1
|
Ahmad Z, Jain SK, Mishra SK. Beta-caryophyllene attenuates experimental hepatocellular carcinoma through downregulation of oxidative stress and inflammation. J Biochem Mol Toxicol 2024; 38:e23850. [PMID: 39275950 DOI: 10.1002/jbt.23850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is caused by various factors including toxic substances and xenobiotics. Numerous treatment strategies are used to address toxicity to the liver and HCC, yet their adverse effects are drawbacks. This study aimed to assess the effect of DEN/CCl4 on morphological changes in the liver, body weight, tumor incidence, and hematological tumor incidence, hematological parameters, hepatic markers, and histopathological analysis in mice following a preventive measure by using β-caryophyllene (BCP). Adult Balb/c mice were administered a single dose of DEN 1-mg/kg body weight and 0.2-mL CCl4/kg body weight intraperitoneal twice a week (i.p.) for 22 weeks. BCP was treated in one group of mice at 30-mg/kg body weight, intraperitoneal, for 7 weeks. BCP alone was treated in one group of mice at 300-mg/kg body weight intraperitoneal for 22 weeks. DEN/CCl4 caused a reduction in mice's body weight, which was significantly attenuated by BCP administration. BCP supplementation attenuated the tumor incidence DEN/CCl4 (100%) to about 25%. DEN/CCl4 caused alterations in the hematological parameters, serum total protein albumin globulin, A/G ratio, liver function markers (AST, ALT, ALP, GGT, ACP, and bilirubin), and lipid profile markers that were significantly reinstated by BCP administration. Oxidative stress markers (MDA, SOD, CAT, NO, LDH, and GST) were reduced by DEN/CCl4, which were significantly increased in BCP-treated groups. The liver histopathology alterations caused by DEN/CCl4 were amended considerably by BCP treatment. Immunohistochemical studies suggest that AFP, caspase-3, and COX-2 were chronically overexpressed in DEN/CCl4-exposed mice, notably attenuated by BCP administration. BCP suppressed tumor incidence by downregulating inflammation and inducing caspase-3-mediated apoptosis. Conclusively, BCP appears to be a potent natural supplement capable of repressing liver inflammation and carcinoma through the mitigation of oxidative stress and inflammation pathways.
Collapse
MESH Headings
- Animals
- Polycyclic Sesquiterpenes/pharmacology
- Oxidative Stress/drug effects
- Mice, Inbred BALB C
- Mice
- Inflammation/metabolism
- Inflammation/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/prevention & control
- Carcinoma, Hepatocellular/chemically induced
- Male
- Down-Regulation/drug effects
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/drug therapy
- Sesquiterpenes/pharmacology
- Sesquiterpenes/therapeutic use
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/prevention & control
- Liver Neoplasms/drug therapy
- Liver/metabolism
- Liver/pathology
- Liver/drug effects
- Carbon Tetrachloride/toxicity
Collapse
Affiliation(s)
- Zaved Ahmad
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Subodh Kumar Jain
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | | |
Collapse
|
2
|
Randeni N, Xu B. New insights into signaling pathways of cancer prevention effects of polysaccharides from edible and medicinal mushrooms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155875. [PMID: 39029136 DOI: 10.1016/j.phymed.2024.155875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Despite extensive efforts, empirical techniques have yielded limited progress in finding effective anticancer medications, with chemotherapy drugs often associated with drug resistance and serious side effects. Thus, there is a pressing need for novel agents with minimal adverse effects. Natural substances, widely used in treating various illnesses, including cancer, offer promising alternatives. Among these, mushrooms, rich in low molecular weight secondary metabolites, polysaccharides, and polysaccharide-protein complexes, have gained attention for their potential anticancer properties. RESULTS Mushroom polysaccharides have been found to impede oncogenesis and tumor metastasis by directly inhibiting tumor cell growth and indirectly enhancing immune system functions. These polysaccharides engage with numerous cell signaling pathways that influence cancer development and progression. They affect pathways that control cell survival, growth, and differentiation, and they also play a role in adjusting the tumor immune microenvironment. CONCLUSION This review highlights the potential of mushroom polysaccharides as promising anticancer agents due to their ability to modulate cell signaling pathways crucial for cancer development. Understanding the mechanisms underlying their effects on these pathways is essential for harnessing their therapeutic potential and developing novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
