1
|
Korkmaz E, Aerts S, Coesoij R, Bhatt CR, Velghe M, Colussi L, Land D, Petroulakis N, Spirito M, Bolte J. A comprehensive review of 5G NR RF-EMF exposure assessment technologies: fundamentals, advancements, challenges, niches, and implications. ENVIRONMENTAL RESEARCH 2024; 260:119524. [PMID: 38972338 DOI: 10.1016/j.envres.2024.119524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
This review offers a detailed examination of the current landscape of radio frequency (RF) electromagnetic field (EMF) assessment tools, ranging from spectrum analyzers and broadband field meters to area monitors and custom-built devices. The discussion encompasses both standardized and non-standardized measurement protocols, shedding light on the various methods employed in this domain. Furthermore, the review highlights the prevalent use of mobile apps for characterizing 5G NR radio network data. A growing need for low-cost measurement devices is observed, commonly referred to as "sensors" or "sensor nodes", that are capable of enduring diverse environmental conditions. These sensors play a crucial role in both microenvironmental surveys and individual exposures, enabling stationary, mobile, and personal exposure assessments based on body-worn sensors, across wider geographical areas. This review revealed a notable need for cost-effective and long-lasting sensors, whether for individual exposure assessments, mobile (vehicle-integrated) measurements, or incorporation into distributed sensor networks. However, there is a lack of comprehensive information on existing custom-developed RF-EMF measurement tools, especially in terms of measuring uncertainty. Additionally, there is a need for real-time, fast-sampling solutions to understand the highly irregular temporal variations EMF distribution in next-generation networks. Given the diversity of tools and methods, a comprehensive comparison is crucial to determine the necessary statistical tools for aggregating the available measurement data.
Collapse
Affiliation(s)
- Erdal Korkmaz
- The Hague University of Applied Sciences, Research Group Smart Sensor Systems, 2627 AL, Delft, The Netherlands.
| | - Sam Aerts
- The Hague University of Applied Sciences, Research Group Smart Sensor Systems, 2627 AL, Delft, The Netherlands
| | - Richard Coesoij
- Delft University of Technology, Department of Microelectronics, 2628 CN, Delft, The Netherlands
| | - Chhavi Raj Bhatt
- Australian Radiation Protection and Nuclear Safety Agency, VIC 3085, Yallambie, Australia
| | - Maarten Velghe
- National Institute for Public Health and the Environment, Centre for Sustainability, Environment and Health, 3720 BA, Bilthoven, The Netherlands
| | - Loek Colussi
- Dutch Authority for Digital Infrastructure, 9700 AL, Groningen, The Netherlands
| | - Derek Land
- The Hague University of Applied Sciences, Research Group Smart Sensor Systems, 2627 AL, Delft, The Netherlands
| | - Nikolaos Petroulakis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Marco Spirito
- Delft University of Technology, Department of Microelectronics, 2628 CN, Delft, The Netherlands
| | - John Bolte
- The Hague University of Applied Sciences, Research Group Smart Sensor Systems, 2627 AL, Delft, The Netherlands; National Institute for Public Health and the Environment, Centre for Sustainability, Environment and Health, 3720 BA, Bilthoven, The Netherlands
| |
Collapse
|
2
|
Balmori A. Evidence for a health risk by RF on humans living around mobile phone base stations: From radiofrequency sickness to cancer. ENVIRONMENTAL RESEARCH 2022; 214:113851. [PMID: 35843283 DOI: 10.1016/j.envres.2022.113851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The objective of this work was to perform a complete review of the existing scientific literature to update the knowledge on the effects of base station antennas on humans. Studies performed in real urban conditions, with mobile phone base stations situated close to apartments, were selected. Overall results of this review show three types of effects by base station antennas on the health of people: radiofrequency sickness (RS), cancer (C) and changes in biochemical parameters (CBP). Considering all the studies reviewed globally (n = 38), 73.6% (28/38) showed effects: 73.9% (17/23) for radiofrequency sickness, 76.9% (10/13) for cancer and 75.0% (6/8) for changes in biochemical parameters. Furthermore, studies that did not meet the strict conditions to be included in this review provided important supplementary evidence. The existence of similar effects from studies by different sources (but with RF of similar characteristics), such as radar, radio and television antennas, wireless smart meters and laboratory studies, reinforce the conclusions of this review. Of special importance are the studies performed on animals or trees near base station antennas that cannot be aware of their proximity and to which psychosomatic effects can never be attributed.
