1
|
Georgoulis I, Giantsis IA, Michaelidis B, Feidantsis K. Heat Hardening Ameliorates Apoptotic and Inflammatory Effects Through Increased Autophagy in Mussels. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1271-1286. [PMID: 39240443 DOI: 10.1007/s10126-024-10371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
The severity, frequency, and duration of extreme events, in the context of global warming, have placed many marine ecosystems at high risk. Therefore, the application of methods that can mediate the impacts of global warming on marine organisms seems to be an emerging necessity in the near term. In this context, enhancing the thermal resilience of marine organisms may be crucial for their sustainability. It has been shown that the repeated time-limited exposure of an organism to an environmental stimulus modifies its response mode, thus enhancing resilience and allowing adaptation of the physiological and developmental phenotype to environmental stress. In the present study, we investigated the "stress memory" effect caused by heat hardening on Mytilus galloprovincialis cellular pathways to identify the underlying biochemical mechanisms that enhance mussel thermal tolerance. Heat hardening resulted in increased ETS activity and ATP production and increased autophagic performance at all elevated temperatures (24 °C, 26 °C, and 28 °C). Furthermore, at these increased temperatures, apoptosis and inflammation remain at significantly lower levels in pregnant individuals than in nonhardened individuals. Autophagy, as a negative regulator of apoptosis, may lead to decreased damage to surrounding cells, which in turn alleviates inflammatory effects. In conclusion, the exposure of mussels to heat hardening seems to provide a physiological response that enhances heat tolerance and increases cell survival through increased energy production and reduced cell death and inflammatory responses. The latter can be utilized for the management and conservation of aquatic species of economic value or endangered status.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Department of Fisheries & Aquaculture, School of Agricultural Sciences, University of Patras, 26504, Mesolonghi, Greece.
| |
Collapse
|
2
|
Grondin M, Chabrol C, Averill-Bates DA. Mild heat shock at 40 °C increases levels of autophagy: Role of Nrf2. Cell Stress Chaperones 2024; 29:567-588. [PMID: 38880164 PMCID: PMC11268186 DOI: 10.1016/j.cstres.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
The exposure to low doses of stress induces an adaptive survival response that involves the upregulation of cellular defense systems such as heat shock proteins (Hsps), anti-apoptosis proteins, and antioxidants. Exposure of cells to elevated, non-lethal temperatures (39-41 °C) is an adaptive survival response known as thermotolerance, which protects cells against subsequent lethal stress such as heat shock (>41.5 °C). However, the initiating factors in this adaptive survival response are not understood. This study aims to determine whether autophagy can be activated by heat shock at 40 °C and if this response is mediated by the transcription factor Nrf2. Thermotolerant cells, which were developed during 3 h at 40 °C, were resistant to caspase activation at 42 °C. Autophagy was activated when cells were heated from 5 to 60 min at 40 °C. Levels of acidic vesicular organelles (AVOs) and autophagy proteins Beclin-1, LC3-II/LC3-I, Atg7, Atg5, Atg12-Atg5, and p62 were increased. When Nrf2 was overexpressed or depleted in cells, levels of AVOs and autophagy proteins were higher in unstressed cells, compared to the wild type. Stress induced by mild heat shock at 40 °C further increased levels of most autophagy proteins in cells with overexpression or depletion of Nrf2. Colocalization of p62 and Keap1 occurred. When Nrf2 levels are low, activation of autophagy would likely compensate as a defense mechanism to protect cells against stress. An improved understanding of autophagy in the context of cellular responses to physiological heat shock could be useful for cancer treatment by hyperthermia and the protective role of adaptive responses against environmental stresses.