3
|
Raal A, Kaldmäe H, Kütt K, Jürimaa K, Silm M, Bleive U, Aluvee A, Adamson K, Vester M, Erik M, Koshovyi O, Nguyen KV, Nguyen HT, Drenkhan R. Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga ( Inonotus obliquus) Growing on Betula pendula and Betula pubescens. Pharmaceuticals (Basel) 2024; 17:1013. [PMID: 39204121 PMCID: PMC11357148 DOI: 10.3390/ph17081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Chaga mushroom (Inonotus obliquus) is a pathogenic fungus that grows mostly on birch species (Betula pendula Roth and B. pubescens Ehrh.) and has traditionally been used as an anticancer medicine. This study aimed to compare the chemical composition and cytotoxic activity of chagas growing on both Betula spp. on various cancer cell lines. The freeze-dried extracts contained triterpenes inotodiol, lanosterol betulin, and betulinic acid typical to conks growing on Betula species. The cytotoxic activity of chaga growing on Betula pendula and B. pubescens 80% ethanolic extracts against 31 human cancer cell lines was evaluated by a sulforhodamine B assay. Chaga extract showed moderate activity against all cancer cell lines examined; it did not result in high cytotoxicity (IC50 ≤ 20 µg/mL). The strongest inhibitions were observed with chaga (growing on B. pendula) extract on the HepG2 and CAL-62 cell line and with chaga (from B. pubescens) extract on the HepG2 cell line, with IC50 values of 37.71, 43.30, and 49.99 μg/mL, respectively. The chaga extracts from B. pendula exert somewhat stronger effects on most cancer cell lines studied than B. pubescens extracts, which can be attributed to a higher content of inotodiol in B. pendula extracts. This study highlights the potential of chaga as a source of bioactive compounds with selective anticancer properties. To the best of our knowledge, this study is the first investigation of the chemical composition of I. obliquus parasitizing on B. pubescens.
Collapse
Affiliation(s)
- Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Hedi Kaldmäe
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Karin Kütt
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Katrin Jürimaa
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Maidu Silm
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia;
| | - Uko Bleive
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Alar Aluvee
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Kalev Adamson
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Marili Vester
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | | | - Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Khan Viet Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City 530000, Vietnam; (K.V.N.); (H.T.N.)
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City 530000, Vietnam; (K.V.N.); (H.T.N.)
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| |
Collapse
|
4
|
Fordjour E, Manful CF, Javed R, Galagedara LW, Cuss CW, Cheema M, Thomas R. Chaga mushroom: a super-fungus with countless facets and untapped potential. Front Pharmacol 2023; 14:1273786. [PMID: 38116085 PMCID: PMC10728660 DOI: 10.3389/fphar.2023.1273786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/21/2023] Open
Abstract
Inonotus obliquus (Chaga mushroom) is an inexpensive fungus with a broad range of traditional and medicinal applications. These applications include therapy for breast, cervix, and skin cancers, as well as treating diabetes. However, its benefits are virtually untapped due to a limited understanding of its mycochemical composition and bioactivities. In this article, we explore the ethnobotany, mycochemistry, pharmacology, traditional therapeutic, cosmetic, and prospective agricultural uses. The review establishes that several secondary metabolites, such as steroids, terpenoids, and other compounds exist in chaga. Findings on its bioactivity have demonstrated its ability as an antioxidant, anti-inflammatory, antiviral, and antitumor agent. The study also demonstrates that Chaga powder has a long history of traditional use for medicinal purposes, pipe smoking rituals, and mystical future forecasts. The study further reveals that the applications of Chaga powder can be extended to industries such as pharmaceuticals, food, cosmetics, and agriculture. However numerous publications focused on the pharmaceutical benefits of Chaga with few publications on other applications. Overall, chaga is a promising natural resource with a wide range of potential applications and therefore the diverse array of therapeutic compounds makes it an attractive candidate for various applications such as plant biofertilizers and active ingredients in cosmetics and pharmaceutical products. Thus, further exploration of Chaga's potential benefits in agriculture and other industries could lead to exciting new developments and innovations.
