1
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
2
|
Xu Y, Cao S, Wang SF, Ma W, Gou XJ. Zhisou powder suppresses airway inflammation in LPS and CS-induced post-infectious cough model mice via TRPA1/TRPV1 channels. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117741. [PMID: 38224794 DOI: 10.1016/j.jep.2024.117741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhisou Powder (ZSP), a traditional Chinese medicine (TCM) prescription, has been widely used in the clinic for the treatment of post-infectious cough (PIC). However, the exact mechanism is not clear. AIM OF THE STUDY The aim of this study was to investigate the ameliorative effect of ZSP on PIC in mice. The possible mechanisms of action were screened based on network pharmacology, and the potential mechanisms were explored through molecular docking and in vivo experimental validation. MATERIALS AND METHODS Lipopolysaccharide (LPS) (80μg/50 μL) was used to induce PIC in mice, followed by daily exposure to cigarette smoke (CS) for 30 min for 30 d to establish PIC model. The effects of ZSP on PIC mice were observed by detecting the number of coughs and cough latency, peripheral blood and bronchoalveolar lavage fluid (BALF) inflammatory cell counts, enzyme-linked immunosorbent assay (ELISA), and histological analysis. The core targets and key pathways of ZSP on PIC were analyzed using network pharmacology, and TRPA1 and TRPV1 were validated using RT-qPCR and western blotting assays. RESULTS ZSP effectively reduced the number of coughs and prolonged the cough latency in PIC mice. Airway inflammation was alleviated by reducing the expression levels of the inflammatory mediators TNF-α and IL-1β. ZSP modulated the expression of Substance P, Calcitonin gene-related peptide (CGRP), and nerve growth factor (NGF) in BALF. Based on the results of network pharmacology, the mechanism of action of ZSP may exert anti-neurogenic airway-derived inflammation by regulating the expression of TRPA1 and TRPV1 through the natural active ingredients α-spinastero, shionone and didehydrotuberostemonine. CONCLUSION ZSP exerts anti-airway inflammatory effects through inhibition of TRPA1/TRPV1 channels regulating neuropeptides to alleviate cough hypersensitivity and has a favorable therapeutic effect on PIC model mice. It provides theoretical evidence for the clinical application of ZSP.
Collapse
Affiliation(s)
- Yuan Xu
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China; School of Pharmacy, Shaanxi Univesity of Chinese Medicine, Shaanxi, Xianyang 712046, China
| | - Shan Cao
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Shu-Fei Wang
- School of Pharmacy, Shaanxi Univesity of Chinese Medicine, Shaanxi, Xianyang 712046, China
| | - Wei Ma
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China.
| | - Xiao-Jun Gou
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China.
| |
Collapse
|
3
|
He S, Zambelli VO, Sinharoy P, Brabenec L, Bian Y, Rwere F, Hell RC, Stein Neto B, Hung B, Yu X, Zhao M, Luo Z, Wu C, Xu L, Svensson KJ, McAllister SL, Stary CM, Wagner NM, Zhang Y, Gross ER. A human TRPV1 genetic variant within the channel gating domain regulates pain sensitivity in rodents. J Clin Invest 2023; 133:163735. [PMID: 36472910 PMCID: PMC9888391 DOI: 10.1172/jci163735] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Pain signals are relayed to the brain via a nociceptive system, and in rare cases, this nociceptive system contains genetic variants that can limit the pain response. Here, we questioned whether a human transient receptor potential vanilloid 1 (TRPV1) missense variant causes a resistance to noxious stimuli and, further, whether we could target this region with a cell-permeable peptide as a pain therapeutic. Initially using a computational approach, we identified a human K710N TRPV1 missense variant in an otherwise highly conserved region of mammalian TRPV1. After generating a TRPV1K710N-knockin mouse using CRISPR/Cas9, we discovered that the K710N variant reduced capsaicin-induced calcium influx in dorsal root ganglion neurons. The TRPV1K710N rodents also had less acute behavioral responses to noxious chemical stimuli and less hypersensitivity to nerve injury, while their response to noxious heat remained intact. Furthermore, blocking this K710 region in WT rodents using a cell-penetrating peptide limited acute behavioral responses to noxious stimuli and returned pain hypersensitivity induced by nerve injury to baseline levels. These findings identify K710 TRPV1 as a discrete site that is crucial for the control of nociception and provide insights into how to leverage rare genetic variants in humans to uncover fresh strategies for developing pain therapeutics.
