1
|
Xiong HY, Wyns A, Campenhout JV, Hendrix J, De Bruyne E, Godderis L, Schabrun S, Nijs J, Polli A. Epigenetic Landscapes of Pain: DNA Methylation Dynamics in Chronic Pain. Int J Mol Sci 2024; 25:8324. [PMID: 39125894 PMCID: PMC11312850 DOI: 10.3390/ijms25158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic pain is a prevalent condition with a multifaceted pathogenesis, where epigenetic modifications, particularly DNA methylation, might play an important role. This review delves into the intricate mechanisms by which DNA methylation and demethylation regulate genes associated with nociception and pain perception in nociceptive pathways. We explore the dynamic nature of these epigenetic processes, mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, which modulate the expression of pro- and anti-nociceptive genes. Aberrant DNA methylation profiles have been observed in patients with various chronic pain syndromes, correlating with hypersensitivity to painful stimuli, neuronal hyperexcitability, and inflammatory responses. Genome-wide analyses shed light on differentially methylated regions and genes that could serve as potential biomarkers for chronic pain in the epigenetic landscape. The transition from acute to chronic pain is marked by rapid DNA methylation reprogramming, suggesting its potential role in pain chronicity. This review highlights the importance of understanding the temporal dynamics of DNA methylation during this transition to develop targeted therapeutic interventions. Reversing pathological DNA methylation patterns through epigenetic therapies emerges as a promising strategy for pain management.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph’s Healthcare, London, ON N6A 4V2, Canada
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Spinieli RL, Cazuza R, Sales AJ, Carolino R, Franci JA, Tajerian M, Leite-Panissi CRA. Acute restraint stress regulates brain DNMT3a and promotes defensive behaviors in male rats. Neurosci Lett 2024; 820:137589. [PMID: 38101612 PMCID: PMC10947420 DOI: 10.1016/j.neulet.2023.137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Depending on its duration and severity, stress may contribute to neuropsychiatric diseases such as depression and anxiety. Studies have shown that stress impacts the hypothalamic-pituitary-adrenal (HPA) axis, but its downstream molecular, behavioral, and nociceptive effects remain unclear. We hypothesized that a 2-hour single exposure to acute restraint stress (ARS) activates the HPA axis and changes DNA methylation, a molecular mechanism involved in the machinery of stress regulation. We further hypothesized that ARS induces anxiety-like and risk assessment behavior and alters nociceptive responses in the rat. We employed biochemical (radioimmunoassay for corticosterone; global DNA methylation by enzyme immunoassay and western blot for DNMT3a expression in the amygdala, ventral hippocampus, and prefrontal cortex) and behavioral (elevated plus maze and dark-light box for anxiety and hot plate test for nociception) tests in adult male Wistar rats exposed to ARS or handling (control). All analyses were performed 24 h after ARS or handling. We found that ARS increased corticosterone levels in the blood, increased the expression of DNMT3a in the prefrontal cortex, promoted anxiety-like and risk assessment behaviors in the elevated plus maze, and increased the nociceptive threshold observed in the hot plate test. Our findings suggest that ARS might be a helpful rat model for studying acute stress and its effects on physiology, epigenetic machinery, and behavior.
Collapse
Affiliation(s)
- Richard L Spinieli
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Brazil.
| | - Rafael Cazuza
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Brazil
| | - Amanda J Sales
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ruither Carolino
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Janete A Franci
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maral Tajerian
- Department of Biology, Queens College, City University of New York, Flushing, NY, United States; The Graduate Center, City University of New York, New York, NY, United States
| | - Christie R A Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Brazil.