Collapse
Affiliation(s)
- Eric Fordjour
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Charles F. Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Lakshman W. Galagedara
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Chad W. Cuss
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Mumtaz Cheema
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Dakhli N, Rtibi K, Arrari F, Ayari A, Sebai H. Prophylactic Coloprotective Effect of Urtica dioica Leaves against Dextran Sulfate Sodium (DSS)-Induced Ulcerative Colitis in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1990. [PMID: 38004039 PMCID: PMC10673539 DOI: 10.3390/medicina59111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Urtica dioica, a source of bioactive functional compounds, provides nutritional and gastrointestinal therapeutic benefits. This study attempted to investigate the prophylactic coloprotective action of an aqueous extract of Urtica dioica (AEUD) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). Materials and Methods: Phenolic compounds, total sugar, and mineral levels were determined in AEUD. Then, AEUD at different doses (50, 100, and 200 mg/kg, BW, p.o.) and mesalazine (MESA) as a standard treatment (100 mg/kg, BW, p.o.) were given orally for 21 days. Acute colitis was induced by administering drinking water with 5% (w/v) DSS for 7 days. Body weight variation, fecal occult blood, and stool consistency were determined daily. The severity of colitis was graded according to colon length, disease activity index (DAI), histological evaluations, and biochemical alterations. Rats orally administered DSS regularly developed clinical and macroscopic signs of colitis. Results: Due to its richness in phenolic and flavonoid compounds (247.65 ± 2.69 mg EAG/g MS and 34.08 ± 0.53 mg EQt/g MS, respectively), AEUD markedly ameliorated DAI, ulcer scores, colon length shortening, colonic histopathological changes, and hematological and biochemical modifications. Taken together, AEUD treatment notably (p < 0.01) suppressed DSS-induced UC by reducing oxidative stress via lowering MDA/H2O2 production and stimulating the effect of enzyme antioxidants as well as attenuating inflammation by decreasing CRP levels by 79.5% between the DSS and DSS + AEUD-50 groups compared to the MESA group (75.6%). Conclusions: AEUD was sufficient to exert a coloprotective effect that might be influenced by its bioactive compounds' anti-inflammatory and antioxidant capabilities.
Collapse
Affiliation(s)
| | | | - Fatma Arrari
- Laboratory of Functional Physiology and Valorization of Bio-Ressources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 382-9000, Tunisia; (N.D.); (K.R.)
| | | | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Ressources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 382-9000, Tunisia; (N.D.); (K.R.)
| |
Collapse
|
6
|
Countering Triple Negative Breast Cancer via Impeding Wnt/β-Catenin Signaling, a Phytotherapeutic Approach. PLANTS 2022; 11:plants11172191. [PMID: 36079579 PMCID: PMC9460573 DOI: 10.3390/plants11172191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022]
Abstract
Triple negative breast cancer (TNBC) is characterized as a heterogeneous disease with severe malignancy and high mortality. Aberrant Wnt/β-catenin signaling is responsible for self-renewal and mammosphere generation, metastasis and resistance to apoptosis and chemotherapy in TNBC. Nonetheless, in the absence of a targeted therapy, chemotherapy is regarded as the exclusive treatment strategy for the treatment of TNBC. This review aims to provide an unprecedented overview of the plants and herbal derivatives which repress the progression of TNBC through prohibiting the Wnt/β-catenin pathway. Herbal medicine extracts and bioactive compounds (alkaloids, retinoids. flavonoids, terpenes, carotenoids and lignans) alone, in combination with each other and/or with chemotherapy agents could interrupt the various steps of Wnt/β-catenin signaling, i.e., WNT, FZD, LRP, GSK3β, Dsh, APC, β-catenin and TCF/LEF. These phytotherapy agents diminish proliferation, metastasis, breast cancer stem cell self-renewal and induce apoptosis in cell and animal models of TNBC through the down-expression of the downstream target genes of Wnt signaling. Some of the herbal derivatives simultaneously impede Wnt/β-catenin signaling and other overactive pathways in triple negative breast cancer, including: mTORC1; ER stress and SATB1 signaling. The herbal remedies and their bioactive ingredients perform essential roles in the treatment of the very fatal TNBC via repression of Wnt/β-catenin signaling.