Collapse
Affiliation(s)
- Shufang He
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.,Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Vanessa O. Zambelli
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Laboratory of Pain and Signaling, Butantan Institute, Sāo Paulo, Brazil
| | - Pritam Sinharoy
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Laura Brabenec
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Yang Bian
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Freeborn Rwere
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Rafaela C.R. Hell
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Beatriz Stein Neto
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Laboratory of Pain and Signaling, Butantan Institute, Sāo Paulo, Brazil
| | - Barbara Hung
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Xuan Yu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Meng Zhao
- Department of Pathology, ,Stanford Diabetes Research Center, and,Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, USA
| | - Zhaofei Luo
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chao Wu
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lijun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Katrin J. Svensson
- Department of Pathology, ,Stanford Diabetes Research Center, and,Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, USA
| | - Stacy L. McAllister
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Creed M. Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Nana-Maria Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Stanford Diabetes Research Center, and,Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
TRPV1 + sensory nerves modulate corneal inflammation after epithelial abrasion via RAMP1 and SSTR5 signaling. Mucosal Immunol 2022; 15:867-881. [PMID: 35680973 DOI: 10.1038/s41385-022-00533-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Timely initiation and termination of inflammatory response after corneal epithelial abrasion is critical for the recovery of vision. The cornea is innervated with rich sensory nerves with highly dense TRPV1 nociceptors. However, the roles of TRPV1+ sensory neurons in corneal inflammation after epithelial abrasion are not completely understood. Here, we found that depletion of TRPV1+ sensory nerves using resiniferatoxin (RTX) and blockade of TRPV1 using AMG-517 delayed corneal wound closure and enhanced the infiltration of neutrophils and γδ T cells to the wounded cornea after epithelial abrasion. Furthermore, depletion of TRPV1+ sensory nerves increased the number and TNF-α production of corneal CCR2+ macrophages and decreased the number of corneal CCR2- macrophages and IL-10 production. In addition, the TRPV1+ sensory nerves inhibited the recruitment of neutrophils and γδ T cells to the cornea via RAMP1 and SSTR5 signaling, decreased the responses of CCR2+ macrophages via RAMP1 signaling, and increased the responses of CCR2- macrophages via SSTR5 signaling. Collectively, our results suggest that the TRPV1+ sensory nerves suppress inflammation to support corneal wound healing via RAMP1 and SSTR5 signaling, revealing potential approaches for improving defective corneal wound healing in patients with sensory neuropathy.
Collapse
|
5
|
Xu J, Wen J, Fu L, Liao L, Zou Y, Zhang J, Deng J, Zhang H, Liu J, Wang X, Zuo D, Guo J. Macrophage-specific RhoA knockout delays Wallerian degeneration after peripheral nerve injury in mice. J Neuroinflammation 2021; 18:234. [PMID: 34654444 PMCID: PMC8520251 DOI: 10.1186/s12974-021-02292-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background Plenty of macrophages are recruited to the injured nerve to play key roles in the immunoreaction and engulf the debris of degenerated axons and myelin during Wallerian degeneration, thus creating a conducive microenvironment for nerve regeneration. Recently, drugs targeting the RhoA pathway have been widely used to promote peripheral axonal regeneration. However, the role of RhoA in macrophage during Wallerian degeneration and nerve regeneration after peripheral nerve injury is still unknown. Herein, we come up with the hypothesis that RhoA might influence Wallerian degeneration and nerve regeneration by affecting the migration and phagocytosis of macrophages after peripheral nerve injury. Methods Immunohistochemistry, Western blotting, H&E staining, and electrophysiology were performed to access the Wallerian degeneration and axonal regeneration after sciatic nerve transection and crush injury in the LyzCre+/−; RhoAflox/flox (cKO) mice or Lyz2Cre+/− (Cre) mice, regardless of sex. Macrophages’ migration and phagocytosis were detected in the injured nerves and the cultured macrophages. Moreover, the expression and potential roles of ROCK and MLCK were also evaluated in the cultured macrophages. Results 1. RhoA was specifically knocked out in macrophages of the cKO mice; 2. The segmentation of axons and myelin, the axonal regeneration, and nerve conduction in the injured nerve were significantly impeded while the myoatrophy was more severe in the cKO mice compared with those in Cre mice; 3. RhoA knockout attenuated the migration and phagocytosis of macrophages in vivo and in vitro; 4. ROCK and MLCK were downregulated in the cKO macrophages while inhibition of ROCK and MLCK could weaken the migration and phagocytosis of macrophages. Conclusions Our findings suggest that RhoA depletion in macrophages exerts a detrimental effect on Wallerian degeneration and nerve regeneration, which is most likely due to the impaired migration and phagocytosis of macrophages resulted from disrupted RhoA/ROCK/MLCK pathway. Since previous research has proved RhoA inhibition in neurons was favoring for axonal regeneration, the present study reminds us of that the cellular specificity of RhoA-targeted drugs is needed to be considered in the future application for treating peripheral nerve injury.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jinkun Wen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Department of Neurology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, 529030, China
