1
|
Lastra Romero A, Seitz T, Zisiadis GA, Jeffery H, Osman AM. EDA2R reflects the acute brain response to cranial irradiation in liquid biopsies. Neuro Oncol 2024; 26:1617-1627. [PMID: 38683135 PMCID: PMC11376461 DOI: 10.1093/neuonc/noae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Cranial radiotherapy is standard of care for high-grade brain tumors and metastases; however, it induces debilitating neurocognitive impairments in cancer survivors, especially children. As the numbers of pediatric brain cancer survivors continue improving, the numbers of individuals developing life-long neurocognitive sequalae are consequently expected to rise. Yet, there are no established biomarkers estimating the degree of the irradiation-induced brain injury at completion of radiotherapy to predict the severity of the expected neurocognitive complications. We aimed to identify sensitive biomarkers associated with brain response to irradiation that can be measured in easily accessible clinical materials, such as liquid biopsies. METHODS Juvenile mice were subjected to cranial irradiation with 0.5, 1, 2, 4, and 8 Gy. Cerebrospinal fluid (CSF), plasma, and brains were collected at acute, subacute, and subchronic phases after irradiation, and processed for proteomic screens, and molecular and histological analyses. RESULTS We found that the levels of ectodysplasin A2 receptor (EDA2R), member of tumor necrosis factor receptor superfamily, increased significantly in the CSF after cranial irradiation, even at lower irradiation doses. The levels of EDA2R were increased globally in the brain acutely after irradiation and decreased over time. EDA2R was predominantly expressed by neurons, and the temporal dynamics of EDA2R in the brain was reflected in the plasma samples. CONCLUSIONS We propose EDA2R as a promising potential biomarker reflecting irradiation-induced brain injury in liquid biopsies. The levels of EDA2R upon completion of radiotherapy may aid in predicting the severity of IR-induced neurocognitive sequalae at a very early stage after treatment.
Collapse
Affiliation(s)
| | - Thea Seitz
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Holli Jeffery
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed M Osman
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Brunaud C, Valable S, Ropars G, Dwiri FA, Naveau M, Toutain J, Bernaudin M, Freret T, Léger M, Touzani O, Pérès EA. Deformation-based morphometry: a sensitive imaging approach to detect radiation-induced brain injury? Cancer Imaging 2024; 24:95. [PMID: 39026377 PMCID: PMC11256482 DOI: 10.1186/s40644-024-00736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Radiotherapy is a major therapeutic approach in patients with brain tumors. However, it leads to cognitive impairments. To improve the management of radiation-induced brain sequalae, deformation-based morphometry (DBM) could be relevant. Here, we analyzed the significance of DBM using Jacobian determinants (JD) obtained by non-linear registration of MRI images to detect local vulnerability of healthy cerebral tissue in an animal model of brain irradiation. METHODS Rats were exposed to fractionated whole-brain irradiation (WBI, 30 Gy). A multiparametric MRI (anatomical, diffusion and vascular) study was conducted longitudinally from 1 month up to 6 months after WBI. From the registration of MRI images, macroscopic changes were analyzed by DBM and microscopic changes at the cellular and vascular levels were evaluated by quantification of cerebral blood volume (CBV) and diffusion metrics including mean diffusivity (MD). Voxel-wise comparisons were performed on the entire brain and in specific brain areas identified by DBM. Immunohistology analyses were undertaken to visualize the vessels and astrocytes. RESULTS DBM analysis evidenced time-course of local macrostructural changes; some of which were transient and some were long lasting after WBI. DBM revealed two vulnerable brain areas, namely the corpus callosum and the cortex. DBM changes were spatially associated to microstructural alterations as revealed by both diffusion metrics and CBV changes, and confirmed by immunohistology analyses. Finally, matrix correlations demonstrated correlations between JD/MD in the early phase after WBI and JD/CBV in the late phase both in the corpus callosum and the cortex. CONCLUSIONS Brain irradiation induces local macrostructural changes detected by DBM which could be relevant to identify brain structures prone to radiation-induced tissue changes. The translation of these data in patients could represent an added value in imaging studies on brain radiotoxicity.