Collapse
|
7
|
Hu R, Chantana W, Pitchakarn P, Subhawa S, Chantarasuwan B, Temviriyanukul P, Chewonarin T. Ficus dubia Latex Extract Induces Cell Cycle Arrest and Apoptosis by Regulating the NF-κB Pathway in Inflammatory Human Colorectal Cancer Cell Lines. Cancers (Basel) 2022; 14:2665. [PMID: 35681644 PMCID: PMC9179257 DOI: 10.3390/cancers14112665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer is one of the most diagnosed cancers that is associated with inflammation. Ficus dubia latex is recognized as a remedy with various therapeutic effects in traditional medicine, including anti-inflammatory and antioxidant activity. The present study aims to compare the anti-tumor activity of Ficus dubia latex extract (FDLE) against HCT-116 and HT-29 human colorectal cancer cell lines in normal and inflammatory condition and explore its mechanism of action. FDLE exhibited remarkable antiproliferative activity against HCT-116 and HT-29 colorectal cancer cell lines in both conditions using MTT and colony formation assays and more effective anti-proliferation was observed in inflammatory condition. Mechanistically, FDLE induced cell cycle arrest at G0/G1 phase by down-regulating NF-κB, cyclin D1, CDK4 and up-regulatingp21 in both cell in normal condition. In inflammatory condition, FDLE not only exhibited stronger induction of cell cycle arrest in both cells by down-regulating NF-κB, cyclin D1, CDK4 and down-regulating p21, but also selectively induced apoptosis in HCT-116 cells by down-regulating NF-κB and Bcl-xl and up-regulating Bid, Bak, cleaved caspase-7 and caspase-3 through stronger ability to regulate these proteins. Our results demonstrated that the phytochemical agent in the latex of Ficus dubia could potential be used for treatment and prevention of human colorectal cancer, especially in inflammation-induced hyperproliferation progression.
Collapse
Affiliation(s)
- Rentong Hu
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Rd., Sripoom, Muang, Chiang Mai 50200, Thailand; (R.H.); (W.C.); (P.P.)
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Weerachai Chantana
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Rd., Sripoom, Muang, Chiang Mai 50200, Thailand; (R.H.); (W.C.); (P.P.)
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Rd., Sripoom, Muang, Chiang Mai 50200, Thailand; (R.H.); (W.C.); (P.P.)
| | - Subhawat Subhawa
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Rd., Sripoom, Muang, Chiang Mai 50200, Thailand; (R.H.); (W.C.); (P.P.)