| | - Lanya Fu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Liqiang Liao
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China
| | - Ying Zou
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Junyao Deng
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Haowen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jingmin Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Xianghai Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Zhang Y, Xu X, Tong Y, Zhou X, Du J, Choi IY, Yue S, Lee G, Johnson BN, Jia X. Therapeutic effects of peripherally administrated neural crest stem cells on pain and spinal cord changes after sciatic nerve transection. Stem Cell Res Ther 2021; 12:180. [PMID: 33722287 PMCID: PMC7962265 DOI: 10.1186/s13287-021-02200-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe peripheral nerve injury significantly affects patients' quality of life and induces neuropathic pain. Neural crest stem cells (NCSCs) exhibit several attractive characteristics for cell-based therapies following peripheral nerve injury. Here, we investigate the therapeutic effect of NCSC therapy and associated changes in the spinal cord in a sciatic nerve transection (SNT) model. METHODS Complex sciatic nerve gap injuries in rats were repaired with cell-free and cell-laden nerve scaffolds for 12 weeks (scaffold and NCSC groups, respectively). Catwalk gait analysis was used to assess the motor function recovery. The mechanical withdrawal threshold and thermal withdrawal latency were used to assess the development of neuropathic pain. Activation of glial cells was examined by immunofluorescence analyses. Spinal levels of extracellular signal-regulated kinase (ERK), NF-κB P65, brain-derived neurotrophic factor (BDNF), growth-associated protein (GAP)-43, calcitonin gene-related peptide (CGRP), and inflammation factors were calculated by western blot analysis. RESULTS Catwalk gait analysis showed that animals in the NCSC group exhibited a higher stand index and Max intensity At (%) relative to those that received the cell-free scaffold (scaffold group) (p < 0.05). The mechanical and thermal allodynia in the medial-plantar surface of the ipsilateral hind paw were significantly relieved in the NCSC group. Sunitinib (SNT)-induced upregulation of glial fibrillary acidic protein (GFAP) (astrocyte) and ionized calcium-binding adaptor molecule 1 (Iba-1) (microglia) in the ipsilateral L4-5 dorsal and ventral horn relative to the contralateral side. Immunofluorescence analyses revealed decreased astrocyte and microglia activation. Activation of ERK and NF-κB signals and expression of transient receptor potential vanilloid 1 (TRPV1) expression were downregulated. CONCLUSION NCSC-laden nerve scaffolds mitigated SNT-induced neuropathic pain and improved motor function recovery after sciatic nerve repair. NCSCs also protected the spinal cord from SNT-induced glial activation and central sensitization.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Yuxin Tong
- Department of Industrial and Systems Engineering, School of Neuroscience, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Xijie Zhou
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - In Young Choi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shouwei Yue
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, School of Neuroscience, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA. .,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Bu Y, Wang X, Li L, Hu X, Tan D, Li Z, Lai M, Qiu X, Sun F, Wang H, Yang F, Wu D, Guo J. Lithium Loaded Octa-Poly(Ethylene Glycol) Based Adhesive Facilitates Axon Regeneration and Reconnection of Transected Peripheral Nerves. Adv Healthc Mater 2020; 9:e2000268. [PMID: 32431051 DOI: 10.1002/adhm.202000268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Indexed: 12/14/2022]
Abstract
At present, reconnecting the transected nerve in clinic is still mainly reliant on surgery suture. This is a procedure that requires thorough training and is also time consuming. Here, an octa-poly(ethylene glycol) (PEG)-based adhesive for fast reconnecting of the transected peripheral nerve is reported. To enhance the therapeutic efficacy, a succinyl unit is applied to endow the controllably dissolvable property of the adhesive, and lithium is loaded in the adhesive to improve the axonal regeneration. Present data reveal that this adhesive possesses good cytocompatibility and can significantly shorten the reconnecting time of the transected nerve ends compared to that required for suture surgery. Histology, electrophysiological, and behavior assessments indicate that the adhesive reconnected nerves exhibit a low grade of fibrosis, inflammation response, and myoatrophy as well as robust axonal regeneration and functional recovery. Together, these results indicate that this octa-PEG adhesive can act as an alternative to traditional nerve suture in peripheral nerve injury.