Collapse
Affiliation(s)
- Carole Brunaud
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Gwenn Ropars
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Fatima-Azzahra Dwiri
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Mikaël Naveau
- Université de Caen Normandie, CNRS, INSERM, Normandie Université, UAR 3408/US50, GIP Cyceron, Caen, F-14000, France
| | - Jérôme Toutain
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Myriam Bernaudin
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Thomas Freret
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| | - Marianne Léger
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| | - Omar Touzani
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Elodie A Pérès
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France.
| |
Collapse
|
3
|
Kirkman MA, Day J, Gehring K, Zienius K, Grosshans D, Taphoorn M, Li J, Brown PD. Interventions for preventing and ameliorating cognitive deficits in adults treated with cranial irradiation. Cochrane Database Syst Rev 2022; 11:CD011335. [PMID: 36427235 PMCID: PMC9697842 DOI: 10.1002/14651858.cd011335.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cognitive deficits are common in people who have received cranial irradiation and have a serious impact on daily functioning and quality of life. The benefit of pharmacological and non-pharmacological treatment of cognitive deficits in this population is unclear. This is an updated version of the original Cochrane Review published in Issue 12, 2014. OBJECTIVES To assess the effectiveness of interventions for preventing or ameliorating cognitive deficits in adults treated with cranial irradiation. SEARCH METHODS For this review update we searched the Cochrane Register of Controlled Trials (CENTRAL), MEDLINE via Ovid, Embase via Ovid, and PsycInfo via Ovid to 12 September 2022. SELECTION CRITERIA We included randomised controlled (RCTs) trials that evaluated pharmacological or non-pharmacological interventions in cranial irradiated adults, with objective cognitive functioning as a primary or secondary outcome measure. DATA COLLECTION AND ANALYSIS Two review authors (MK, JD) independently extracted data from selected studies and carried out a risk of bias assessment. Cognitive function, fatigue and mood outcomes were reported. No data were pooled. MAIN RESULTS Eight studies met the inclusion criteria and were included in this updated review. Six were from the original version of the review, and two more were added when the search was updated. Nineteen further studies were assessed as part of this update but did not fulfil the inclusion criteria. Of the eight included studies, four studies investigated "prevention" of cognitive problems (during radiotherapy and follow-up) and four studies investigated "amelioration" (interventions to treat cognitive impairment as a late complication of radiotherapy). There were five pharmacological studies (two studies on prevention and three in amelioration) and three non-pharmacological studies (two on prevention and one in amelioration). Due to differences between studies in the interventions being evaluated, a meta-analysis was not possible. Studies in early radiotherapy treatment phase (five studies) Pharmacological studies in the "early radiotherapy treatment phase" were designed to prevent or ameliorate cognitive deficits and included drugs used in dementia (memantine) and fatigue (d-threo-methylphenidate hydrochloride). Non-pharmacological studies in the "early radiotherapy treatment phase" included a ketogenic diet and a two-week cognitive rehabilitation and problem-solving programme. In the memantine study, the primary cognitive outcome of memory at six months did not reach significance, but there was significant improvement in overall cognitive function compared to placebo, with similar adverse events across groups. The d-threo-methylphenidate hydrochloride study found no statistically significant difference between arms, with few adverse events. The study of a calorie-restricted ketogenic diet found no effect, although a lower than expected calorie intake in the control group complicates interpretation of the results. The study investigating the utility of a rehabilitation program did not carry out a statistical comparison of cognitive performance between groups. Studies in delayed radiation or late effect phase (four studies) The "amelioration" pharmacological studies to treat cognitive complications of radiotherapy included drugs used in dementia (donepezil) or psychostimulants (methylphenidate and modafinil). Non-pharmacological measures included cognitive rehabilitation and problem solving (Goal Management Training). These studies included patients with cognitive problems at entry who had "stable" brain cancer. The donepezil study did not find an improvement in the primary cognitive outcome of overall cognitive performance, but did find improvement in an individual test of memory, compared to placebo; adverse events were not reported. A study comparing methylphenidate with modafinil found improvements in cognitive function in both the methylphenidate and modafinil arms; few adverse events were reported. Another study comparing two different doses of modafinil combined treatment arms and found improvements across all cognitive tests, however, a number of adverse events were reported. Both studies were limited by a small sample size. The Goal Management Training study suggested a benefit of the intervention, a behavioural intervention that combined mindfulness and strategy training, on executive function and processing speed. There were a number of limitations across studies and few were without high risks of bias. AUTHORS' CONCLUSIONS In this update, limited additional evidence was found for the treatment or amelioration of cognitive deficits in adults treated with cranial irradiation. As concluded in the original review, there is supportive evidence that memantine may help prevent cognitive deficits for adults with brain metastases receiving cranial irradiation. There is supportive evidence that donepezil, methylphenidate and modafinil may have a role in treating cognitive deficits in adults with brain tumours who have been treated with cranial irradiation; patient withdrawal affected the statistical power of these studies. Further research that tries to minimise the withdrawal of consent, and subsequently reduce the requirement for imputation procedures, may offer a higher certainty of evidence. There is evidence from only a single small study to support non-pharmacological interventions in the amelioration of cognitive deficits. Further research is required.
