1
|
Luo X, Niyakan S, Johnstone P, McCorkle S, Park G, López-Marrero V, Yoo S, Dougherty ER, Qian X, Alexander FJ, Jha S, Yoon BJ. Pathway-based analyses of gene expression profiles at low doses of ionizing radiation. FRONTIERS IN BIOINFORMATICS 2024; 4:1280971. [PMID: 38812660 PMCID: PMC11135168 DOI: 10.3389/fbinf.2024.1280971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Radiation exposure poses a significant threat to human health. Emerging research indicates that even low-dose radiation once believed to be safe, may have harmful effects. This perception has spurred a growing interest in investigating the potential risks associated with low-dose radiation exposure across various scenarios. To comprehensively explore the health consequences of low-dose radiation, our study employs a robust statistical framework that examines whether specific groups of genes, belonging to known pathways, exhibit coordinated expression patterns that align with the radiation levels. Notably, our findings reveal the existence of intricate yet consistent signatures that reflect the molecular response to radiation exposure, distinguishing between low-dose and high-dose radiation. Moreover, we leverage a pathway-constrained variational autoencoder to capture the nonlinear interactions within gene expression data. By comparing these two analytical approaches, our study aims to gain valuable insights into the impact of low-dose radiation on gene expression patterns, identify pathways that are differentially affected, and harness the potential of machine learning to uncover hidden activity within biological networks. This comparative analysis contributes to a deeper understanding of the molecular consequences of low-dose radiation exposure.
Collapse
Affiliation(s)
- Xihaier Luo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
| | - Seyednami Niyakan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Patrick Johnstone
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
| | - Sean McCorkle
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
| | - Gilchan Park
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
| | - Vanessa López-Marrero
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
| | - Shinjae Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
| | - Edward R. Dougherty
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Xiaoning Qian
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | | | - Shantenu Jha
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ, United States
| | - Byung-Jun Yoon
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Tian XL, Zhang TT, Cai TJ, Tian M, Liu QJ. Screening radiation-differentially expressed circular RNAs and establishing dose classification models in the human lymphoblastoid cell line AHH-1. Int J Radiat Biol 2024; 100:550-564. [PMID: 38252315 DOI: 10.1080/09553002.2024.2304850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
PURPOSE In the event of a large-scale radiological accident, rapid and high-throughput biodosimetry is the most vital basis in medical resource allocation for the prompt treatment of victims. However, the current biodosimeter is yet to be rapid and high-throughput. Studies have shown that ionizing radiation modulates expressions of circular RNAs (circRNAs) in healthy human cell lines and tumor tissue. circRNA expressions can be quantified rapidly and high-throughput. However, whether circRNAs are suitable for early radiation dose classification remains unclear. METHODS We employed transcriptome sequencing and bioinformatics analysis to screen for radiation-differentially expressed circRNAs in the human lymphoblastoid cell line AHH-1 at 4 h following exposure to 0, 2, and 5 Gy 60Co γ-rays. The dose-response relationships between differentially expressed circRNA expressions and absorbed doses were investigated using real-time polymerase chain reaction and linear regression analysis at 4 h, 24 h, and 48 h post-exposure to 0, 2, 4, 6, and 8 Gy. Six distinct dose classification models of circRNA panels were established and validated by receiver operating characteristic (ROC) curve analysis. RESULTS A total of 11 radiation-differentially expressed circRNAs were identified and validated. Based on dose-response effects, those circRNAs changed in a dose-responsive or dose-dependent manner were combined into panels A through F at 4 h, 24 h, and 48 h post-irradiation. ROC curve analysis showed that panels A through C had the potential to effectively classify exposed and non-exposed conditions, which area under the curve (AUC) of these three panels were all 1.000, and the associate p values were .009. Panels D through F excellently distinguished between different dose groups (AUC = 0.963-1.000, p < .05). The validation assay showed that panels A through F demonstrated consistent excellence in sensitivity and specificity in dose classification. CONCLUSIONS Ionizing radiation can indeed modulate the circRNA expression profile in the human lymphoblastoid cell line AHH-1. The differentially expressed circRNAs exhibit the potential for rapid and high-throughput dose classification.