Collapse
Affiliation(s)
- A Balmori
- C/ Rigoberto Cortejoso, 14 47014, Valladolid, Spain.
| |
Collapse
|
3
|
Baliah J, Subramanian B, Livingstone D, Kanwal B, Zaman MU, Srivastava KC, Abutayyem H, Al-Johani K, David AP, Shrivastava D, Alam MK. Comparative Analysis of Electric Field Strength, Magnetic Field Strength and Power Density around the Cell Phone Towers of Varying Characteristics with a Proposed Classification Facilitating Research on Human Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14157. [PMID: 36361036 PMCID: PMC9653978 DOI: 10.3390/ijerph192114157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The continuous exposure of electromagnetic field (EMF) radiation from cell phone towers may possibly have an influence on public health. Each cell phone tower is unique in terms of number of antennas and its associated attributes; thus, the radiation exposure varies from one tower to another. Hence, a standardized method for quantifying the exposure is beneficial while studying the effects of radiation on the human population residing around the cell phone towers. A mere collection of data or human samples without understanding the cell phone tower differences may show study results such as an increase or decrease in biological parameters. Those changes may not be due to the effects of EMF radiation from cell phone towers but could be due to any other cause. Therefore, a comparative study was designed with the aim of quantifying and comparing the electric field strength (EF), magnetic field strength (MF) and power density (PD) on four sides of cell phone towers with varying numbers of antennas at 50 m and 100 m. Further, an attempt was made to develop a PD-based classification for facilitating research involving human biological samples. Through convenience sampling, sixteen cell phone towers were selected. With the use of coordinates, the geographic mapping of selected towers was performed to measure the distance between the towers. Based on the number of antennas, the cell phone towers were categorized into four groups which are described as group I with 1-5 antennas, group II comprising of 6-10 antennas, group III consisting of 11-15 antennas and group IV comprised of towers clustered with more than 15 antennas. The study parameters, namely the EF, MF and PD, were recorded on all four sides of the cell phone towers at 50 m and 100 m. One-way ANOVA was performed to compare the study parameters among study groups and different sides using the Statistical Package for the Social Sciences (SPSS) version 25.0. The mean MF in Group IV was 2221.288 ± 884.885 μA/m and 1616.913 ± 745.039 μA/m at 50 m and 100 m respectively. The mean PD in Group IV at 50 m was 0.129 ± 0.094 μW/cm2 and 0.072 ± 0.061 μW/cm2 at 100 m. There was a statistically significant (p < 0.05) increase in the MF and PD at 50 m compared to 100 m among cell phone tower clusters with more than 15 antennas (Group IV). On the other hand, a non-significant increase in EF was observed at 50 m compared to 100 m in Group II and IV. The EF, MF and PD on all four sides around cell phone towers are not consistent with distance at 50 m and 100 m due to variation in the number of antennas. Accordingly, a PD-based classification was developed as low, medium and high for conducting research involving any biological sample based on quantile. The low PD corresponds to 0.001-0.029, medium to 0.03-0.099 and high to 0.1-0.355 (μW/cm2). The PD-based classification is a preferred method over the sole criteria of distance for conducting human research as it measures the true effects of EMF radiation from the cell phone towers.
Collapse
Affiliation(s)
- John Baliah
- Department of Oral Medicine and Radiology, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth (Deemed to be University), Mahatma Gandhi Medical College and Research Institute Campus, Pondicherry 607402, India
| | - Balanehru Subramanian
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Mahatma Gandhi Medical College and Research Institute Campus, Pondicherry 607402, India
| | - David Livingstone
- Department of Prosthodontics and Crown & Bridge, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth (Deemed to be University), Mahatma Gandhi Medical College and Research Institute Campus, Pondicherry 607402, India
| | - Bushra Kanwal
- Independent Researcher, Banisar, Al Baha 65511, Saudi Arabia
| | - Mahmud Uz Zaman
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Prince Sattam Bin Abdullaziz University, Ad Dilam Rd, Ar Rashidiyah, Al-Kharj 16245, Saudi Arabia
| | - Kumar Chandan Srivastava
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | - Huda Abutayyem
- Department of Clinical Sciences, Center of Medical and Bio-Allied Health Sciences Research, College of Dentistry, Ajman University, Ajman 346, United Arab Emirates
| | - Khalid Al-Johani
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anju P. David
