1
|
Tso FY, Kossenkov AV, Lidenge SJ, Ngalamika O, Ngowi JR, Mwaiselage J, Wickramasinghe J, Kwon EH, West JT, Lieberman PM, Wood C. RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathog 2018; 14:e1006844. [PMID: 29352292 PMCID: PMC5792027 DOI: 10.1371/journal.ppat.1006844] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/31/2018] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi’s sarcoma (KS). It is endemic in a number of sub-Saharan African countries with infection rate of >50%. The high prevalence of HIV-1 coupled with late presentation of advanced cancer staging make KS the leading cancer in the region with poor prognosis and high mortality. Disease markers and cellular functions associated with KS tumorigenesis remain ill-defined. Several studies have attempted to investigate changes of the gene profile with in vitro infection of monoculture models, which are not likely to reflect the cellular complexity of the in vivo lesion environment. Our approach is to characterize and compare the gene expression profile in KS lesions versus non-cancer tissues from the same individual. Such comparisons could identify pathways critical for KS formation and maintenance. This is the first study that utilized high throughput RNA-seq to characterize the viral and cellular transcriptome in tumor and non-cancer biopsies of African epidemic KS patients. These patients were treated anti-retroviral therapy with undetectable HIV-1 plasma viral load. We found remarkable variability in the viral transcriptome among these patients, with viral latency and immune modulation genes most abundantly expressed. The presence of KSHV also significantly affected the cellular transcriptome profile. Specifically, genes involved in lipid and glucose metabolism disorder pathways were substantially affected. Moreover, infiltration of immune cells into the tumor did not prevent KS formation, suggesting some functional deficits of these cells. Lastly, we found only minimal overlaps between our in vivo cellular transcriptome dataset with those from in vitro studies, reflecting the limitation of in vitro models in representing tumor lesions. These findings could lead to the identification of diagnostic and therapeutic markers for KS, and will provide bases for further mechanistic studies on the functions of both viral and cellular genes that are involved. Kaposi’s sarcoma-associated herpesvirus (KSHV) is endemic in sub-Saharan Africa and cause Kaposi’s sarcoma (KS). KS is one of the most common cancer among HIV-1 patients in this region. Despite anti-retroviral treatment, prognosis for KS is poor with high mortality often due to presentation of late cancer stage. In order to identify biomarkers or therapeutic targets against KS, a better understanding of the viral and cellular genes expression/transcriptome in the tumor will be necessary. We used RNA-seq, a highly efficient method to sequence transcriptome, to characterize and compare the viral and cellular transcriptome in tumor and non-cancer tissues from KS patients. We found that viral genes involved in latency and immune modulation are most commonly expressed among KS patients. Additionally, cellular genes involved in lipid and glucose metabolism disorder pathways are significantly affected by the presence of KSHV. Despite the detection of immune cells in the tumor, it did not prevent the tumor progression, suggesting some level of immune cell dysfunctions in KS patients. Lastly, we found limited overlap of our data, derived from actual KS biopsy, with other cell culture models, suggesting that the complexity of tumor is difficult to be reflected in cell line models.
Collapse
Affiliation(s)
- For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | | | - Salum J. Lidenge
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Owen Ngalamika
- Dermatology and Venereology section, University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, Zambia
| | - John R. Ngowi
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Eun Hee Kwon
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - John T. West
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Paul M. Lieberman
- Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|