Collapse
Affiliation(s)
- Matthew A Kirkman
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Julia Day
- Community Rehabilitation and Brain Injury Service (CRABIS), Strathbrock Partnership Centre, West Lothian, UK
| | - Karin Gehring
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Netherlands
| | - Karolis Zienius
- Edinburgh Centre for Neuro-Oncology (ECNO), Western General Hospital, Edinburgh, UK
| | - David Grosshans
- Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Martin Taphoorn
- Department of Neurology, Haaglanden Medical Center, PO Box 432, Netherlands
| | - Jing Li
- Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul D Brown
- Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Ruiz-Rodado V, Dowdy T, Lita A, Kramp T, Zhang M, Shuboni-Mulligan D, Herold-Mende C, Armstrong TS, Gilbert MR, Camphausen K, Larion M. Metabolic biomarkers of radiotherapy response in plasma and tissue of an IDH1 mutant astrocytoma mouse model. Front Oncol 2022; 12:979537. [DOI: 10.3389/fonc.2022.979537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytomas are the most common subtype of brain tumors and no curative treatment exist. Longitudinal assessment of patients, usually via Magnetic Resonance Imaging (MRI), is crucial since tumor progression may occur earlier than clinical progression. MRI usually provides a means for monitoring the disease, but it only informs about the structural changes of the tumor, while molecular changes can occur as a treatment response without any MRI-visible change. Radiotherapy (RT) is routinely performed following surgery as part of the standard of care in astrocytomas, that can also include chemotherapy involving temozolomide. Monitoring the response to RT is a key factor for the management of patients. Herein, we provide plasma and tissue metabolic biomarkers of treatment response in a mouse model of astrocytoma that was subjected to radiotherapy. Plasma metabolic profiles acquired over time by Liquid Chromatography Mass Spectrometry (LC/MS) were subjected to multivariate empirical Bayes time-series analysis (MEBA) and Receiver Operating Characteristic (ROC) assessment including Random Forest as the classification strategy. These analyses revealed a variation of the plasma metabolome in those mice that underwent radiotherapy compared to controls; specifically, fumarate was the best discriminatory feature. Additionally, Nuclear Magnetic Resonance (NMR)-based 13C-tracing experiments were performed at end-point utilizing [U-13C]-Glutamine to investigate its fate in the tumor and contralateral tissues. Irradiated mice displayed lower levels of glycolytic metabolites (e.g. phosphoenolpyruvate) in tumor tissue, and a higher flux of glutamine towards succinate was observed in the radiation cohort. The plasma biomarkers provided herein could be validated in the clinic, thereby improving the assessment of brain tumor patients throughout radiotherapy. Moreover, the metabolic rewiring associated to radiotherapy in tumor tissue could lead to potential metabolic imaging approaches for monitoring treatment using blood draws.