Collapse
Affiliation(s)
- Xue-Lei Tian
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Beijing, PR China
| | - Ting-Ting Zhang
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Beijing, PR China
| | - Tian-Jing Cai
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Beijing, PR China
| | - Mei Tian
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Beijing, PR China
| | - Qing-Jie Liu
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Beijing, PR China
| |
Collapse
|
3
|
Li J, Wang J, Wang H. Emerging Landscape of Preclinical Models for Studying COVID-19 Neurologic Diseases. ACS Pharmacol Transl Sci 2023; 6:1323-1339. [PMID: 37854617 PMCID: PMC10580392 DOI: 10.1021/acsptsci.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 10/20/2023]
Abstract
COVID-19 (Coronavirus Disease 2019) is an infectious disease caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and has globally infected 768 million people and caused over 6 million deaths. COVID-19 primarily affects the respiratory system but increasing reports of neurologic symptoms associated with COVID-19 have been reported in the literature. The exact mechanism behind COVID-19 neurologic pathophysiology remains poorly understood due to difficulty quantifying clinical neurologic symptoms in humans and correlating them to findings in human post-mortem samples and animal models. Thus, robust preclinical experimental models for COVID-19 neurologic manifestations are urgently needed. Here, we review recent advances in in vitro, in vivo, and other models and technologies for studying COVID-19 including primary cell cultures, pluripotent stem cell-derived neurons and organoids, rodents, nonhuman primates, 3D bioprinting, artificial intelligence, and multiomics. We specifically focus our discussion on the contribution, recent advancements, and limitations these preclinical models have on furthering our understanding of COVID-19's neuropathic physiology. We also discuss these models' roles in the screening and development of therapeutics, vaccines, antiviral drugs, and herbal medicine, and on future opportunities for COVID-19 neurologic research and clinical management.
Collapse
Affiliation(s)
- Jason Li
- Department
of Neurology, Indiana University School
of Medicine, Indianapolis, Indiana 46202, United States
| | - Jing Wang
- Department
of Cellular and Molecular Medicine, University
of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore 21215, United States
| |
Collapse
|
4
|
Qin S, Wang Y, Wang P, Lv Q. Molecular mechanism of circRNAs in drug resistance in renal cell carcinoma. Cancer Cell Int 2022; 22:369. [PMID: 36424596 PMCID: PMC9686082 DOI: 10.1186/s12935-022-02790-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignant tumors with a poor response to radiotherapy and chemotherapy. The advent of molecular targeted drugs has initiated great breakthroughs in the treatment of RCC. However, drug resistance to targeted drugs has become an urgent problem. Various studies across the decades have confirmed the involvement of circular RNAs (circRNAs) in multiple pathophysiological processes and its abnormal expression in many malignant tumors. This review speculated that circRNAs can provide a new solution to drug resistance in RCC and perhaps be used as essential markers for the early diagnosis and prognosis of RCC. Through the analysis and discussion of relevant recent research, this review explored the relationship of circRNAs to and their regulatory mechanisms in drug resistance in RCC. The results indicate an association between the expression of circRNAs and the development of RCC, as well as the involvement of circRNAs in drug resistance in RCC.