- Al Jouf Specialist Dental Centre, Sakaka under Ministry of Health, Sakaka 72345, Saudi Arabia
| | - Deepti Shrivastava
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | - Mohammad Khursheed Alam
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
- Center for Transdisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil lnternational University, Dhaka 1341, Bangladesh
| |
Collapse
|
4
|
Rangkooy H, Rahmati A, Dehaghi BF. Base transceiver station antennae exposure and workers' health. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2022; 29:863-868. [PMID: 35722815 DOI: 10.1080/10803548.2022.2085892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND With the rapid development of technologies related to the communications industry, human exposure to electromagnetic fields has increased during recent decades. The study aimed at investigating the effect of exposure to waves emitted from the base transceiver stations (BTS) on workers' health. METHODS 240 workers (120 BTS maintenance workers (case group) and 120 office staff (control group)) participated in the study. In order to determine the general health conditions in two groups, along with electromagnetic waves exposure measurement, the general health questionnaire (GHQ) was completed and the data on blood parameters were assessed. RESULTS The mean age and job experience in the case and control groups were 34.1 ± 4.8 and 10.1 ± 6 years and 31.6 ± 5.5 and 8.8 ± 7 years, respectively. According to the GHQ results, only anxiety and insomnia subscales showed a significant difference between the two groups. The white blood cell and red blood cell counts in the case and control groups were 6715.6 ± 1591 and 7594 ± 2416, 5.3×106±4.6×105 and 5.05×106±5.39×105 per ml, respectively. Analysis of the results showed that the difference between the two groups was significant. CONCLUSION The results revealed that blood parameters in the BTS operators showed more changes. Thus, it can be concluded that these health impacts result from occupational exposure to BTS waves.
Collapse
Affiliation(s)
- Hosseinali Rangkooy
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Occupational Health, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Rahmati
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Occupational Health, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Fouladi Dehaghi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Occupational Health, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Hinrikus H, Koppel T, Lass J, Orru H, Roosipuu P, Bachmann M. Possible health effects on the human brain by various generations of mobile telecommunication: a review based estimation of 5G impact. Int J Radiat Biol 2022; 98:1210-1221. [PMID: 34995145 DOI: 10.1080/09553002.2022.2026516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The deployment of new 5G NR technology has significantly raised public concerns in possible negative effects on human health by radiofrequency electromagnetic fields (RF EMF). The current review is aimed to clarify the differences between possible health effects caused by the various generations of telecommunication technology, especially discussing and projecting possible health effects by 5G. The review of experimental studies on the human brain over the last fifteen years and the discussion on physical mechanisms and factors determining the dependence of the RF EMF effects on frequency and signal structure have been performed to discover and explain the possible distinctions between health effects by different telecommunication generations. CONCLUSIONS The human experimental studies on RF EMF effects on the human brain by 2G, 3G and 4G at frequencies from 450 to 2500 MHz were available for analyses. The search for publications indicated no human experimental studies by 5G nor at the RF EMF frequencies higher than 2500 MHz. The results of the current review demonstrate no consistent relationship between the character of RF EMF effects and parameters of exposure by different generations (2G, 3G, 4G) of telecommunication technology. At the RF EMF frequencies lower than 10 GHz, the impact of 5G NR FR1 should have no principal differences compared to the previous generations. The radio frequencies used in 5G are even higher and the penetration depths of the fields are smaller, therefore the effect is rather lower than at previous generations. At the RF EMF frequencies higher than 10 GHz, the mechanism of the effects might differ and the impact of 5G NR FR2 becomes unpredictable. Existing knowledge about the mechanism of RF EMF effects at millimeter waves lacks sufficient experimental data and theoretical models for reliable conclusions. The insufficient knowledge about the possible health effects at millimeter waves and the lack of in vivo experimental studies on 5G NR underline an urgent need for the theoretical and experimental investigations of health effects by 5G NR, especially by 5G NR FR2.