Collapse
|
5
|
Jain V, de Godoy LL, Mohan S, Chawla S, Learned K, Jain G, Wehrli FW, Alonso-Basanta M. Cerebral hemodynamic and metabolic dysregulation in the postradiation brain. J Neuroimaging 2022; 32:1027-1043. [PMID: 36156829 DOI: 10.1111/jon.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Technological advances in the delivery of radiation and other novel cancer therapies have significantly improved the 5-year survival rates over the last few decades. Although recent developments have helped to better manage the acute effects of radiation, the late effects such as impairment in cognition continue to remain of concern. Accruing data in the literature have implicated derangements in hemodynamic parameters and metabolic activity of the irradiated normal brain as predictive of cognitive impairment. Multiparametric imaging modalities have allowed us to precisely quantify functional and metabolic information, enhancing the anatomic and morphologic data provided by conventional MRI sequences, thereby contributing as noninvasive imaging-based biomarkers of radiation-induced brain injury. In this review, we have elaborated on the mechanisms of radiation-induced brain injury and discussed several novel imaging modalities, including MR spectroscopy, MR perfusion imaging, functional MR, SPECT, and PET that provide pathophysiological and functional insights into the postradiation brain, and its correlation with radiation dose as well as clinical neurocognitive outcomes. Additionally, we explored some innovative imaging modalities, such as quantitative blood oxygenation level-dependent imaging, susceptibility-based oxygenation measurement, and T2-based oxygenation measurement, that hold promise in delineating the potential mechanisms underlying deleterious neurocognitive changes seen in the postradiation setting. We aim that this comprehensive review of a range of imaging modalities will help elucidate the hemodynamic and metabolic injury mechanisms underlying cognitive impairment in the irradiated normal brain in order to optimize treatment regimens and improve the quality of life for these patients.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiation Oncology, Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA, 19107, USA
| | - Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kim Learned
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Jain
- Department of Neurological Surgery, Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Goutnik M, Lucke-Wold B. Commentary: Evaluating potential glioma serum biomarkers, with future applications. World J Clin Oncol 2022; 13:412-416. [PMID: 35662986 PMCID: PMC9153077 DOI: 10.5306/wjco.v13.i5.412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/15/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
Systemic inflammation within malignant glioma is a topic of ongoing significance. In this commentary, we highlight recent findings from Gandhi et al and discuss alternative approaches. We present a counter argument with findings that IL-6 markers are controversial. We highlight the potential benefit of looking at microRNAs and other biomarkers. Finally, we present ideas for future application involving differentiation between radiation necrosis and recurrence. The commentary is intended to serve as a catalyst for further scientific discovery.
Collapse
Affiliation(s)
- Michael Goutnik
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| |
Collapse
|
7
|
Iqubal A, Iqubal MK, Sharma S, Wasim M, Alfaleh MA, Md S, Baboota S, Ali J, Haque SE. Pathogenic mechanisms and therapeutic promise of phytochemicals and nanocarriers based drug delivery against radiotherapy-induced neurotoxic manifestations. Drug Deliv 2022; 29:1492-1511. [PMID: 35543534 PMCID: PMC9103628 DOI: 10.1080/10717544.2022.2064562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is one of the extensively used therapeutic modalities in glioblastoma and other types of cancers. Radiotherapy is either used as a first-line approach or combined with pharmacotherapy or surgery to manage and treat cancer. Although the use of radiotherapy significantly increased the survival time of patients, but its use has been reported with marked neuroinflammation and cognitive dysfunction that eventually reduced the quality of life of patients. Based on the preclinical and clinical investigations, the profound role of increased oxidative stress, nuclear translocation of NF-kB, production of proinflammatory cytokines such as TNF-α, IL-6, IL-β, increased level of MMPs, increased apoptosis, reduced angiogenesis, neurogenesis, and histological aberrations in CA1, CA2, CA3 and DG region of the hippocampus have been reported. Various pharmacotherapeutic drugs are being used as an adjuvant to counteract this neurotoxic manifestation. Still, most of these drugs suffer from systemic adverse effect, causes interference to ongoing chemotherapy, and exhibit pharmacokinetic limitations in crossing the blood-brain barrier. Therefore, various phytoconstituents, their nano carrier-based drug delivery systems and miRNAs have been explored to overcome the aforementioned limitations. The present review is focused on the mechanism and evidence of radiotherapy-induced neuroinflammation and cognitive dysfunction, pathological and molecular changes in the brain homeostasis, available adjuvants, their limitations. Additionally, the potential role and mechanism of neuroprotection of various nanocarrier based natural products and miRNAs have been discussed.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd, Gurugram, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Wasim
