clinical analysis are needed in this testing and this makes low efficiency of the diagnostic process. A traditional diagnosis technique of ADHD produces degraded results. So, enhanced extreme learning machine is incorporated with existing techniques for avoiding the issues of performance degradation. There is a need to enhance the classifier performance further and there is a chance for unwanted noise in input samples, which may degrade the performance of classifier. For avoiding these issues, an enhanced and automated ADHS diagnosis technique is proposed. First stage is pre-processing, and it is carried out based on min max normalization and feature extraction is a next stage, which is carried out through Fast Independent Component Analysis and third stage is a Deep Extreme Learning Machine (DELM) based ADHD identification and classification. Extreme Learning Machine with Kernel (KELM) and Multilayer Extreme Learning Machine (MLELM) algorithm are combined in this method and it is termed as deep extreme learning machine (DELM). Collection of neuro images are used for quantitative and qualitative analysis and with respect to f-measure, recall, precision and accuracy, robustness of proposed technique is demonstrated.
Collapse
Affiliation(s)
- P. Preetha
- Research & Development Centre, Bharathiar University, Coimbatore, India
| | - R. Mallika
- Department of Computer Science, CBM College, Coimbatore, India
| |
Collapse
|
18
|
Tor HT, Ooi CP, Lim-Ashworth NS, Wei JKE, Jahmunah V, Oh SL, Acharya UR, Fung DSS. Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105941. [PMID: 33486340 DOI: 10.1016/j.cmpb.2021.105941] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/10/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Attention deficit hyperactivity disorder (ADHD) is often presented with conduct disorder (CD). There is currently no objective laboratory test or diagnostic method to discern between ADHD and CD, and diagnosis is further made difficult as ADHD is a common neuro-developmental disorder often presenting with other co-morbid difficulties; and in particular with conduct disorder which has a high degree of associated behavioural challenges. A novel automated system (AS) is proposed as a convenient supplementary tool to support clinicians in their diagnostic decisions. To the best of our knowledge, we are the first group to develop an automated classification system to classify ADHD, CD and ADHD+CD classes using brain signals. METHODS The empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods were employed to decompose the electroencephalogram (EEG) signals. Autoregressive modelling coefficients and relative wavelet energy were then computed on the signals. Various nonlinear features were extracted from the decomposed coefficients. Adaptive synthetic sampling (ADASYN) was then employed to balance the dataset. The significant features were selected using sequential forward selection method. The highly discriminatory features were subsequently fed to an array of classifiers. RESULTS The highest accuracy of 97.88% was achieved with the K-Nearest Neighbour (KNN) classifier. The proposed system was developed using ten-fold validation strategy on EEG data from 123 children. To the best of our knowledge this is the first study to develop an AS for the classification of ADHD, CD and ADHD+CD classes using EEG signals. POTENTIAL APPLICATION Our AS can potentially be used as a web-based application with cloud system to aid the clinical diagnosis of ADHD and/or CD, thus supporting faster and accurate treatment for the children. It is important to note that testing with larger data is required before the AS can be employed for clinical applications.
Collapse
Affiliation(s)
- Hui Tian Tor
- School of Science and Technology, Singapore University of Social Sciences, Singapore
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore
| | | | | | - V Jahmunah
- School of Engineering, Ngee Ann Polytechnic, Singapore
| | - Shu Lih Oh
- School of Engineering, Ngee Ann Polytechnic, Singapore
| | - U Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan, ROC; School of Management and Enterprise University of Southern Queensland, Springfield, Australia.
| | - Daniel Shuen Sheng Fung
- Developmental Psychiatry, Institute of Mental Health, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University; DUKE NUS Medical School, National University of Singapore; Yong Loo Lin School of Medicine, National University of Singapore
| |
Collapse
|
19
|
Han D, Fang Y, Luo H. A Predictive Model Offor Attention Deficit Hyperactivity Disorder Based on Clinical Assessment Tools. Neuropsychiatr Dis Treat 2020; 16:1331-1337. [PMID: 32547036 PMCID: PMC7259455 DOI: 10.2147/ndt.s245636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND At present, clinicians diagnose that the clinical diagnosis of attention deficit hyperactivity disorder (ADHD) in children is mainly on the basis of the information provided by their parents, the behaviour of children in clinical clinics and the assessments of clinical rating scales and neuropsychological tests. Notably, no unified standard exists currently for analysing the results of various measurement tools for diagnosing ADHD. Therefore, clinicians interpret the results of clinical rating scales and neuropsychological tests entirely based on their clinical experience. METHODS AND SUBJECTS To provide guidance for clinicians on how to analyse the results of various clinical assessment tools when diagnosing ADHD, this study assessed children with ADHD and children in the control group using two clinical assessment scales-parent rating scale (PSQ) and Child Behavior Checklist (CBCL)-and one neuropsychological test (Integrated Visual and Auditory Continuous Performance Testing). The two-sample t-test (FDR correction) screened the parameters of the three assessment tools with significant inter-group differences. LibSVM was used to establish a classification prediction model for analysing the accuracy of ADHD prediction using parameters of the three assessment tools and weight values of each parameter for classification prediction. RESULTS A total of 19 parameters (16 from clinical rating scales, 3 from neuropsychological tests) with significant inter-group differences were screened. The accuracy of classification modelling was higher for the clinical rating scales (61.635%) than for the neuropsychological test (59.784%), whereas the accuracy of classification modelling was higher for the clinical rating scales combined with the neuropsychological test (70.440%) than for the former two parameters alone. The three parameters with the highest weight values were learning problem (0.731), hyperactivity/impulsivity (0.676) and activity capacity (0.569). The three parameters with the lowest weight values are integrated control force (0.028), visual attention (0.028) and integrated attention (0.034). CONCLUSION Our study findings indicate that the diagnosis of ADHD should be based on multidimensional assessment. For a more accurate diagnosis of ADHD, assessments and that more assessment parameters should be developed on the basis of different dimensions of physiology or psychology in the future to obtain a more accurate diagnosis of ADHD. Furthermore, the predictive model for ADHD may improve our understanding and help in optimisation of the treatment of such a condition.
Collapse
Affiliation(s)
- Dai Han
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.,Children and Adolescents Mental Health Joint Clinic, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, People's Republic of China
| | - Yantong Fang
- Children and Adolescents Mental Health Joint Clinic, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Hong Luo
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.,Children and Adolescents Mental Health Joint Clinic, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|