Collapse
Affiliation(s)
- Mélanie Grondin
- Département des Sciences Biologiques, Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Claire Chabrol
- Département des Sciences Biologiques, Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Diana A Averill-Bates
- Département des Sciences Biologiques, Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Chen J, Zhu G, Xiao W, Huang X, Wang K, Zong Y. Ginsenoside Rg1 Ameliorates Pancreatic Injuries via the AMPK/mTOR Pathway in vivo and in vitro. Diabetes Metab Syndr Obes 2023; 16:779-794. [PMID: 36945297 PMCID: PMC10024876 DOI: 10.2147/dmso.s401642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The main propanaxatriol-type saponin found in ginseng (Panax ginseng C. A. Mey), ginsenoside Rg1 (G-Rg1), has bioactivities that include anti-inflammatory, antioxidant, and anti-diabetic properties. This study aimed to investigate the effects of G-Rg1 on streptozotocin (STZ)-induced Type 1 Diabetes mellitus (T1DM) mice and the insulin-secreting cell line in RIN-m5F cells with high-glucose (HG) treatment. METHODS The STZ-induced DM mice model was treated with G-Rg1 alone or combined with 3-Methyladenine (3-MA, an autophagy inhibitor)/rapamycin (RAPA, an autophagy activator) for 8 weeks, and levels of glucose and lipid metabolism, histopathological changes, as well as autophagy and apoptosis of relevant markers were estimated. In vitro, the HG-induced RIN-m5F cells were treated with G-Rg1, 3-MA, and Compound C (CC), an AMPK inhibitor, or their combinations to estimate the influences on cell apoptosis, autophagy, and AMPK/mTOR pathway-associated target gene levels. RESULTS G-Rg1 treatment attenuated glucose and lipid metabolism disorder and pancreatic fibrosis in diabetic mice. In addition, subdued autophagy and p-AMPK protein expression, and enhanced p-mTOR protein expression and apoptosis levels in TIDM mice and HG-induced RIN-m5F cells were ameliorated by G-Rg1 treatment. Furthermore, these anti-apoptosis effects of G-Rg1 were partially abolished by 3-MA and CC. CONCLUSION Our findings revealed that G-Rg1 exhibits strong anti-apoptosis ability in pancreatic tissues of type 1 diabetic mice and HG-induced RIN-m5F cells, and the mechanisms involved in activating AMPK and inhibiting mTOR-mediated autophagy, indicating that G-Rg1 may have the therapeutic and preventive potential for treating pancreatic injury in diabetic patients.
Collapse
Affiliation(s)
- Jin Chen
- Department of Hematology, Yiwu Central Hospital, Yiwu, People’s Republic of China
| | - Guoping Zhu
- Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, People’s Republic of China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaosong Huang
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, People’s Republic of China
| | - Kewu Wang
- Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, People’s Republic of China
- Correspondence: Kewu Wang; Yi Zong, Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, Zhejiang, People’s Republic of China, Email ;
| | - Yi Zong
- Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, People’s Republic of China
| |
Collapse
|
4
|
Arya JK, Kumar R, Tripathi SS, Rizvi SI. 3-Bromopyruvate, a caloric restriction mimetic, exerts a mitohormetic effect to provide neuroprotection through activation of autophagy in rats during aging. Biogerontology 2022; 23:641-652. [PMID: 36048311 DOI: 10.1007/s10522-022-09988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
In the present study, attempts have been made to evaluate the potential role of 3 Bromopyruvate (3-BP) a glycolytic inhibitor and a caloric restriction mimetic (CRM), to exert neuroprotection in rats during aging through modulation of autophagy. Young male rats (4 months), and naturally aged (22 months) male rats were supplemented with 3-BP (30 mg/kg b.w., orally) for 28 days. Our results demonstrate a significant increase in the antioxidant biomarkers (ferric reducing antioxidant potential level, total thiol, superoxide dismutase, and catalase activities) and a decrease in the level of pro-oxidant biomarkers such as protein carbonyl after 3-BP supplementation in brain tissues. A significant increase in reactive oxygen species (ROS) was observed due to the mitohormetic effect of 3-BP supplementation in the treated rats. Furthermore, the 3-BP treatment also enhanced the activities of electron transport chain complexes I and IV in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuroprotective and aging marker genes. RT-PCR data revealed that 3-BP up-regulated the expression of autophagy markers genes (Beclin-1 and LC3 β), sirtuin-1, and neuronal marker gene (NSE), respectively in the aging brain. The results suggest that 3-BP induces a mitohormetic effect through the elevation of ROS which reinforces defensive mechanism(s) targeted at regulating autophagy. These findings suggest that consistently low-dose 3-BP may be beneficial for neuroprotection during aging and age-related disorders.
Collapse
Affiliation(s)
- Jitendra Kumar Arya
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | | | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India.