Collapse
Affiliation(s)
- Shuang Qin
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| | - Yuting Wang
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| | - Peijun Wang
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| | - Qi Lv
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| |
Collapse
|
5
|
Gao J, Lan T, Zong X, Shi G, He S, Na Chen, Cui F, Tu Y. Analysis of circRNA-miRNA-mRNA Regulatory Network in Peripheral Blood of Radiation Workers. Dose Response 2022; 20:15593258221088745. [PMID: 35521437 PMCID: PMC9067054 DOI: 10.1177/15593258221088745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022]
Abstract
The health of radiation workers has always been our focus. Epidemiological investigation shows that long-term exposure to low-dose ionizing radiation can affect human health, especially cancer and cardiovascular disease, and there are many studies on it. However, up to now, there have been few reports on the research of blood and biological samples from radiation workers. In this study, radiation workers and healthy control groups were strictly screened, and the transcriptome of mRNA and circRNA was sequenced by extracting their peripheral venous blood. At the same time, appropriate data sets were selected in the GEO database for bioinformatics analysis, and circRNA-miRNA-mRNA network was constructed. We identified 9 different circular ribonucleic acids, 3 tiny ribonucleic acids, and 2 central genes (NOD 2 and IRF 7). These differentially expressed genes and non-coding RNA are closely related to ionizing radiation damage, and play an important role as biological markers. In conclusion, this study may provide new insights into the role of the circRNA-miRNA-mRNA regulatory network in the health of radiation workers, and provides a new strategy for the future study of radiation biology.
Collapse
Affiliation(s)
- Jin Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Tinxi Lan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Xumin Zong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Gensheng Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Shuqing He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
6
|
Ma L, Gong Q, Liu G, Chen J, Wang Y, luo P, Shi C. Positive Cofactor 4 as a Potential Radiation Biodosimeter for Early Assessment. Dose Response 2022; 20:15593258221081317. [PMID: 35221823 PMCID: PMC8874181 DOI: 10.1177/15593258221081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During a major radiation event, a large number of people need to be rapidly assessed for radiation damage to ensure effective medical treatment and efficient use of medical resources. However, current techniques cannot meet the requirement of rapid detection of large quantities of samples in an emergency. It is essential to develop rapid and accurate radiation biodosimeters in peripheral blood. Here, we identified radiation sensitive genes in mice by RNA sequencing and evaluated their utility as radiation biodosimeters in human cell lines. Mice were subjected to gamma-irradiation with different doses (0–8 Gy, .85 Gy/min), and the tail venous blood was analyzed by RNA sequencing. We have identified 5 genes with significantly differential expression after radiation exposure. We found that positive cofactor 4(PC4) had well correlation with radiation dose in human lymphoblastoid cell line after irradiation. The relative expression of PC4 gene showed a good linear correlation with the radiation dose after 1–5 Gy irradiation (.85 Gy/min). PC4 gene can be rapidly recruited to the DNA damage sites faster than γ-H2AX after radiation in immunofluorescence detection. In conclusion, PC4 may be represented as new radiation biological dosimeter for early assessment.
Collapse
Affiliation(s)
- Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Gaoyu Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
7
|
van Zonneveld AJ, Kölling M, Bijkerk R, Lorenzen JM. Circular RNAs in kidney disease and cancer. Nat Rev Nephrol 2021; 17:814-826. [PMID: 34381199 DOI: 10.1038/s41581-021-00465-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a class of endogenously expressed regulatory RNAs with a single-stranded circular structure. They are generated by back splicing and their expression can be tightly regulated by RNA binding proteins. Cytoplasmic circRNAs can function as molecular sponges that inhibit microRNA-target interactions and protein function or as templates for the efficient generation of peptides via rolling circle amplification. They can also act as molecular scaffolds that enhance the reaction kinetics of enzyme-substrate interactions. In the nucleus, circRNAs might facilitate chromatin modifications and promote gene expression. CircRNAs are resistant to degradation and can be packaged in extracellular vesicles and transported in the circulation. Initial studies suggest that circRNAs have roles in kidney disease and associated cardiovascular complications. They have been implicated in hypertensive nephropathy, diabetic kidney disease, glomerular disease, acute kidney injury and kidney allograft rejection, as well as in microvascular and macrovascular complications of chronic kidney disease, including atherosclerotic vascular disease. In addition, several circRNAs have been reported to have oncogenic or tumour suppressor roles or to regulate drug resistance in kidney cancer. The available data suggest that circRNAs could be promising diagnostic and/or prognostic biomarkers and potential therapeutic targets for kidney disease, cardiovascular disease and kidney cancer.