| |
Collapse
|
8
|
Ishfaq PM, Mishra S, Mishra A, Ahmad Z, Gayen S, Jain SK, Tripathi S, Mishra SK. Inonotus obliquus aqueous extract prevents histopathological alterations in liver induced by environmental toxicant Microcystin. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100118. [PMID: 35992377 PMCID: PMC9389225 DOI: 10.1016/j.crphar.2022.100118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Environmental toxicants like microcystins are known to adversely impact liver physiology and lead to the increased risk for abnormal liver function and even liver carcinoma. Chaga mushroom (Inonotus obliquus) is reported for various properties mainly antibacterial, antiallergic, anti-inflammatory, antioxidant, and anticancer properties. This study was aimed to assess the effect microcystin (MC-LR) on histopathology of liver in mice and a preventive measure by using aqueous extract of Inonotus obliquus (IOAE). Adult Balb/c mice were administered with MC-LR at 20 μg/kg body weight, per day, intraperitoneal (i.p.) for 4 weeks. IOAE was treated to one group of MC-LR mice at 200 mg/kg body weight, per oral, for 4 weeks. Histological staining for liver structural details and biochemical assays for functions were assessed. The results of the study showed that MC-LR drastically reduced the body weight of mice which were restored close to the range of control by IOAE treatment. MC-LR exposed mice showed 1.9, 1.7 and 2.2-fold increase in the levels of SGOT, SGPT and LDH which were restored by IOAE treatment as compared to control (one-fold). MC-LR exposed mice showed reduced level of GSH (19.83 ± 3.3 μM) which were regained by IOAE treatment (50.83 ± 3.0 μM). Similar observations were noted for catalase activity. Histological examinations show that MC-LR exposed degenerative changes in the liver sections which were restored by IOAE supplementation. The immunofluorescence analysis of caspase-3 counterstained with DAPI showed that MC-LR led to the increased expression of caspase-3 which were comparatively reduced by IOAE treatment. The cell viability decreased on increasing the concentration of MC-LR with 5% cell viability at concentration of 10 μg MC-LR/mL as that of control 100% Cell viability. The IC50 was calculated to be 3.6 μg/ml, indicating that MC-LR is chronic toxic to AML12 mouse hepatocytes. The molecular docking interaction of NF-κB-NIK with ergosterol peroxidase showed binding interaction between the two and showed the plausible molecular basis for the effects of IOAE in MC-LR induced liver injury. Collectively, this study revealed the deleterious effects of MC-LR on liver through generation of oxidative stress and activation of caspase-3, which were prevented by treatment with IOAE. Microcystin-LR is a potent hepatotoxic agent acting by inducing lipid peroxidation and oxidative damages. MC-LR exhibited significant deleterious alteration in liver by histopathological and biochemical signatures. Inonotus obliquus aqueous extract (IOAE) suppressed inflammation and oxidative damage in the liver induced by microcystin-LR. IOAE suppressed caspase-3 and p53 expression in MC-LR-induced liver. Chaga mushroom is suggested for using as a supplement in prevention of liver toxicity and inflammation.
Collapse
Affiliation(s)
- Pir Mohammad Ishfaq
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, (M.P.), India
- Molecular Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, (M.P.), India
| | - Shivani Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, (M.P.), India
| | - Anjali Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, (M.P.), India
| | - Zaved Ahmad
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, (M.P.), India
| | - Shovanlal Gayen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, (M.P.), India
| | - Subodh Kumar Jain
- Molecular Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, (M.P.), India
| | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, (U.P.), India
- Corresponding author.
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, (M.P.), India
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, (U.P.), India
- Corresponding author. Department of Biochemistry, University of Lucknow, Lucknow, 226007, (U.P.), India.
