1
|
Motaln H, Rogelj B. The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies. Cells 2023; 12:2041. [PMID: 37626851 PMCID: PMC10453230 DOI: 10.3390/cells12162041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Differentiated status, low regenerative capacity and complex signaling make neuronal tissues highly susceptible to translating an imbalance in cell homeostasis into cell death. The high rate of neurodegenerative diseases in the elderly population confirms this. The multiple and divergent signaling cascades downstream of the various stress triggers challenge researchers to identify the central components of the stress-induced signaling pathways that cause neurodegeneration. Because of their critical role in cell homeostasis, kinases have emerged as one of the key regulators. Among kinases, non-receptor tyrosine kinase (Abelson kinase) c-Abl appears to be involved in both the normal development of neural tissue and the development of neurodegenerative pathologies when abnormally expressed or activated. However, exactly how c-Abl mediates the progression of neurodegeneration remains largely unexplored. Here, we summarize recent findings on the involvement of c-Abl in normal and abnormal processes in nervous tissue, focusing on neurons, astrocytes and microglial cells, with particular reference to molecular events at the interface between stress signaling, DNA damage, and metabolic regulation. Because inhibition of c-Abl has neuroprotective effects and can prevent neuronal death, we believe that an integrated view of c-Abl signaling in neurodegeneration could lead to significantly improved treatment of the disease.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Szmyd B, Sołek J, Błaszczyk M, Jankowski J, Liberski PP, Jaskólski DJ, Wysiadecki G, Karuga FF, Gabryelska A, Sochal M, Tubbs RS, Radek M. The Underlying Pathogenesis of Neurovascular Compression Syndromes: A Systematic Review. Front Mol Neurosci 2022; 15:923089. [PMID: 35860499 PMCID: PMC9289473 DOI: 10.3389/fnmol.2022.923089] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular compression syndromes (NVC) are challenging disorders resulting from the compression of cranial nerves at the root entry/exit zone. Clinically, we can distinguish the following NVC conditions: trigeminal neuralgia, hemifacial spasm, and glossopharyngeal neuralgia. Also, rare cases of geniculate neuralgia and superior laryngeal neuralgia are reported. Other syndromes, e.g., disabling positional vertigo, arterial hypertension in the course of NVC at the CN IX-X REZ and torticollis, have insufficient clinical evidence for microvascular decompression. The exact pathomechanism leading to characteristic NVC-related symptoms remains unclear. Proposed etiologies have limited explanatory scope. Therefore, we have examined the underlying pathomechanisms stated in the medical literature. To achieve our goal, we systematically reviewed original English language papers available in Pubmed and Web of Science databases before 2 October 2021. We obtained 1694 papers after eliminating duplicates. Only 357 original papers potentially pertaining to the pathogenesis of NVC were enrolled in full-text assessment for eligibility. Of these, 63 were included in the final analysis. The systematic review suggests that the anatomical and/or hemodynamical changes described are insufficient to account for NVC-related symptoms by themselves. They must coexist with additional changes such as factors associated with the affected nerve (e.g., demyelination, REZ modeling, vasculature pathology), nucleus hyperexcitability, white and/or gray matter changes in the brain, or disturbances in ion channels. Moreover, the effects of inflammatory background, altered proteome, and biochemical parameters on symptomatic NVC cannot be ignored. Further studies are needed to gain better insight into NVC pathophysiology.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Julia Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Maciej Błaszczyk
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Jakub Jankowski
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Paweł P. Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Dariusz J. Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Medical University of Lodz, Lodz, Poland
| | - Filip F. Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - R. Shane Tubbs
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, United States
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada
- University of Queensland, Brisbane, QLD, Australia
| | - Maciej Radek
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
- *Correspondence: Maciej Radek
| |
Collapse
|
3
|
Yang R, Song Y, Wang H, Chen C, Bai F, Li C. BmK DKK13, A Scorpion Toxin, Alleviates Pain Behavior in a Rat Model of Trigeminal Neuralgia by Modulating Voltage-Gated Sodium Channels and MAPKs/CREB Pathway. Mol Neurobiol 2022; 59:4535-4549. [PMID: 35579847 DOI: 10.1007/s12035-022-02855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/27/2022] [Indexed: 12/01/2022]
Abstract
BmK DKK13 (DKK13) is a mutated recombinant peptide, which has a significant antinociception in a rat model of the inflammatory pain. The purpose of this study was to evaluate the antinociceptive effect of DKK13 on trigeminal neuralgia (TN) in rats. Male Sprague-Dawley (SD) rats were treated with the chronic constriction injury of the infraorbital nerve (IoN-CCI) model to induce stable symptoms of TN. DKK13 (1.0 mg/kg, 2.0 mg/kg and 4.0 mg/kg, i.v.) or morphine (4.0 mg/kg, i.v.) was administered by tail vein once on day 14 after IoN-CCI injury. Behavioral tests, electrophysiology and western blotting were performed to investigate the role and underlying mechanisms of DKK13 on IoN-CCI model. Behavioral test results showed that DKK13 could significantly increase the mechanical pain and thermal radiation pain thresholds of IoN-CCI rats and inhibit the asymmetric spontaneous pain scratching behavior. Electrophysiological results showed that DKK13 could significantly reduce the current density of Nav1.8 in the ipsilateral side of trigeminal ganglion (TG) neurons in IoN-CCI rats, and the steady-state activation and inactivation curves of Nav1.8 shifted, respectively, to the direction of hyperpolarization and depolarization. Western blotting results showed that DKK13 significantly reduced the expression of Nav1.8 and the phosphorylation levels of key proteins of MAPKs/CREB pathway in TG tissues of IoN-CCI rats. In brief, DKK13 has a significant antinociceptive effect on IoN-CCI rats, which may be achieved by changing the dynamic characteristics of Nav1.8 channel and regulating the protein phosphorylation in MAPKs/CREB pathway.
