1
|
Chmielarz M, Sobieszczańska B, Środa-Pomianek K. Metabolic Endotoxemia: From the Gut to Neurodegeneration. Int J Mol Sci 2024; 25:7006. [PMID: 39000116 PMCID: PMC11241432 DOI: 10.3390/ijms25137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Metabolic endotoxemia is a severe health problem for residents in developed countries who follow a Western diet, disrupting intestinal microbiota and the whole organism's homeostasis. Although the effect of endotoxin on the human immune system is well known, its long-term impact on the human body, lasting many months or even years, is unknown. This is due to the difficulty of conducting in vitro and in vivo studies on the prolonged effect of endotoxin on the central nervous system. In this article, based on the available literature, we traced the path of endotoxin from the intestines to the blood through the intestinal epithelium and factors promoting the development of metabolic endotoxemia. The presence of endotoxin in the bloodstream and the inflammation it induces may contribute to lowering the blood-brain barrier, potentially allowing its penetration into the central nervous system; although, the theory is still controversial. Microglia, guarding the central nervous system, are the first line of defense and respond to endotoxin with activation, which may contribute to the development of neurodegenerative diseases. We traced the pro-inflammatory role of endotoxin in neurodegenerative diseases and its impact on the epigenetic regulation of microglial phenotypes.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Beata Sobieszczańska
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw University of Medicine, Chalubinskiego 3a, 50-368 Wroclaw, Poland
| |
Collapse
|
2
|
Bouzya B, Rouxel RN, Sacconnay L, Mascolo R, Nols L, Quique S, François L, Atas A, Warter L, Dezutter N, Lorin C. Immunogenicity of an AS01-adjuvanted respiratory syncytial virus prefusion F (RSVPreF3) vaccine in animal models. NPJ Vaccines 2023; 8:143. [PMID: 37773185 PMCID: PMC10541443 DOI: 10.1038/s41541-023-00729-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) causes a high disease burden in older adults. An effective vaccine for this RSV-primed population may need to boost/elicit robust RSV-neutralizing antibody responses and recall/induce RSV-specific T cell responses. To inform the selection of the vaccine formulation for older adults, RSVPreF3 (RSV fusion glycoprotein engineered to maintain the prefusion conformation) with/without AS01 adjuvant was evaluated in mice and bovine RSV infection-primed cattle. In mice, RSVPreF3/AS01 elicited robust RSV-A/B-specific neutralization titers and RSV F-specific polyfunctional CD4+ T cell responses exceeding those induced by non-adjuvanted RSVPreF3. In primed bovines, RSVPreF3/AS01 tended to induce higher pre-/post-vaccination fold-increases in RSV-A/B-specific neutralization titers relative to non-adjuvanted and Alum-adjuvanted RSVPreF3 formulations, and elicited higher RSV F-specific CD4+ T cell frequencies relative to the non-adjuvanted vaccine. Though AS01 adjuvanticity varied by animal species and priming status, RSVPreF3/AS01 elicited/boosted RSV-A/B-specific neutralization titers and RSV F-specific CD4+ T cell responses in both animal models, which supported its further clinical evaluation as prophylactic candidate vaccine for older adults.
Collapse
Affiliation(s)
| | - Ronan Nicolas Rouxel
- GSK, Rue de l'Institut 89, 1330, Rixensart, Belgium
- MSD Animal Health, Thormøhlensgate 55, 5006, Bergen, Norway
| | | | | | | | | | - Loïc François
- Akkodis, Belgium c/o GSK, Rue de l'Institut 89, 1330, Rixensart, Belgium
| | - Anne Atas
- GSK, Rue de l'Institut 89, 1330, Rixensart, Belgium
| | | | | | | |
Collapse
|
3
|
Holder A, Kolakowski J, Rosentreter C, Knuepfer E, Jégouzo SAF, Rosenwasser O, Harris H, Baumgaertel L, Gibson A, Werling D. Characterisation of the bovine C-type lectin receptor Mincle and potential evidence for an endogenous ligand. Front Immunol 2023; 14:1189587. [PMID: 37275870 PMCID: PMC10235688 DOI: 10.3389/fimmu.2023.1189587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Innate immune receptors that form complexes with secondary receptors, activating multiple signalling pathways, modulate cellular activation and play essential roles in regulating homeostasis and immunity. We have previously identified a variety of bovine C-type lectin-like receptors that possess similar functionality than their human orthologues. Mincle (CLEC4E), a heavily glycosylated monomer, is involved in the recognition of the mycobacterial component Cord factor (trehalose 6,6'-dimycolate). Here we characterise the bovine homologue of Mincle (boMincle), and demonstrate that the receptor is structurally and functionally similar to the human orthologue (huMincle), although there are some notable differences. In the absence of cross-reacting antibodies, boMincle-specific antibodies were created and used to demonstrate that, like the human receptor, boMincle is predominantly expressed by myeloid cells. BoMincle surface expression increases during the maturation of monocytes to macrophages. However, boMincle mRNA transcripts were also detected in granulocytes, B cells, and T cells. Finally, we show that boMincle binds to isolated bovine CD4+ T cells in a specific manner, indicating the potential to recognise endogenous ligands. This suggests that the receptor might also play a role in homeostasis in cattle.