Collapse
Affiliation(s)
- Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Malte Kölling
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Roel Bijkerk
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan M Lorenzen
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Papaspyropoulos A, Hazapis O, Lagopati N, Polyzou A, Papanastasiou AD, Liontos M, Gorgoulis VG, Kotsinas A. The Role of Circular RNAs in DNA Damage Response and Repair. Cancers (Basel) 2021; 13:cancers13215352. [PMID: 34771517 PMCID: PMC8582540 DOI: 10.3390/cancers13215352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNA) comprise a distinct class of non-coding RNAs that are abundantly expressed in the cell. CircRNAs have the capacity to regulate gene expression by interacting with regulatory proteins and/or other classes of RNAs. While a vast number of circRNAs have been discovered, the majority still remains poorly characterized. Particularly, there is no detailed information on the identity and functional role of circRNAs that are transcribed from genes encoding components of the DNA damage response and repair (DDRR) network. In this article, we not only review the available published information on DDRR-related circRNAs, but also conduct a bioinformatic analysis on data obtained from public repositories to uncover deposited, yet uncharacterized circRNAs derived from components of the DDRR network. Finally, we interrogate for potential targets that are regulated by this class of molecules and look into potential functional implications.
Collapse
Affiliation(s)
- Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
- Biomedical Research Foundation, Academy of Athens, GR-11527 Athens, Greece
| | - Orsalia Hazapis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
- Biomedical Research Foundation, Academy of Athens, GR-11527 Athens, Greece
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
| | - Anastasios D. Papanastasiou
- Department of Biomedical Sciences, University of West Attica, GR-12462 Athens, Greece;
- Histopathology Unit, Biomedical Sciences Research Center ‘Alexander Fleming’, GR-16672 Vari, Greece
| | - Michalis Liontos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
- Oncology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra Hospital, GR-11528 Athens, Greece
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
- Biomedical Research Foundation, Academy of Athens, GR-11527 Athens, Greece
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, GR-11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
- Correspondence: (V.G.G.); (A.K.); Tel.: +30-210-746-2352 (V.G.G.); +30-210-746-2420 (A.K.)
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
- Correspondence: (V.G.G.); (A.K.); Tel.: +30-210-746-2352 (V.G.G.); +30-210-746-2420 (A.K.)
| |
Collapse
|
9
|
Abstract
Circular RNAs (circRNAs) are a type of closed, long, non-coding RNAs, which have attracted significant attention in recent years. CircRNAs exhibit unique functions and are characterized by stable expression in various tissues across different species. Because the identification of circRNA in plant viroids in 1976, numerous studies have been conducted to elucidate its generation as well as expression under normal and disease conditions. The rapid development of research focused on the roles of circRNAs as biomarkers in diseases such as cancers has led to increased interests in evaluating the effects of toxicants on the human genetics from a toxicological perspective. Notably, increasing amounts of chemicals are generated in the environment; however, their toxic features and interactions with the human body, particularly from the epigenetic viewpoint, remain largely unknown. Considering the unique features of circRNAs as potential prognostic biomarkers as well as their roles in evaluating health risks following exposure to toxicants, the aim of this review was to assess the latest progress in the research concerning circRNA, to address the role of the circRNA-miRNA-mRNA axis in diseases and processes occurring after exposure to toxic compounds. Another goal was to identify the gaps in understanding the interactions between toxic compounds and circRNAs as potential biomarkers. The review presents general information about circRNA (ie, biogenesis and functions) and provides insights into newly discovered exosome-contained circRNA. The roles of circRNAs as potential biomarkers are also explored. A comprehensive review of the available literature on the role of circRNA in toxicological research (ie, chemical carcinogenesis, respiratory toxicology, neurotoxicology, and other unclassified toxicological categories) is included.