| |
Collapse
|
5
|
Yu S, Ren Q, Chen J, Huang J, Liang R. Rapamycin reduces podocyte damage by inhibiting the PI3K/AKT/mTOR signaling pathway and promoting autophagy. EUR J INFLAMM 2022; 20:1721727X2210817. [DOI: 10.1177/1721727x221081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Objective: Rapamycin is a potent inducer of autophagy in podocytes. However, we still understand very little about how autophagy is regulated under podocyte injury conditions. This study aimed to investigate the role of autophagy in podocyte injury and the regulatory mechanism of the PI3K/Akt/mTOR signaling pathway in this process. Methods: The podocytes were cultured in vitro, and the apoptosis rate of each group was determined by flow cytometry. The protein expression and distribution of LC3-II were examined by immunofluorescence. The phosphorylation levels of Akt, LC3-II, mTOR, 4EBP1, and P70S6K were measured using Western Blot. Transmission electron microscopy was used to examine the changes in autophagosomes in each group. Results: Compared with the control group, the puromycin group (PAN) increased podocyte apoptosis, decreased numbers of autophagosomes, and downregulated LC3-II protein expression. Compared with the PAN group, the podocyte apoptosis rate decreased in the Rapamycin group (RAPA), the number of autophagosomes increased, and LC3-II protein expression was upregulated. In addition, PAN evoked an increase in p-Akt expressions, RAPA treatment induced a reversal of PAN-induced p-Akt upregulation, and the phosphorylation levels of mTOR, 4EBP1, and P70S6K were downregulated. Conclusion: PAN can damage podocytes by inhibiting podocyte autophagic activity and promoting apoptosis. Rapamycin can ameliorate PAN-induced podocyte damage by activating autophagy. This effect may be related to rapamycin-mediated PI3K/AKT/mTOR signaling pathway and autophagy.
Collapse
Affiliation(s)
- Shengyou Yu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, GuangZhou, GuangDong, China
| | - Qi Ren
- Guangzhou Women and Children’s Medical Center, GuangZhou, GuangDong, P.R.China
| | - Jing Chen
- Department of Image, The University of Hong Kong-Shenzhen Hospital, Shenzhen, GuangDong, China
| | - Jing Huang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, GuangDong, China
| | - Rui Liang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, GuangDong, China
| |
Collapse
|
6
|
Portes J, Bullón B, Quiles JL, Battino M, Bullón P. Diabetes Mellitus and Periodontitis Share Intracellular Disorders as the Main Meeting Point. Cells 2021; 10:cells10092411. [PMID: 34572060 PMCID: PMC8467361 DOI: 10.3390/cells10092411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes and periodontitis are two of the most prevalent diseases worldwide that negatively impact the quality of life of the individual suffering from them. They are part of the chronic inflammatory disease group or, as recently mentioned, non-communicable diseases, with inflammation being the meeting point among them. Inflammation hitherto includes vascular and tissue changes, but new technologies provide data at the intracellular level that could explain how the cells respond to the aggression more clearly. This review aims to emphasize the molecular pathophysiological mechanisms in patients with type 2 diabetes mellitus and periodontitis, which are marked by different impaired central regulators including mitochondrial dysfunction, impaired immune system and autophagy pathways, oxidative stress, and the crosstalk between adenosine monophosphate-activated protein kinase (AMPK) and the renin-angiotensin system (RAS). All of them are the shared background behind both diseases that could explain its relationship. These should be taken in consideration if we would like to improve the treatment outcomes. Currently, the main treatment strategies in diabetes try to reduce glycemia index as the most important aspect, and in periodontitis try to reduce the presence of oral bacteria. We propose to add to the therapeutic guidelines the handling of all the intracellular disorders to try to obtain better treatment success.
Collapse
Affiliation(s)
- Juliana Portes
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
| | - Beatriz Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
| | - José Luis Quiles
- Biomedical Research Center (CIBM), Department of Physiology, University Campus of Cartuja, Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C/Isabel Torres, 21, 39011 Santander, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche. Via Tronto 10A, 60126 Torrette di Ancona, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Pedro Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
- Correspondence:
| |
Collapse
|
7
|
Lomidze N, Zhvania MG, Tizabi Y, Japaridze N, Pochkhidze N, Rzayev F, Lordkipanidze T. Aging affects cognition and hippocampal ultrastructure in male Wistar rats. Dev Neurobiol 2021; 81:833-846. [PMID: 34047044 DOI: 10.1002/dneu.22839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/11/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022]
Abstract
It is now well established that aging is associated with emotional and cognitive changes. Although the basis of such changes is not fully understood, ultrastructural alterations in key brain areas are likely contributing factors. Recently, we reported that aging-related anxiety in male Wistar rats is associated with ultrastructural changes in the central nucleus of amygdala, an area that plays important role in emotional regulation. In this study, we evaluated the cognitive performance of adolescent, adult, and aged male Wistar rats in multi-branch maze (MBM) as well as in Morris water maze (MWM). We also performed ultrastructural analysis of the CA1 region of the hippocampus, an area intimately involved in cognitive function. The behavioral data indicate significant impairments in few indices of cognitive functions in both tests in aged rats compared to the other two age groups. Concomitantly, a total number of presynaptic vesicles as well as vesicles in the resting pool were significantly lower, whereas postsynaptic mitochondrial area was significantly higher in aged rats compared to the other age groups. No significant differences in presynaptic terminal area or postsynaptic mitochondrial number were detected between the three age groups. These results indicate that selective ultrastructural changes in specific hippocampal region may accompany cognitive decline in aging rats.