Collapse
Affiliation(s)
- Angela Holder
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Jeannine Kolakowski
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Chloe Rosentreter
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Ellen Knuepfer
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | | | | | - Heather Harris
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Lotta Baumgaertel
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Amanda Gibson
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Dirk Werling
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| |
Collapse
|
4
|
Bulgakova ID, Svitich OA, Zverev VV. Mechanisms of Toll-like receptor tolerance induced by microbial ligands. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2023. [DOI: 10.36233/0372-9311-323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Some microorganisms can develop tolerance. On the one hand, it allows pathogenic microbes to escape immune surveillance, on the other hand, it provides the possibility to microbiota representatives to colonize different biotopes and build a symbiotic relationship with the host. Complex regulatory interactions between innate and adaptive immune systems as well as stimulation by antigens help microbes control and maintain immunological tolerance. An important role in this process belongs to innate immune cells, which recognize microbial components through pattern-recognition receptors. Toll-like receptors (TLRs) represent the main class of these receptors. Despite the universality of the activated signaling pathways, different cellular responses are induced by interaction of TLRs with microbiota representatives and pathogenic microbes, and they vary during acute and chronic infection. The research on mechanisms underlying the development of TLR tolerance is significant, as the above receptors are involved in a wide range of infectious and noninfectious diseases; they also play an important role in development of allergic diseases, autoimmune diseases, and cancers. The knowledge of TLR tolerance mechanisms can be critically important for development of TLR ligand-based therapeutic agents for treatment and prevention of multiple diseases.
Collapse
|
5
|
Silva MJA, Santana DS, de Oliveira LG, Monteiro EOL, Lima LNGC. The relationship between 896A/G (rs4986790) polymorphism of TLR4 and infectious diseases: A meta-analysis. Front Genet 2022; 13:1045725. [PMID: 36506333 PMCID: PMC9729345 DOI: 10.3389/fgene.2022.1045725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Toll-like Receptors (TLRs), such as the TLR4, are genes encoding transmembrane receptors of the same name, which induce a pro- or anti-inflammatory response according to their expression as the host's first line of defense against pathogens, such as infectious ones. Single nucleotide polymorphisms (SNPs) are the most common type of mutation in the human genome and can generate functional modification in genes. The aim of this article is to review in which infectious diseases there is an association of susceptibility or protection by the TLR4 SNP rs4986790. A systematic review and meta-analysis of the literature was conducted in the Science Direct, PUBMED, MEDLINE, and SciELO databases between 2011 and 2021 based on the dominant genotypic model of this SNP for general and subgroup analysis of infectious agent type in random effect. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated for genotypic comparison. I2 statistics were calculated to assess the presence of heterogeneity between studies and funnel plots were inspected for indication of publication bias. A total of 27 articles were included, all in English. Among the results achieved, the categories of diseases that were most associated with the SNP studied were in decreasing order of number of articles: infections by bacteria (29.63%); caused by viruses (22.23%); urinary tract infection-UTI (7.4%), while 11 studies (40.74%) demonstrated a nonsignificant association. In this meta-analysis, a total of 5599 cases and 5871 controls were finalized. The present meta-analysis suggests that there is no significant association between TLR4-rs4986790 SNP and infections (OR = 1,11; 95% CI: 0,75-1,66; p = 0,59), but in the virus subgroup it was associated with a higher risk (OR = 2,16; 95% CI: 1,09-4,30; p = 0,03). The subgroups of bacteria and parasites did not show statistical significance (OR = 0,86; 95% CI: 0,56-1,30; p = 0,47, and no estimate of effects, respectively). Therefore, it has been shown that a diversity of infectious diseases is related to this polymorphism, either by susceptibility or even severity to them, and the receptor generated is also crucial for the generation of cell signaling pathways and immune response against pathogens.