| |
Collapse
|
9
|
DEVECİ E, TEL-ÇAYAN G, KARAKURT S, DURU ME. Cytotoxic Activities of Methanol Extract and Compounds of Porodaedalea pini Against Colorectal Cancer. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.793715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Mishra SK, Bae YS, Lee YM, Kim JS, Oh SH, Kim HM. Sesquiterpene Alcohol Cedrol Chemosensitizes Human Cancer Cells and Suppresses Cell Proliferation by Destabilizing Plasma Membrane Lipid Rafts. Front Cell Dev Biol 2021; 8:571676. [PMID: 33585438 PMCID: PMC7874189 DOI: 10.3389/fcell.2020.571676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/16/2020] [Indexed: 11/29/2022] Open
Abstract
Chemosensitization of cancer cells with small molecules may improve the therapeutic index of antitumoral agents by making tumor cells sensitive to the drug regimen and thus overcome the treatment resistance and side effects of single therapy. Cell membrane lipid rafts are known to transduce various signaling events in cell proliferation. Sensitizing cancer cells may cause modulation of membrane lipid rafts which may potentially be used in improving anticancer drug response. Cedrol, a natural sesquiterpene alcohol, was used to treat human leukemia K562 and colon cancer HT-29 cell lines, and effects were observed. Cedrol decreased the cell viability by inducing apoptosis in both cell lines by activation of pro-apoptosis protein BID and inhibition of anti-apoptosis proteins Bcl-XL, Bcl-2, and XIAP. Cedrol activated the caspase-9-dependent mitochondrial intrinsic pathway of apoptosis. Furthermore, cedrol inhibited the levels of pAKT, pERK, and pmTOR proteins as well as nuclear and cytoplasmic levels of the p65 subunit of NF-κB. Cedrol caused redistribution of cholesterol and sphingomyelin contents from membrane lipid raft, which was confirmed by a combined additive effect with methyl-β-cyclodextrin (lipid raft-disrupting agent). Lipid raft destabilization by cedrol led to the increased production of ceramides and inhibition of membrane-bound NADPH oxidase 2 enzyme activity. Cholesterol/sphingomyelin-redistributing abilities of cedrol appear as a novel mechanism of growth inhibition of cancer cells. Cedrol can be classified as a natural lipid raft-disrupting agent with possibilities to be used in general studies involving membrane lipid raft modifications.
Collapse
Affiliation(s)
- Siddhartha Kumar Mishra
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, South Korea.,Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India.,Department of Life Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Yun Soo Bae
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, South Korea
| | - Yong-Moon Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Seung Hyun Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, South Korea
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, South Korea
| |
Collapse
|
11
|
Regulation of cancer cell signaling pathways as key events for therapeutic relevance of edible and medicinal mushrooms. Semin Cancer Biol 2020; 80:145-156. [DOI: 10.1016/j.semcancer.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022]
|
12
|
Duru KC, Kovaleva EG, Danilova IG, Bijl P. The pharmacological potential and possible molecular mechanisms of action ofInonotus obliquusfrom preclinical studies. Phytother Res 2019; 33:1966-1980. [DOI: 10.1002/ptr.6384] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Kingsley C. Duru
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
| | - Elena G. Kovaleva
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
| | - Irina G. Danilova
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
- Institute of Immunology and Physiology of the Ural BranchRussia Academy of Science Yekaterinburg Russia
| | - Pieter Bijl
- Department of Pharmacology, Faculty of Medicine and Health SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
13
|
Zhang X, Bao C, Zhang J. Inotodiol suppresses proliferation of breast cancer in rat model of type 2 diabetes mellitus via downregulation of β-catenin signaling. Biomed Pharmacother 2018; 99:142-150. [DOI: 10.1016/j.biopha.2017.12.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
|
14
|
Woo JK, Jang YS, Kang JH, Hwang JI, Seong JK, Lee SJ, Jeon S, Oh GT, Lee HY, Oh SH. Ninjurin1 inhibits colitis-mediated colon cancer development and growth by suppression of macrophage infiltration through repression of FAK signaling. Oncotarget 2018; 7:29592-604. [PMID: 27127177 PMCID: PMC5045419 DOI: 10.18632/oncotarget.9020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/29/2016] [Indexed: 12/20/2022] Open
Abstract
Macrophage infiltration promotes tumorigenesis. However, the macrophage infiltration regulatory molecules have not been fully determined. Nerve injury-induced protein 1 (ninjurin1) is a homophilic cell surface adhesion molecule that plays an important role in cell migration and attachment. Although ninjurin1 is believed to play a role in several malignancies, it is unclear whether ninjurin1 expression contributes to cancer progression. We used transgenic mice (tg mice) that overexpressed ninjurin1 on macrophages. We subjected ninjurin1 tg mice to a well-known mouse model of colitis-associated colon cancer in which animals are treated with azoxymethane (AOM) and dextran sulfate sodium (DSS). After AOM and DSS treatment, ninjurin1 tg mice developed fewer and smaller tumors compared with wild-type (wt) mice. Ninjurin1 tg mice also showed reduced infiltration of macrophages and suppressed angiogenesis in the tumor mass. We therefore explored whether ninjurin1 decreases macrophage migration into the tumor sites. After adoptive transfer to tumor-bearing recipients, wild type and ninjurin1 tg mice's peritoneal macrophages were freshly isolated and labeled with carboxyfluorescein succinimidyl ester (CFSE). As expected, compared with that of wt type macrophages, tumor infiltration of ninjurin1-overexpressing macrophages was significantly decreased. We also found that ninjurin1 overexpression suppressed FAK activity. In addition, knockdown of ninjurin1 enhanced FAK activity and migration activity of RAW264.7 cells. Ninjurin1 overexpression on macrophage inhibits tumor growth by suppression of macrophage infiltration through repression of FAK signaling. Ninjurin1 is a key regulator molecule for macrophage migration and Tumor-associated macrophages (TAM) mediated tumorigenesis in vivo.