| |
Collapse
|
3
|
Ge J, Cai Y, Pan ZZ. Synaptic plasticity in two cell types of central amygdala for regulation of emotion and pain. Front Cell Neurosci 2022; 16:997360. [PMID: 36385947 PMCID: PMC9643269 DOI: 10.3389/fncel.2022.997360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/07/2022] [Indexed: 07/29/2023] Open
Abstract
The amygdala is a critical brain site for regulation of emotion-associated behaviors such as pain and anxiety. Recent studies suggest that differential cell types and synaptic circuits within the amygdala complex mediate interacting and opposing effects on emotion and pain. However, the underlying cellular and circuit mechanisms are poorly understood at present. Here we used optogenetics combined with electrophysiological analysis of synaptic inputs to investigate pain-induced synaptic plasticity within the amygdala circuits in rats. We found that 50% of the cell population in the lateral division of the central nucleus of the amygdala (CeAl) received glutamate inputs from both basolateral amygdala (BLA) and from the parabrachial nucleus (PBN), and 39% of the remaining CeAl cells received glutamate inputs only from PBN. Inflammatory pain lasting 3 days, which induced anxiety, produced sensitization in synaptic activities of the BLA-CeAl-medial division of CeA (CeAm) pathway primarily through a postsynaptic mechanism. Moreover, in CeAl cells receiving only PBN inputs, pain significantly augmented the synaptic strength of the PBN inputs. In contrast, in CeAl cells receiving both BLA and PBN inputs, pain selectively increased the synaptic strength of BLA inputs, but not the PBN inputs. Electrophysiological analysis of synaptic currents showed that the increased synaptic strength in both cases involved a postsynaptic mechanism. These findings reveal two main populations of CeAl cells that have differential profiles of synaptic inputs and show distinct plasticity in their inputs in response to anxiety-associated pain, suggesting that the specific input plasticity in the two populations of CeAl cells may encode a different role in amygdala regulation of pain and emotion.
Collapse
|
4
|
Ma Y, Qin GH, Guo X, Hao N, Shi Y, Li HF, Zhao X, Li JG, Zhang C, Zhang Y. Activation of δ-opioid receptors in anterior cingulate cortex alleviates affective pain in rats. Neuroscience 2022; 494:152-166. [DOI: 10.1016/j.neuroscience.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 12/09/2022]
|
5
|
Irfan J, Febrianto MR, Sharma A, Rose T, Mahmudzade Y, Di Giovanni S, Nagy I, Torres-Perez JV. DNA Methylation and Non-Coding RNAs during Tissue-Injury Associated Pain. Int J Mol Sci 2022; 23:ijms23020752. [PMID: 35054943 PMCID: PMC8775747 DOI: 10.3390/ijms23020752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
While about half of the population experience persistent pain associated with tissue damages during their lifetime, current symptom-based approaches often fail to reduce such pain to a satisfactory level. To provide better patient care, mechanism-based analgesic approaches must be developed, which necessitates a comprehensive understanding of the nociceptive mechanism leading to tissue injury-associated persistent pain. Epigenetic events leading the altered transcription in the nervous system are pivotal in the maintenance of pain in tissue injury. However, the mechanisms through which those events contribute to the persistence of pain are not fully understood. This review provides a summary and critical evaluation of two epigenetic mechanisms, DNA methylation and non-coding RNA expression, on transcriptional modulation in nociceptive pathways during the development of tissue injury-associated pain. We assess the pre-clinical data and their translational implication and evaluate the potential of controlling DNA methylation and non-coding RNA expression as novel analgesic approaches and/or biomarkers of persistent pain.
Collapse
Affiliation(s)
- Jahanzaib Irfan
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Muhammad Rizki Febrianto
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Anju Sharma
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Thomas Rose
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Yasamin Mahmudzade
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Simone Di Giovanni
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, E505, Burlington Danes, Du Cane Road, London W12 ONN, UK;
| | - Istvan Nagy
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
- Correspondence: (I.N.); (J.V.T.-P.)
| | - Jose Vicente Torres-Perez
- Department of Brain Sciences, Dementia Research Institute, Imperial College London, 86 Wood Ln, London W12 0BZ, UK
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain
- Correspondence: (I.N.); (J.V.T.-P.)