Collapse
Affiliation(s)
- Yazhong Bu
- Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Xianghai Wang
- Department of Histology and EmbryologySouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical University Guangzhou 510515 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510530 China
| | - Lixia Li
- Department of Histology and EmbryologySouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical University Guangzhou 510515 China
| | - Xiaofang Hu
- Department of Histology and EmbryologySouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical University Guangzhou 510515 China
| | - Dandan Tan
- Department of Histology and EmbryologySouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical University Guangzhou 510515 China
| | - Zhenlin Li
- Department of Histology and EmbryologySouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical University Guangzhou 510515 China
| | - Muhua Lai
- Department of Histology and EmbryologySouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical University Guangzhou 510515 China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical University Guangzhou 510515 China
| | - Feifei Sun
- Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Hufei Wang
- Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Fei Yang
- Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Decheng Wu
- Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jiasong Guo
- Department of Histology and EmbryologySouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical University Guangzhou 510515 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510530 China
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric Disorders Guangzhou 510515 China
| |
Collapse
|
8
|
Electroacupuncture Pretreatment Elicits Neuroprotection Against Cerebral Ischemia-Reperfusion Injury in Rats Associated with Transient Receptor Potential Vanilloid 1-Mediated Anti-Oxidant Stress and Anti-Inflammation. Inflammation 2020; 42:1777-1787. [PMID: 31190106 DOI: 10.1007/s10753-019-01040-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electroacupuncture (EA) pretreatment, electrical stimulation using metal needle at specific acupoints in advance, possesses the potential to prevent cerebral ischemia-reperfusion injury (CIRI). Transient receptor potential vanilloid 1 (TRPV-1) has been indicated to take part in cerebral protection of EA; however, the detailed mechanisms remain unclear. The aim of this study was to investigate whether neuroprotection of EA pretreatment against CIRI is associated with TRPV-1 and explore the underlying mechanisms. Middle cerebral artery occlusion (MCAO) was performed to induce CIRI after EA pretreatment at Baihui (GV20), bilateral Shenshu (BL23), and Sanyinjiao (SP6) acupoints in rats. Neurological deficit scores, infarct volumes, oxidative stress damage, inflammatory cytokine production, MAPK signaling activation, and the expression of TRPV-1 were assessed. EA pretreatment lowered neurological deficit scores, reduced infarct volumes, impeded oxidative stress injury, inhibited inflammatory cytokine production, curbed P38 phosphorylation, and suppressed TRPV-1 expression in MCAO rats. Attributing to inhibition of TRPV-1 expression, AMG-517 (TRPV-1 antagonist) showed the synergistic effect with EA pretreatment on the neuroprotection against ischemia-reperfusion injury. However, TRPV-1 agonists capsaicin significantly abrogated the neuroprotective effects of EA pretreatment in MCAO rats accompanying enhancement of TRPV-1 expression. These findings indicated EA pretreatment exerted neuroprotection in rats with cerebral ischemia-reperfusion injury, which at least partially were associated with TRPV1-mediated anti-oxidant stress and anti-inflammation via inhibiting P38 MAPK activation.
Collapse
|