1
|
Liao MY, Hao YJ, Luo CS, Chen CM, Feng PH, Yang HY, Yao DJ, Lee KY, Tseng FG. Development and validation of a novel combinational index of liquid biopsy biomarker for longitudinal lung cancer patient management. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100167. [PMID: 40027304 PMCID: PMC11863939 DOI: 10.1016/j.jlb.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 03/05/2025]
Abstract
Objectives Many cancer biomarkers such as the circulating tumor cells/microemboli (CTCs/CTM) have been reported significant associations with clinical outcomes. However, different biomarkers have different sensitivities and specificities for cancer types and cohort patients, and synergistic effects between certain biomarkers have also been observed, leading to the inaccurate, fluctuating, and even controversial results when multiple biomarkers are analyzed together. In this paper, a novel combinational index, P-score, was developed for monitoring and predicting the disease condition of lung cancer patients during follow-up visits. Materials and methods There were totally 13 return patients with 54 blood samples involved in this study to examine the number of CTC and CTM. Information from one group of 7 patients including 27 blood samples with published clinical data was employed to develop while those from another group of 4 patients containing 14 blood samples with unpublished clinical data were used to validate the P score in prediction. Enumerations were based on immunofluorescent staining images. Distributions of CTC/CTM and their frequencies in stratified patients were carefully examined and analyzed the ROC curve and AUC value to develop the P score and P score-based prediction model. Results and conclusion We found that the predictive power of P-score was not only comparable to the traditional cancer marker, in comparison with individual CTC/CTM, more false positives could be corrected by using P-score, thereby to improve the accuracy of analysis. From our preliminary validation tests, the prognosis and disease progression monitored longitudinally by P-score were further confirmed by clinical outcome data from physicians and its sensitivity was even better than those from individual biomarkers. We believe that this novel combinational indicator could be a promising tool to interpret clinical outcomes more accurately from multiple factors, particularly useful for the early prognosis and longitudinal monitoring in cancer patient management.
Collapse
Affiliation(s)
- Min-Yi Liao
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yun-Jie Hao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ching-Shan Luo
- International Ph.D. Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- TMU Research Center of Thoracic Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ching-Mei Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- TMU Research Center of Thoracic Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-Yu Yang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Nano Science and Technology Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Da-Jeng Yao
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Nano Engineering and Micro Systems (NEMS), National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- TMU Research Center of Thoracic Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Nano Engineering and Micro Systems (NEMS), National Tsing Hua University, Hsinchu, 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
2
|
Rahman R, Polley MYC, Alder L, Brastianos PK, Anders CK, Tawbi HA, Mehta M, Wen PY, Geyer S, de Groot J, Zadeh G, Piantadosi S, Galanis E, Khasraw M. Current drug development and trial designs in neuro-oncology: report from the first American Society of Clinical Oncology and Society for Neuro-Oncology Clinical Trials Conference. Lancet Oncol 2023; 24:e161-e171. [PMID: 36990614 PMCID: PMC10401610 DOI: 10.1016/s1470-2045(23)00005-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/11/2022] [Accepted: 01/05/2023] [Indexed: 03/29/2023]
Abstract
Successful drug development for people with cancers of the CNS has been challenging. There are multiple barriers to successful drug development including biological factors, rarity of the disease, and ineffective use of clinical trials. Based upon a series of presentations at the First Central Nervous System Clinical Trials Conference hosted by the American Society of Clinical Oncology and the Society for Neuro-Oncology, we provide an overview on drug development and novel trial designs in neuro-oncology. This Review discusses the challenges of therapeutic development in neuro-oncology and proposes strategies to improve the drug discovery process by enriching the pipeline of promising therapies, optimising trial design, incorporating biomarkers, using external data, and maximising efficacy and reproducibility of clinical trials.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mei-Yin C Polley
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Laura Alder
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Priscilla K Brastianos
- Massachusetts General Hospital, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carey K Anders
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | | | - Minesh Mehta
- Miami Cancer Institute, Baptist Hospital, Miami, FL, USA
| | - Patrick Y Wen
- Centre for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Susan Geyer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - John de Groot
- University of California San Francisco Brain Tumor Center, San Francisco, CA, USA
| | - Gelareh Zadeh
- Department of Neurological Surgery University of Toronto, Toronto, ON, Canada
| | - Steven Piantadosi
- Department of Surgery, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Evanthia Galanis
- Department of Oncology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Mustafa Khasraw
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Nakayasu ES, Gritsenko M, Piehowski PD, Gao Y, Orton DJ, Schepmoes AA, Fillmore TL, Frohnert BI, Rewers M, Krischer JP, Ansong C, Suchy-Dicey AM, Evans-Molina C, Qian WJ, Webb-Robertson BJM, Metz TO. Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat Protoc 2021; 16:3737-3760. [PMID: 34244696 PMCID: PMC8830262 DOI: 10.1038/s41596-021-00566-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Mass-spectrometry-based proteomic analysis is a powerful approach for discovering new disease biomarkers. However, certain critical steps of study design such as cohort selection, evaluation of statistical power, sample blinding and randomization, and sample/data quality control are often neglected or underappreciated during experimental design and execution. This tutorial discusses important steps for designing and implementing a liquid-chromatography-mass-spectrometry-based biomarker discovery study. We describe the rationale, considerations and possible failures in each step of such studies, including experimental design, sample collection and processing, and data collection. We also provide guidance for major steps of data processing and final statistical analysis for meaningful biological interpretations along with highlights of several successful biomarker studies. The provided guidelines from study design to implementation to data interpretation serve as a reference for improving rigor and reproducibility of biomarker development studies.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Marina Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brigitte I Frohnert
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Jeffrey P Krischer
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Astrid M Suchy-Dicey
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|