Collapse
Affiliation(s)
- Yueting Shao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
10
|
Sun Y, Fang L, Yang M, He N, Wang J, Zhang M, Ji K, Wang Q, Liu Y, Du L, Wang Y, Xu C, Liu Q. Identification and Bioinformatic Assessment of circRNA Expression After RMI1 Knockdown and Ionizing Radiation Exposure. DNA Cell Biol 2020; 40:80-92. [PMID: 33202158 DOI: 10.1089/dna.2020.5976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RecQ-mediated genome instability protein 1 (RMI1) is an important component of the BLM-Topo IIIα-RMI1-RMI2 complex and plays a critical role in maintaining genome stability. However, the cellular functions of RMI1 in response to ionizing radiation (IR) are poorly understood. In this study, we found that RMI1 knockdown led to enhanced radiosensitivity and apoptosis after irradiation. To analyze the effect of RMI1 knockdown on the expression of circular RNAs (circRNAs), we performed high-throughput RNA sequencing on four groups of human embryonic kidney (HEK) 293T cells: control cells and RMI1 knockdown cells with or without IR exposure. A total of 179 and 160 differentially expressed circRNAs (DE-circRNAs) were identified under RMI1 knockdown without and with exposure to IR, respectively. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that these DE-circRNAs were involved in a variety of functions and signal pathways, including histone H3-K36 methylation, nuclear pore organization, mRNA destabilization, the mismatch repair pathway, and the apoptotic signaling pathway. Overall, our results indicate that RMI1 plays a crucial role in the response to IR and, more generally, that circRNAs are important in the regulatory mechanism of the radiation response.
Collapse
Affiliation(s)
- Yuxiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lianying Fang
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
11
|
Jin X, Yuan L, Liu B, Kuang Y, Li H, Li L, Zhao X, Li F, Bing Z, Chen W, Yang L, Li Q. Integrated analysis of circRNA-miRNA-mRNA network reveals potential prognostic biomarkers for radiotherapies with X-rays and carbon ions in non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1373. [PMID: 33313118 PMCID: PMC7723558 DOI: 10.21037/atm-20-2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background This work was aimed at exploring the regulatory network of non-coding RNA (ncRNA) especially circular RNA (circRNA) and microRNA (miRNA), in the sensitivity of non-small cell lung cancer (NSCLC) cells to low linear energy transfer (LET) X-ray and high-LET carbon ion irradiations. Methods The radioresistant NSCLC cell line A549-R11 was obtained from its parental cell line A549 through irradiation with X-rays of 2.0 Gy per fraction for 30 times. The sensitivities of A549, A549-R11 and H1299 cells exposed to X-rays and carbon ions were verified using the colony formation assay. A comprehensive circRNA-miRNA-mRNA network was constructed through the sequencing data in parental A549, acquired radioresistant A549-R11 and intrinsic radioresistant H1299 cells, and the network was further optimized according to the prognostic results from the TCGA and GEO databases. Results Based on high-throughput sequencing of circRNAs, we found that 40 circRNAs were up-regulated while 184 circRNAs were down-regulated in the intersection of the sets of A549-R11 and H1299 cells. Subsequently, a circRNA- miRNA-mRNA network, including 14 interactive pairs and 8 circRNAs, 4 overall survival-associated miRNAs, and 4 mRNAs, was constructed through the high-throughput data screening and bioinformatics methods. Conclusions Our results provide a complete understanding to the regulatory mechanism of the sensitivities to low-LET X-ray and high-LET carbon ion irradiations, and might be helpful to screen potential biomarkers for predicting the Carbon-ion radiotherapy (CIRT) and X-ray radiotherapy responses in NSCLC.