Collapse
Affiliation(s)
- Hiie Hinrikus
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Tarmo Koppel
- Department of Business Administration, School of Business and Governance, Tallinn University of Technology, Tallinn, Estonia
| | - Jaanus Lass
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Hans Orru
- Department of Public Health, Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Priit Roosipuu
- Thomas Johann Seebeck Department of Electronics, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Maie Bachmann
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
6
|
Hinrikus H, Lass J, Bachmann M. Threshold of radiofrequency electromagnetic field effect on human brain. Int J Radiat Biol 2021; 97:1505-1515. [PMID: 34402382 DOI: 10.1080/09553002.2021.1969055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE This review aims to estimate the threshold of radiofrequency electromagnetic field (RF EMF) effects on human brain based on analyses of published research results. To clarify the threshold of the RF EMF effects, two approaches have been applied: (1) the analyses of restrictions in sensitivity for different steps of the physical model of low-level RF EMF mechanism and (2) the analyses of experimental data to clarify the dependence of the RF EMF effect on exposure level based on the results of published original neurophysiological and behavioral human studies for 15 years 2007-2021. CONCLUSIONS The analyses of the physical model of nonthermal mechanisms of RF EMF effect leads to conclusion that no principal threshold of the effect can be determined. According to the review of experimental data, the rate of detected RF EMF effects is 76.7% in resting EEG studies, 41.7% in sleep EEG and 38.5% in behavioral studies. The changes in EEG probably appear earlier than alterations in behavior become evident. The lowest level of RF EMF at which the effect in EEG was detected is 2.45 V/m (SAR = 0.003 W/kg). There is a preliminary indication that the dependence of the effect on the level of exposure follows rather field strength than SAR alterations. However, no sufficient data are available for clarifying linearity-nonlinearity of the dependence of effect on the level of RF EMF. The finding that only part of people are sensitive to RF EMF exposure can be related to immunity to radiation or hypersensitivity. The changes in EEG caused by RF EMF appeared similar in the majority of analyzed studies and similar to these in depression. The possible causal relationship between RF EMF effect and depression among young people is highly important problem.
Collapse
Affiliation(s)
| | - Jaanus Lass
- Tallinn University of Technology, Tallinn, Estonia
| | | |
Collapse
|
7
|
Chen C, Ma Q, Deng P, Lin M, Gao P, He M, Lu Y, Pi H, He Z, Zhou C, Zhang Y, Yu Z, Zhang L. 1800 MHz Radiofrequency Electromagnetic Field Impairs Neurite Outgrowth Through Inhibiting EPHA5 Signaling. Front Cell Dev Biol 2021; 9:657623. [PMID: 33912567 PMCID: PMC8075058 DOI: 10.3389/fcell.2021.657623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing intensity of environmental radiofrequency electromagnetic fields (RF-EMF) has increased public concern about its health effects. Of particular concern are the influences of RF-EMF exposure on the development of the brain. The mechanisms of how RF-EMF acts on the developing brain are not fully understood. Here, based on high-throughput RNA sequencing techniques, we revealed that transcripts related to neurite development were significantly influenced by 1800 MHz RF-EMF exposure during neuronal differentiation. Exposure to RF-EMF remarkably decreased the total length of neurite and the number of branch points in neural stem cells-derived neurons and retinoic acid-induced Neuro-2A cells. The expression of Eph receptors 5 (EPHA5), which is required for neurite outgrowth, was inhibited remarkably after RF-EMF exposure. Enhancing EPHA5 signaling rescued the inhibitory effects of RF-EMF on neurite outgrowth. Besides, we identified that cAMP-response element-binding protein (CREB) and RhoA were critical downstream factors of EPHA5 signaling in mediating the inhibitory effects of RF-EMF on neurite outgrowth. Together, our finding revealed that RF-EMF exposure impaired neurite outgrowth through EPHA5 signaling. This finding explored the effects and key mechanisms of how RF-EMF exposure impaired neurite outgrowth and also provided a new clue to understanding the influences of RF-EMF on brain development.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Qinglong Ma
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Min Lin
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Peng Gao
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Zhixin He
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yanwen Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| |
Collapse
|
8
|
Exposure to Radiofrequency Electromagnetic Field in the High-Frequency Band and Cognitive Function in Children and Adolescents: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249179. [PMID: 33302600 PMCID: PMC7764655 DOI: 10.3390/ijerph17249179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022]
Abstract
With increasing use of mobile phones, exposure to radiofrequency electromagnetic field (RF-EMF) in the high-frequency band associated with mobile phones has become a public concern, with potentially adverse effects on cognitive function in children and adolescents. However, findings regarding the relation of RF-EMF and cognitive function in children and adolescents have been inconsistent due to a number of study design-related factors, such as types of exposure and outcome measures, age of participants, and the era of study conduction. The present literature review focused on these possible factors that could explain this inconsistency. This review identified 12 eligible studies (participants ages 4 to 17 years) and extracted a total 477 relations. In total, 86% of the extracted relations were not statistically significant; in the remaining 14%, a negative relation between RF-EMF and cognitive performance was detected under limited conditions: when (1) RF-EMF was assessed using objective measurement not subjective measurement (i.e., questionnaire), (2) participants were relatively older (12 years and above) and had greater opportunity of exposure to RF-EMF, and (3) the collection of cognitive function data was conducted after 2012. Given that 86% of the extracted relations in this analysis were not statistically significant, the interpretation should be approached with caution due to the possibility of the 14% of significant relationships, extracted in this review, representing chance findings.