Collapse
Affiliation(s)
| | - Davi Silva Santana
- Institute of Health Sciences (ICS), Federal University of Pará (UFPA), Belém, Brazil
| | | | | | | |
Collapse
|
6
|
Halajian EA, LeBlanc EV, Gee K, Colpitts CC. Activation of TLR4 by viral glycoproteins: A double-edged sword? Front Microbiol 2022; 13:1007081. [PMID: 36246240 PMCID: PMC9557975 DOI: 10.3389/fmicb.2022.1007081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Recognition of viral infection by pattern recognition receptors is paramount for a successful immune response to viral infection. However, an unbalanced proinflammatory response can be detrimental to the host. Recently, multiple studies have identified that the SARS-CoV-2 spike protein activates Toll-like receptor 4 (TLR4), resulting in the induction of proinflammatory cytokine expression. Activation of TLR4 by viral glycoproteins has also been observed in the context of other viral infection models, including respiratory syncytial virus (RSV), dengue virus (DENV) and Ebola virus (EBOV). However, the mechanisms involved in virus-TLR4 interactions have remained unclear. Here, we review viral glycoproteins that act as pathogen-associated molecular patterns to induce an immune response via TLR4. We explore the current understanding of the mechanisms underlying how viral glycoproteins are recognized by TLR4 and discuss the contribution of TLR4 activation to viral pathogenesis. We identify contentious findings and research gaps that highlight the importance of understanding viral glycoprotein-mediated TLR4 activation for potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
7
|
Extracellular cardiolipin modulates microglial phagocytosis and cytokine secretion in a toll-like receptor (TLR) 4-dependent manner. J Neuroimmunol 2021; 353:577496. [PMID: 33517251 DOI: 10.1016/j.jneuroim.2021.577496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Microglia-driven neuroinflammation contributes to neurodegenerative diseases. Mitochondrial phospholipid cardiolipin acts as a signaling molecule when released from damaged cells. We demonstrate that extracellular cardiolipin induces the secretion of monocyte chemoattractant protein-1 and interferon gamma-induced protein 10 by resting microglia while inhibiting secretion of cytokines by microglia stimulated with lipopolysaccharide, amyloid Aβ42 peptides, or α-synuclein. Extracellular cardiolipin also induces nitric oxide secretion by microglia-like cells and upregulates microglial phagocytosis. By using blocking antibodies, we determine that toll-like receptor 4 mediates the latter effect. Under physiological and pathological conditions characterized by cell death, extracellularly released cardiolipin may regulate immune responses of microglia.
Collapse
|
8
|
Muñoz-Caro T, Gibson AJ, Conejeros I, Werling D, Taubert A, Hermosilla C. The Role of TLR2 and TLR4 in Recognition and Uptake of the Apicomplexan Parasite Eimeria bovis and Their Effects on NET Formation. Pathogens 2021; 10:pathogens10020118. [PMID: 33498871 PMCID: PMC7912269 DOI: 10.3390/pathogens10020118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bovine polymorphonuclear neutrophils (PMN) constitutively express the Toll-like receptors (TLRs) TLR2 and TLR4 and have been shown to generate Neutrophil extracellular traps (NETs) upon exposure to Eimeria bovis. The present work investigated the role of TLR2 and TLR4 in the recognition and uptake of E. bovis sporozoites, IL-8 production and neutrophil extracellular trap (NET) formation. METHODS TLR expression was performed by flow cytometric analysis on PMN exposed to live carboxyfluorescein succinimidyl ester (CFSE)-stained sporozoites. Supernatants of PMN exposed to different E. bovis sporozoite preparations and antigens in the absence or presence of TLR antibodies were assessed for IL-8 secretion. Cells were exposed to sporozoite preparations and assessed for the activation of transcription factor NF-κB using a luciferase reporter assay. Immunofluorescence analysis was done to investigate TLR2 and TLR4 surface expression and NET formation on bovine PMN exposed to vital sporozoites. RESULTS we observed significantly increased TLR2 and TLR4 expression with a mean increase in expression that was greater for TLR2 than TLR4. This upregulation neither inhibited nor promoted sporozoite phagocytosis by bovine PMN. Live sporozoites together with anti-TLR2 mAb resulted in a significant enhancement of IL-8 production. NF-κB activation was more strongly induced in TLR2-HEK cells than in TLR4/MD2-HEK cells exposed to heat-killed sporozoites and antigens. Immunofluorescence analysis showed TLR-positive signals on the surface of PMN and concomitant NET formation. CONCLUSIONS This is the first report on E. bovis-induced concomitant TLR2 and TLR4 expression during bovine PMN-derived NETosis.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca 3460000, Chile
| | - Amanda J. Gibson
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK; (A.J.G.); (D.W.)