Collapse
Affiliation(s)
- Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Lingyan Yuan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueshan Zhao
- Department of Oncology Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Sanclemente-Alaman I, Moreno-Jiménez L, Benito-Martín MS, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Gómez-Pinedo U. Experimental Models for the Study of Central Nervous System Infection by SARS-CoV-2. Front Immunol 2020; 11:2163. [PMID: 32983181 PMCID: PMC7485091 DOI: 10.3389/fimmu.2020.02163] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The response to the SARS-CoV-2 coronavirus epidemic requires increased research efforts to expand our knowledge of the disease. Questions related to infection rates and mechanisms, the possibility of reinfection, and potential therapeutic approaches require us not only to use the experimental models previously employed for the SARS-CoV and MERS-CoV coronaviruses but also to generate new models to respond to urgent questions. DEVELOPMENT We reviewed the different experimental models used in the study of central nervous system (CNS) involvement in COVID-19 both in different cell lines that have enabled identification of the virus' action mechanisms and in animal models (mice, rats, hamsters, ferrets, and primates) inoculated with the virus. Specifically, we reviewed models used to assess the presence and effects of SARS-CoV-2 on the CNS, including neural cell lines, animal models such as mouse hepatitis virus CoV (especially the 59 strain), and the use of brain organoids. CONCLUSION Given the clear need to increase our understanding of SARS-CoV-2, as well as its potential effects on the CNS, we must endeavor to obtain new information with cellular or animal models, with an appropriate resemblance between models and human patients.
Collapse
Affiliation(s)
- Inmaculada Sanclemente-Alaman
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Lidia Moreno-Jiménez
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - María Soledad Benito-Martín
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro Canales-Aguirre
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology, CIATEJ-CONACYT, Guadalajara, Mexico
| | - Jordi A. Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Jin J, Sun H, Shi C, Yang H, Wu Y, Li W, Dong Y, Cai L, Meng X. Circular RNA in renal diseases. J Cell Mol Med 2020; 24:6523-6533. [PMID: 32333642 PMCID: PMC7299708 DOI: 10.1111/jcmm.15295] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNA (circRNA) is a newly described type of non-coding RNA. Active research is greatly enriching the current understanding of the expression and role of circRNA, and a large amount of evidence has implicated circRNA in the pathogenesis of certain renal diseases, such as renal cell carcinoma, acute kidney injury, diabetic nephropathy and lupus nephritis. Studies have found evidence that circRNAs regulate programmed cell death, invasion, and metastasis and serve as biomarkers in renal diseases. Recently, circRNAs were identified in exosomes secreted by the kidneys. Nevertheless, the function of circRNA in renal diseases remains ambiguous. Given that circRNAs are regulators of gene expression, they may be involved in the pathology of multiple renal diseases. Additionally, emerging evidence is showing that circulating circRNAs may serve as novel biomarkers for renal disease. In this review, we have summarized the identification, biogenesis, degradation, and functions of circRNA and have evaluated the roles of circRNA in renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- Department of PharmacologyAnhui Medical UniversityHefeiChina
| | - Haolu Sun
- Department of PharmacologyAnhui Medical UniversityHefeiChina
| | - Chao Shi
- Department of Cardiac SurgeryFirst Affiliated Hospital of Bengbu Medical CollegeBengbu CityChina
| | - Hui Yang
- Department of PharmacologyAnhui Medical UniversityHefeiChina
| | - Yiwan Wu
- Department of PharmacologyAnhui Medical UniversityHefeiChina
| | - Wanhai Li
- Department of Cardiac SurgeryFirst Affiliated Hospital of Bengbu Medical CollegeBengbu CityChina
| | - Yu‐hang Dong
- The Key Laboratory of Major Autoimmune DiseasesAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiChina
| | - Liang Cai
- The Key Laboratory of Major Autoimmune DiseasesAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiChina
| | - Xiao‐ming Meng
- The Key Laboratory of Major Autoimmune DiseasesAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiChina
| |
Collapse
|
14
|