Collapse
Affiliation(s)
- Nino Lomidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology Howard, University College of Medicine, Washington, District of Columbia, USA
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia.,Medical School, New Vision University, Tbilisi, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Tamar Lordkipanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
8
|
Gould NR, Williams KM, Joca HC, Torre OM, Lyons JS, Leser JM, Srikanth MP, Hughes M, Khairallah RJ, Feldman RA, Ward CW, Stains JP. Disparate bone anabolic cues activate bone formation by regulating the rapid lysosomal degradation of sclerostin protein. eLife 2021; 10:e64393. [PMID: 33779549 PMCID: PMC8032393 DOI: 10.7554/elife.64393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The downregulation of sclerostin in osteocytes mediates bone formation in response to mechanical cues and parathyroid hormone (PTH). To date, the regulation of sclerostin has been attributed exclusively to the transcriptional downregulation of the Sost gene hours after stimulation. Using mouse models and rodent cell lines, we describe the rapid, minute-scale post-translational degradation of sclerostin protein by the lysosome following mechanical load and PTH. We present a model, integrating both new and established mechanically and hormonally activated effectors into the regulated degradation of sclerostin by lysosomes. Using a mouse forelimb mechanical loading model, we find transient inhibition of lysosomal degradation or the upstream mechano-signaling pathway controlling sclerostin abundance impairs subsequent load-induced bone formation by preventing sclerostin degradation. We also link dysfunctional lysosomes to aberrant sclerostin regulation using human Gaucher disease iPSCs. These results reveal how bone anabolic cues post-translationally regulate sclerostin abundance in osteocytes to regulate bone formation.
Collapse
Affiliation(s)
- Nicole R Gould
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Katrina M Williams
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Humberto C Joca
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - James S Lyons
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
| | - Marcus Hughes
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | | | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
| | - Christopher W Ward
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
9
|
Witkowski JM, Bryl E, Fulop T. Proteodynamics and aging of eukaryotic cells. Mech Ageing Dev 2021; 194:111430. [PMID: 33421431 DOI: 10.1016/j.mad.2021.111430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
All aspects of each protein existence in the eukaryotic cells, starting from the pre-translation events, through translation, multiple different post-translational modifications, functional life and eventual proteostatic removal after loss of functionality and changes in physico-chemical properties, can be collectively called the proteodynamics. With aging, passing of time as well as accumulating effects of exposures, interactions and wearing-off lead to problems at each of the above mentioned stages, eventually leading to general malfunction of the proteome. This work briefly reviews and summarizes current knowledge concerning this important topic.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tamas Fulop
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
10
|
Graphene Oxide Ameliorates the Cognitive Impairment Through Inhibiting PI3K/Akt/mTOR Pathway to Induce Autophagy in AD Mouse Model. Neurochem Res 2020; 46:309-325. [PMID: 33180247 DOI: 10.1007/s11064-020-03167-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system characterised by cognitive impairment. Its major pathological feature is the deposition of β-amyloid (Aβ) peptide, which triggers a series of pathological cascades. Autophagy is a main pathway to eliminate abnormal aggregated proteins, and increasing autophagy represents a plausible treatment strategy against relative overproduction of neurotoxic Aβ. Graphene oxide (GO) is an emerging carbon-based nanomaterial. As a derivative of graphene with neuroprotective effects, it can effectively increase the clearance of abnormally aggregated protein. In this article, we investigated the protective function of GO in an AD mouse model. GO (30 mg/kg, intraperitoneal) was administered for 2 weeks. The results of the Morris water maze test and the novel object recognition test suggested that GO ameliorated learning and memory impairments in 5xFAD mice. The long-term potentiation and depotentiation from the perforant path to the dentate gyrus in the hippocampus were increased with GO treatment in 5xFAD mice. Furthermore, GO upregulated the expression of synapse-related proteins and increased the cell density in the hippocampus. Our results showed that GO up-regulated LC3II/LC3I and Beclin-1 and decreased p62 protein levels in 5xFAD mice. In addition, GO downregulated the PI3K/Akt/mTOR signalling pathway to induce autophagy. These results have revealed the protective potential of GO in AD.
Collapse
|