| |
Collapse
|
6
|
Liu R, Wu XM, He X, Wang RZ, Yin XY, Zhou F, Ji MH, Shen JC. Contribution of DNA methyltransferases to spared nerve injury induced depression partially through epigenetically repressing Bdnf in hippocampus: Reversal by ketamine. Pharmacol Biochem Behav 2021; 200:173079. [DOI: 10.1016/j.pbb.2020.173079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
|
7
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
8
|
Lunde CE, Sieberg CB. Walking the Tightrope: A Proposed Model of Chronic Pain and Stress. Front Neurosci 2020; 14:270. [PMID: 32273840 PMCID: PMC7113396 DOI: 10.3389/fnins.2020.00270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
Pain and stress are both phenomena that challenge an individual’s homeostasis and have significant overlap in conceptual and physiological processes. Allostasis is the ability to adapt to pain and stress and maintain homeostasis; however, if either process becomes chronic, it may result in negative long-term outcomes. The negative effects of stress on health outcomes on physiology and behavior, including pain, have been well documented; however, the specific mechanisms of how stress and what quantity of stress contributes to the maintenance and exacerbation of pain have not been identified, and thus pharmacological interventions are lacking. The objective of this brief review is to: 1. identify the gaps in the literature on the impact of acute and chronic stress on chronic pain, 2. highlight future directions for stress and chronic pain research; and 3. introduce the Pain-Stress Model in the context of the current literature on stress and chronic pain. A better understanding of the connection between stress and chronic pain could provide greater insight into the neurobiology of these processes and contribute to individualized treatment for pain rehabilitation and drug development for these often comorbid conditions.
Collapse
Affiliation(s)
- Claire E Lunde
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, United States.,Biobehavioral Pediatric Pain Lab, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain (P.A.I.N. Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Christine B Sieberg
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, United States.,Biobehavioral Pediatric Pain Lab, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain (P.A.I.N. Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Zhou C, Wu Y, Ding X, Shi N, Cai Y, Pan ZZ. SIRT1 Decreases Emotional Pain Vulnerability with Associated CaMKIIα Deacetylation in Central Amygdala. J Neurosci 2020; 40:2332-2342. [PMID: 32005763 PMCID: PMC7083291 DOI: 10.1523/jneurosci.1259-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/09/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022] Open
Abstract
Emotional disorders are common comorbid conditions that further exacerbate the severity and chronicity of chronic pain. However, individuals show considerable vulnerability to the development of chronic pain under similar pain conditions. In this study on male rat and mouse models of chronic neuropathic pain, we identify the histone deacetylase Sirtuin 1 (SIRT1) in central amygdala as a key epigenetic regulator that controls the development of comorbid emotional disorders underlying the individual vulnerability to chronic pain. We found that animals that were vulnerable to developing behaviors of anxiety and depression under the pain condition displayed reduced SIRT1 protein levels in central amygdala, but not those animals resistant to the emotional disorders. Viral overexpression of local SIRT1 reversed this vulnerability, but viral knockdown of local SIRT1 mimicked the pain effect, eliciting the pain vulnerability in pain-free animals. The SIRT1 action was associated with CaMKIIα downregulation and deacetylation of histone H3 lysine 9 at the CaMKIIα promoter. These results suggest that, by transcriptional repression of CaMKIIα in central amygdala, SIRT1 functions to guard against the emotional pain vulnerability under chronic pain conditions. This study indicates that SIRT1 may serve as a potential therapeutic molecule for individualized treatment of chronic pain with vulnerable emotional disorders.SIGNIFICANCE STATEMENT Chronic pain is a prevalent neurological disease with no effective treatment at present. Pain patients display considerably variable vulnerability to developing chronic pain, indicating individual-based molecular mechanisms underlying the pain vulnerability, which is hardly addressed in current preclinical research. In this study, we have identified the histone deacetylase Sirtuin 1 (SIRT1) as a key regulator that controls this pain vulnerability. This study reveals that the SIRT1-CaMKIIaα pathway in central amygdala acts as an epigenetic mechanism that guards against the development of comorbid emotional disorders under chronic pain, and that its dysfunction causes increased vulnerability to the development of chronic pain. These findings suggest that SIRT1 activators may be used in a novel therapeutic approach for individual-based treatment of chronic pain.