- Centre of Excellence in Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Wales SY23 3FD, UK
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK; (A.J.G.); (D.W.)
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
- Correspondence:
| |
Collapse
|
9
|
Kumar V. Going, Toll-like receptors in skin inflammation and inflammatory diseases. EXCLI JOURNAL 2021; 20:52-79. [PMID: 33510592 PMCID: PMC7838829 DOI: 10.17179/excli2020-3114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The Indian Ayurvedic physicians knew the concept of inflammation dating back to 1500 BC. The continuous progress in the immunology of inflammation has explained its undiscovered mechanisms. For example, the discovery of Toll-like receptor 4 (TLR4) in humans (1997) has revolutionized the field of infection biology and innate immunity. The laboratory mice have shown twelve TLRs and express TLR10 (CD290) as a disrupted pseudogene, and humans have ten functional TLRs. Now, it is well established that TLRs play a significant role in different infectious and inflammatory diseases. Skin inflammation and other associated inflammatory diseases, including atopic dermatitis (AD), acne vulgaris, and psoriasis, along with many skin cancers are major health problems all over the world. The continuous development in the immunopathogenesis of inflammatory skin diseases has opened the window of opportunity for TLRs in studying their role. Hence, the manuscript explores the role of different TLRs in the pathogenesis of skin inflammation and associated inflammatory diseases. The article starts with the concept of inflammation, its origin, and the impact of TLRs discovery on infection and inflammation biology. The subsequent section describes the burden of skin-associated inflammatory diseases worldwide and the effect of the geographical habitat of people affecting it. The third section explains skin as an immune organ and explains the expression of different TLRs on different skin cells, including keratinocytes, Langerhans cells (LCs), skin fibroblasts, and melanocytes. The fourth section describes the impact of TLRs on these cells in different skin-inflammatory conditions, including acne vulgaris, AD, psoriasis, and skin cancers. The article also discusses the use of different TLR-based therapeutic approaches as specific to these inflammatory skin diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children Health Clinical Unit, Faculty of Medicine and Biomedical Sciences, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
| |
Collapse
|
10
|
Identification of Yak's TLR4 Alternative Spliceosomes and Bioinformatic Analysis of TLR4 Protein Structure and Function. Animals (Basel) 2020; 11:ani11010032. [PMID: 33375267 PMCID: PMC7823342 DOI: 10.3390/ani11010032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In this study, yak’s TLR4 gene alternative spliceosomes were investigated using PCR amplification and cloning with an aim to improve disease-resistance in yaks and promote efficient utilization of yak’s resources. qRT-PCR was used to evaluate the expression levels of two alternatively spliced TLR4 transcripts in seven distinct yak tissues. To predict the function of proteins expressed by each TLR4 spliceosome, TLR4 protein structure and function were analyzed bioinformatically. Besides, two alternative spliceosomes of yak’s TLR4 gene were also identified, which were in line with predicted variants of the TLR4 gene in NCBI. These two alternative spliceosomes of the TLR4 gene were expressed in each tissue; however, the expression levels of these spliceosomes were significantly different in different tissue. We also observed that deletion of exon-2 in TLR4 affected the function of the corresponding protein. This study will lay a theoretical foundation for future studies on the role of two variants of yak’s TLR4 gene in disease resistance. Besides, data from this study could be analyzed further to explore the molecular mechanism associated with disease-resistance in the yak. Abstract In this study, the yak’s TLR4 gene alternative spliceosomes were investigated using PCR amplification and cloning to improve disease-resistance in yak and promote efficient utilization of yak’s resources. qRT-PCR was used to determine the expression levels of two alternatively spliced transcripts of the TLR4 gene in seven distinct tissues. To predict the function of proteins expressed by each TLR4 spliceosome, bioinformatic analysis of yak’s TLR4 protein structure and function