Cui C, Yang J, Li X, Liu D, Fu L, Wang X. Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer 2020; 19:58. [PMID: 32171304 PMCID: PMC7071709 DOI: 10.1186/s12943-020-01180-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs), one type of non-coding RNA, were initially misinterpreted as nonfunctional products of pre-mRNA mis-splicing. Currently, circRNAs have been proven to manipulate the functions of diverse molecules, including non-coding RNAs, mRNAs, DNAs and proteins, to regulate cell activities in physiology and pathology. Accumulating evidence indicates that circRNAs play critical roles in tumor genesis, development, and sensitivity to radiation and chemotherapy. Radiotherapy and chemotherapy are two primary types of intervention for most cancers, but their therapeutic efficacies are usually retarded by intrinsic and acquired resistance. Thus, it is urgent to develop new strategies to improve therapeutic responses. To achieve this, clarification of the underlying mechanisms affecting therapeutic responses in cancer is needed. This review summarizes recent progress and mechanisms of circRNAs in cancer resistance to radiation and chemotherapy, and it discusses the limitations of available knowledge and potential future directions.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jianbo Yang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
15
|
Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D, Tao Y. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 2020; 19:47. [PMID: 32122355 PMCID: PMC7050132 DOI: 10.1186/s12943-020-01171-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
As the standard treatments for cancer, chemotherapy and radiotherapy have been widely applied to clinical practice worldwide. However, the resistance to cancer therapies is a major challenge in clinics and scientific research, resulting in tumor recurrence and metastasis. The mechanisms of therapy resistance are complicated and result from multiple factors. Among them, non-coding RNAs (ncRNAs), along with their modifiers, have been investigated to play key roles in regulating tumor development and mediating therapy resistance within various cancers, such as hepatocellular carcinoma, breast cancer, lung cancer, gastric cancer, etc. In this review, we attempt to elucidate the mechanisms underlying ncRNA/modifier-modulated resistance to chemotherapy and radiotherapy, providing some therapeutic potential points for future cancer treatment.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Kai Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Honghua Zhou
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yuwei Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chan Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhaoya Liu
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qian Xu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Desheng Xiao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
16
|
Yang M, Sun Y, Xiao C, Ji K, Zhang M, He N, Wang J, Wang Q, Sun Z, Wang Y, Du L, Liu Y, Xu C, Liu Q. Integrated Analysis of the Altered lncRNAs and mRNAs Expression in 293T Cells after Ionizing Radiation Exposure. Int J Mol Sci 2019; 20:ijms20122968. [PMID: 31216644 PMCID: PMC6627384 DOI: 10.3390/ijms20122968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023] Open
Abstract
Tissue and cell damage caused by ionizing radiation is often highly genotoxic. The swift repair of DNA damage is crucial for the maintenance of genomic stability and normal cell fitness. Long noncoding RNAs (lncRNAs) have been reported to play an important role in many physiological and pathological processes in cells. However, the exact function of lncRNAs in radiation-induced DNA damage has yet to be elucidated. Therefore, this study aimed to analyze the potential role of lncRNAs in radiation-induced DNA damage. We examined the expression profiles of lncRNAs and mRNAs in 293T cells with or without 8 Gy irradiation using high-throughput RNA sequencing. We then performed comprehensive transcriptomic and bioinformatic analyses of these sequencing results. A total of 18,990 lncRNAs and 16,080 mRNAs were detected in all samples. At 24 h post irradiation, 49 lncRNAs and 323 mRNAs were differentially expressed between the irradiation group and the control group. qRT-PCR was used to verify the altered expression of six lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the predicted genes were mainly involved in the histone mRNA metabolic process and Wnt signaling pathways. This study may provide novel insights for the study of lncRNAs in radiation-induced DNA damage.
Collapse
Affiliation(s)
- Mengmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yuxiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Changyan Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Zhijuan Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|