Collapse
Affiliation(s)
- Chenghua Zhou
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, and
| | - Yuqing Wu
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 266061, People's Republic of China
| | - Xiaobao Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, and
| | - Naihao Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, and
| | - Youqin Cai
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
| |
Collapse
|
10
|
Kremer M, Becker LJ, Barrot M, Yalcin I. How to study anxiety and depression in rodent models of chronic pain? Eur J Neurosci 2020; 53:236-270. [DOI: 10.1111/ejn.14686] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mélanie Kremer
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Léa J. Becker
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Michel Barrot
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| |
Collapse
|
11
|
Hou YY, Cai YQ, Pan ZZ. GluA1 in Central Amygdala Promotes Opioid Use and Reverses Inhibitory Effect of Pain. Neuroscience 2019; 426:141-153. [PMID: 31863796 DOI: 10.1016/j.neuroscience.2019.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023]
Abstract
Increasing evidence suggests that long-term opioids and pain induce similar adaptive changes in the brain's reward circuits, however, how pain alters the addictive properties of opioids remains poorly understood. In this study using a rat model of morphine self-administration (MSA), we found that short-term pain, induced by an intraplantar injection of complete Freund's adjuvant (CFA), acutely decreased voluntary morphine intake, but not food intake, only at a morphine dose that did not affect pain itself. Pre-treatment with indomethacin, a non-opioid inhibitor of pain, before the pain induction blocked the decrease in morphine intake. In rats with steady MSA, the protein level of GluA1 subunits of glutamate AMPA receptors (AMPARs) was significantly increased, but that of GluA2 was decreased, resulting in an increased GluA1/GluA2 ratio in central nucleus of the amygdala (CeA). In contrast, pain decreased the GluA1/GluA2 ratio in the CeA of rats with MSA. Microinjection of NASPM, a selective inhibitor of homomeric GluA1-AMPARs, into CeA inhibited morphine intake. Furthermore, viral overexpression of GluA1 protein in CeA maintained morphine intake at a higher level than controls and reversed the pain-induced reduction in morphine intake. These findings suggest that CeA GluA1 promotes opioid use and its upregulation is sufficient to increase opioid consumption, which counteracts the acute inhibitory effect of pain on opioid intake. These results demonstrate that the CeA GluA1 is a shared target of opioid and pain in regulation of opioid use, which may aid in future development of therapeutic applications in opioid abuse.
Collapse
Affiliation(s)
- Yuan-Yuan Hou
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - You-Qing Cai
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Modulation of the Negative Affective Dimension of Pain: Focus on Selected Neuropeptidergic System Contributions. Int J Mol Sci 2019; 20:ijms20164010. [PMID: 31426473 PMCID: PMC6720937 DOI: 10.3390/ijms20164010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that emotions can interfere with the perception of physical pain, as well as with the development and maintenance of painful conditions. On the other hand, somatic pain can have significant consequences on an individual’s affective behavior. Indeed, pain is defined as a complex and multidimensional experience, which includes both sensory and emotional components, thus exhibiting the features of a highly subjective experience. Over the years, neural pathways involved in the modulation of the different components of pain have been identified, indicating the existence of medial and lateral pain systems, which, respectively, project from medial or lateral thalamic nuclei to reach distinct cortex regions relating to specific functions. However, owing to the limited information concerning how mood state and painful input affect each other, pain treatment is frequently unsatisfactory. Different neuromodulators, including endogenous neuropeptides, appear to be involved in pain-related emotion and in its affective influence on pain perception, thus playing key roles in vulnerability and clinical outcome. Hence, this review article focuses on evidence concerning the modulation of the sensory and affective dimensions of pain, with particular attention given to some selected neuropeptidergic system contributions.
Collapse
|