Collapse
Affiliation(s)
- Ran Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongbo Song
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Haipeng Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunyun Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fei Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Xu H, Zhang M, Wang Y. Shape deformations of the basal ganglia in patients with classical trigeminal neuralgia: a cross-sectional evaluation. Neurol Sci 2022; 43:5007-5015. [PMID: 35471744 DOI: 10.1007/s10072-022-06091-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/19/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Despite the involvement of subcortical brain structures in the pathogenesis of classic trigeminal neuralgia (CTN), the details of morphological abnormalities of basal ganglia to this disorder are still unknown. This study aimed to investigate potential changes in terms of volume and shape of subcortical regions in patients with CTN. METHODS Forty-eight patients with CTN and 46 matched healthy subjects were recruited in the study. The whole-brain T1 anatomical data was acquired at a 3.0 Tesla scanner using a fast spoiled gradient recalled sequence (FSPGR). Vertex-wise analysis was applied to detect the alterations of volume and shape in each subcortical region in the patients with CTN compared to healthy controls. The relationships of morphological abnormalities in subcortical structures to the severity of orofacial pain and the affective disturbance in the patient group were examined using the multiple linear regression model. RESULTS No group difference was found about volumetric measurement in any of the subcortical regions. Vertex-wise analysis revealed areas of significant shape atrophy in bilateral putamen and bilateral pallidum in the patients with CTN compared to healthy controls. Besides, the patient group exhibited shape expansion in the head of the right caudate nucleus compared to healthy subjects. In addition, shape deformation in the head of the right caudate nucleus was positively associated with VAS score in CTN. CONCLUSION The patients with CTN display shape alterations in the specific subregions of basal ganglia, which may contribute to the pathophysiology of this refractory disorder and may be useful for translational medicine.
Collapse
Affiliation(s)
- Hui Xu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ming Zhang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuan Wang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
6
|
Kwon SH, Kim S, Park AY, Lee S, Gadhe CG, Seo BA, Park JS, Jo S, Oh Y, Kweon SH, Ma SX, Kim WR, Kim M, Kim H, Kim JE, Lee S, Lee J, Ko HS. A Novel, Selective c-Abl Inhibitor, Compound 5, Prevents Neurodegeneration in Parkinson's Disease. J Med Chem 2021; 64:15091-15110. [PMID: 34583507 DOI: 10.1021/acs.jmedchem.1c01022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects movement. The nonreceptor tyrosine kinase c-Abl has shown a potential role in the progression of PD. As such, c-Abl inhibition is a promising candidate for neuroprotection in PD and α-synucleinopathies. Compound 5 is a newly synthesized blood-brain barrier penetrant c-Abl inhibitor with higher efficacy than existing inhibitors. The objective of the current study was to demonstrate the neuroprotective effects of compound 5 on the α-synuclein preformed fibril (α-syn PFF) mouse model of PD. Compound 5 significantly reduced neurotoxicity, activation of c-Abl, and Lewy body pathology caused by α-syn PFF in cortical neurons. Additionally, compound 5 markedly ameliorated the loss of dopaminergic neurons, c-Abl activation, Lewy body pathology, neuroinflammatory responses, and behavioral deficits induced by α-syn PFF injection in vivo. Taken together, these results suggest that compound 5 could be a pharmaceutical agent to prevent the progression of PD and α-synucleinopathies.
Collapse
Affiliation(s)
- Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biology, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - A Yeong Park
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Saebom Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Changdev Gorakshnath Gadhe
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Bo Am Seo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jong-Sung Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Suyeon Jo
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Yumin Oh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Neuraly, Inc., Gaithersburg, Maryland 20878, United States
| | - Sin Ho Kweon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Wonjoong R Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Misoon Kim
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Hyeongjun Kim
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Jae Eun Kim
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Seulki Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Neuraly, Inc., Gaithersburg, Maryland 20878, United States
| | - Jinhwa Lee
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|