Collapse
|
9
|
Al-Khlaiwi TM, Habib SS, Meo SA, Alqhtani MS, Ogailan AA. The association of smart mobile phone usage with cognitive function impairment in Saudi adult population. Pak J Med Sci 2020; 36:1628-1633. [PMID: 33235587 PMCID: PMC7674882 DOI: 10.12669/pjms.36.7.2826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background & Objectives: Excessive use of mobile phones has raised a great concern about adverse health effects on human health. The present study’s aim was to investigate the association of the usage of smartphones with cognitive function impairment in the Saudi adult population. Methods: The present cross-sectional study was conducted in the Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia during September 2019 to January 2020. A total of 251 Saudi adults who were using mobile phones were recruited, and knowledge, attitude and practices were assessed by interview using a predesigned proforma. The Montreal Cognitive Assessment (MOCA) tool was employed to assess the cognitive functions, comparison was made between daily mobile phone usage group and their correlated Montreal Cognitive Score (MOCA). Results: The mean age for 251 Saudi adult participants was 32.43 ± 12.8 years. More than 80% of the participants used their mobile phone for more than two hours daily. About 61% of the participants were not aware of the side effect of the radiation generated from mobile phone. The participants showed a decrease in MOCA score with increased daily mobile phone usage (MOCA=26.8 for <1 hour daily usage, 26.1 for 1-2 hours, and 24.6 for >2 hours with P< 0.05). In addition, participants showed decreased MOCA score by keeping their mobile phone near their pillow while sleeping; MOCA=24.35 for near pillow groups and >25.5 for the groups that placed their mobile phone away from the pillow. Conclusions: Excessive use of mobile phones can cause cognitive function impairment. Strict policies must be implemented to control the use of smartphones in order to minimize the effects on mobile phone radiation on cognition. The media has to be on the forefront in educating the public about the proper usage of mobile phones.
Collapse
Affiliation(s)
- Thamir M Al-Khlaiwi
- Thamir M. Al-Khlaiwi Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Syed Shahid Habib
- Syed Shahid Habib Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Ayoub Meo
- Sultan Ayoub Meo Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Alqhtani
- Mohammed S Alqhtani Medical Student, College of Medicine, King Saud University
| | | |
Collapse
|
10
|
Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M, Soskolne CL. Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Front Public Health 2019; 7:223. [PMID: 31457001 PMCID: PMC6701402 DOI: 10.3389/fpubh.2019.00223] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Radiation exposure has long been a concern for the public, policy makers, and health researchers. Beginning with radar during World War II, human exposure to radio-frequency radiation (RFR) technologies has grown substantially over time. In 2011, the International Agency for Research on Cancer (IARC) reviewed the published literature and categorized RFR as a "possible" (Group 2B) human carcinogen. A broad range of adverse human health effects associated with RFR have been reported since the IARC review. In addition, three large-scale carcinogenicity studies in rodents exposed to levels of RFR that mimic lifetime human exposures have shown significantly increased rates of Schwannomas and malignant gliomas, as well as chromosomal DNA damage. Of particular concern are the effects of RFR exposure on the developing brain in children. Compared with an adult male, a cell phone held against the head of a child exposes deeper brain structures to greater radiation doses per unit volume, and the young, thin skull's bone marrow absorbs a roughly 10-fold higher local dose. Experimental and observational studies also suggest that men who keep cell phones in their trouser pockets have significantly lower sperm counts and significantly impaired sperm motility and morphology, including mitochondrial DNA damage. Based on the accumulated evidence, we recommend that IARC re-evaluate its 2011 classification of the human carcinogenicity of RFR, and that WHO complete a systematic review of multiple other health effects such as sperm damage. In the interim, current knowledge provides justification for governments, public health authorities, and physicians/allied health professionals to warn the population that having a cell phone next to the body is harmful, and to support measures to reduce all exposures to RFR.
Collapse
Affiliation(s)
- Anthony B. Miller
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Margaret E. Sears
- Ottawa Hospital Research Institute, Prevent Cancer Now, Ottawa, ON, Canada
| | - L. Lloyd Morgan
- Environmental Health Trust, Teton Village, WY, United States
| | - Devra L. Davis
- Environmental Health Trust, Teton Village, WY, United States
| | - Lennart Hardell
- The Environment and Cancer Research Foundation, Örebro, Sweden
| | - Mark Oremus
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada
| | - Colin L. Soskolne
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|