Collapse
Affiliation(s)
- Jong Kyu Woo
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.,College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yeong-Su Jang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.,National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang-Jin Lee
- National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sejin Jeon
- Department of Life sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Department of Life sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
15
|
de Sousa Moraes LF, Sun X, Peluzio MDCG, Zhu MJ. Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes? Crit Rev Food Sci Nutr 2017; 59:59-71. [PMID: 28799785 DOI: 10.1080/10408398.2017.1357533] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cause of cancer death. Phytochemicals, especially anthocyanins/anthocyanidins (A/A), have gathered attention of the scientific community owing to their anti-inflammatory, antioxidant, and cancer-inhibitory properties. In this review, we discussed the possible mechanisms whereby A/A exhibit intestinal anticarcinogenic characteristics. Anthocyanins/anthocyanidins inhibit the pro-inflammatory NF-κB pathway, attenuate Wnt signaling and suppress abnormal epithelial cell proliferation. In addition, A/A induce mitochondrial-mediated apoptosis and downregulate Akt/mTOR (mammalian target of rapamycin) pathway. Furthermore, activation of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) also contributes to the anti-carcinogenic effects of A/A. Finally, downregulation of metalloproteinases (MMPs) by A/A inhibits tumor invasion and metastasis. In conclusion, A/A exert their anti-tumor effects against colorectal carcinogenesis via multiple mechanisms, providing insights into the use of A/A as a natural chemopreventive intervention on major colorectal carcinogenesis.
Collapse
Affiliation(s)
- Luís Fernando de Sousa Moraes
- a School of Food Science , Washington State University , Pullman , WA , USA.,b Department of Nutrition and Health , Universidade Federal de Viçosa , Viçosa - Minas Gerais , Brazil
| | - Xiaofei Sun
- a School of Food Science , Washington State University , Pullman , WA , USA
| | | | - Mei-Jun Zhu
- a School of Food Science , Washington State University , Pullman , WA , USA
| |
Collapse
|
16
|
Sundaramoorthy P, Sim JJ, Jang YS, Mishra SK, Jeong KY, Mander P, Chul OB, Shim WS, Oh SH, Nam KY, Kim HM. Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain. PLoS One 2015; 10:e0116984. [PMID: 25629974 PMCID: PMC4309579 DOI: 10.1371/journal.pone.0116984] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.
Collapse
Affiliation(s)
- Pasupathi Sundaramoorthy
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
| | - Jae Jun Sim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
| | - Yeong-Su Jang
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
| | - Siddhartha Kumar Mishra
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003, India
| | - Keun-Yeong Jeong
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
| | - Poonam Mander
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
| | - Oh Byung Chul
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University, Inchon 406–840, Republic of Korea
| | - Won-Sik Shim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
| | - Seung Hyun Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
| | - Ky-Youb Nam
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406–840, Republic of Korea
| |
Collapse
|