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohamed A Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Candiota AP, Arús C. Establishing Imaging Biomarkers of Host Immune System Efficacy during Glioblastoma Therapy Response: Challenges, Obstacles and Future Perspectives. Metabolites 2022; 12:metabo12030243. [PMID: 35323686 PMCID: PMC8950145 DOI: 10.3390/metabo12030243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
This hypothesis proposal addresses three major questions: (1) Why do we need imaging biomarkers for assessing the efficacy of immune system participation in glioblastoma therapy response? (2) Why are they not available yet? and (3) How can we produce them? We summarize the literature data supporting the claim that the immune system is behind the efficacy of most successful glioblastoma therapies but, unfortunately, there are no current short-term imaging biomarkers of its activity. We also discuss how using an immunocompetent murine model of glioblastoma, allowing the cure of mice and the generation of immune memory, provides a suitable framework for glioblastoma therapy response biomarker studies. Both magnetic resonance imaging and magnetic resonance-based metabolomic data (i.e., magnetic resonance spectroscopic imaging) can provide non-invasive assessments of such a system. A predictor based in nosological images, generated from magnetic resonance spectroscopic imaging analyses and their oscillatory patterns, should be translational to clinics. We also review hurdles that may explain why such an oscillatory biomarker was not reported in previous imaging glioblastoma work. Single shot explorations that neglect short-term oscillatory behavior derived from immune system attack on tumors may mislead actual response extent detection. Finally, we consider improvements required to properly predict immune system-mediated early response (1–2 weeks) to therapy. The sensible use of improved biomarkers may enable translatable evidence-based therapeutic protocols, with the possibility of extending preclinical results to human patients.
Collapse
Affiliation(s)
- Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
9
|
Treatment of Radiation-Induced Brain Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4793517. [PMID: 34976300 PMCID: PMC8720020 DOI: 10.1155/2021/4793517] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Radiation-induced brain necrosis (RBN) is a serious complication of intracranial as well as skull base tumors after radiotherapy. In the past, due to the lack of effective treatment, radiation brain necrosis was considered to be progressive and irreversible. With better understanding in histopathology and neuroimaging, the occurrence and development of RBN have been gradually clarified, and new treatment methods are constantly emerging. In recent years, some scholars have tried to treat RBN with bevacizumab, nerve growth factor, and gangliosides and have achieved similar results. Some cases of brain necrosis can be repairable and reversible. We aimed to summarize the incidence, pathogenesis, and treatment of RBN.
Collapse
|
10
|
Grigorieva EV. Radiation Effects on Brain Extracellular Matrix. Front Oncol 2020; 10:576701. [PMID: 33134175 PMCID: PMC7566046 DOI: 10.3389/fonc.2020.576701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is an important therapeutic approach to treating malignant tumors of different localization, including brain cancer. Glioblastoma multiforme (GBM) represents the most aggressive brain tumor, which develops relapsed disease during the 1st year after the surgical removal of the primary node, in spite of active adjuvant radiochemotherapy. More and more evidence suggests that the treatment's success might be determined by the balance of expected antitumor effects of the treatment and its non-targeted side effects on the surrounding brain tissue. Radiation-induced damage of the GBM microenvironment might create tumor-susceptible niche facilitating proliferation and invasion of the residual glioma cells and the disease relapse. Understanding of molecular mechanisms of radiation-induced changes in brain ECM might help to reconsider and improve conventional anti-glioblastoma radiotherapy, taking into account the balance between its antitumor and ECM-destructing activities. Although little is currently known about the radiation-induced changes in brain ECM, this review summarizes current knowledge about irradiation effects onto the main components of brain ECM such as proteoglycans, glycosaminoglycans, glycoproteins, and the enzymes responsible for their modification and degradation.
Collapse
Affiliation(s)
- Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.,V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|