was performed, which led to the identification of two alternative spliceosomes of yak’s TLR4 gene. The TLR4-X1 sequence length was 2526 bp, and it encoded full-length TLR4 protein (841 amino acids). The sequence length of the exon-2 deleted TLR4-X2 sequence was 1926 bp, and it encoded truncated TLR4 protein (641 amino acids). TLR4-X2 sequence was consistent with the predicted sequence of the TLR4 gene in GenBank. Each tissue showed significantly different expression levels of these two alternative spliceosomes. As per the bioinformatic analysis of the structure and function of TLR4 protein, deletion of exon-2 in the TLR4 gene resulted in frameshift mutations of the reading frame in the corresponding protein, which altered its ligand-binding and active sites. Besides, biological property such as substrate specificity of truncated TLR4 protein was also altered, leading to altered protein function. This study has laid a theoretical foundation for exploring the role of two variants of the TLR4 gene in yak’s disease resistance. Besides, this study’s data could be analyzed further to explore the molecular mechanism associated with disease-resistance in the yak.
Collapse
|
11
|
Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, McGill JL. Applications of Nanovaccines for Disease Prevention in Cattle. Front Bioeng Biotechnol 2020; 8:608050. [PMID: 33363134 PMCID: PMC7759628 DOI: 10.3389/fbioe.2020.608050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most important tools available to prevent and reduce the incidence of infectious diseases in cattle. Despite their availability and widespread use to combat many important pathogens impacting cattle, several of these products demonstrate variable efficacy and safety in the field, require multiple doses, or are unstable under field conditions. Recently, nanoparticle-based vaccine platforms (nanovaccines) have emerged as promising alternatives to more traditional vaccine platforms. In particular, polymer-based nanovaccines provide sustained release of antigen payloads, stabilize such payloads, and induce enhanced antibod- and cell-mediated immune responses, both systemically and locally. To improve vaccine administrative strategies and efficacy, they can be formulated to contain multiple antigenic payloads and have the ability to protect fragile proteins from degradation. Nanovaccines are also stable at room temperature, minimizing the need for cold chain storage. Nanoparticle platforms can be synthesized for targeted delivery through intranasal, aerosol, or oral administration to induce desired mucosal immunity. In recent years, several nanovaccine platforms have emerged, based on biodegradable and biocompatible polymers, liposomes, and virus-like particles. While most nanovaccine candidates have not yet advanced beyond testing in rodent models, a growing number have shown promise for use against cattle infectious diseases. This review will highlight recent advancements in polymeric nanovaccine development and the mechanisms by which nanovaccines may interact with the bovine immune system. We will also discuss the positive implications of nanovaccines use for combating several important viral and bacterial disease syndromes and consider important future directions for nanovaccine development in beef and dairy cattle.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
12
|
Wang D, Wang J. Antiviral immune mechanism of Toll-like receptor 4-mediated human alveolar epithelial cells type Ⅱ. Exp Ther Med 2020; 20:2561-2568. [PMID: 32765749 PMCID: PMC7401722 DOI: 10.3892/etm.2020.8963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/18/2019] [Indexed: 11/06/2022] Open
Abstract
Expression of Toll-like receptor (TLR)4 and its downstream substances, myeloid differentiation factor 88 (MyD88), NF-κB p65, tumor necrosis factor-α (TNF-α) and GR in human alveolar epithelial cells type Ⅱ (AEC Ⅱ) infected with respiratory syncytial virus (RSV) were investigated, and the antiviral immune mechanism mediated by TLR4 was explored. Human AEC Ⅱ were divided into TLR4-/- group, normal group and TLR4+ group, and also into control group, RSV group and RSV+MP (methylprednisolone) group. MTT assay was used to measure the survival of cells after TLR4 knockout and overexpression, and the survival of normal cells after treatment with MP. The concentration of TLR4, MyD88, NF-κB p65, TNF-α, and GR was measured by ELISA after TLR4 knockout and overexpression. Reverse transcription-quantitative PCR (RT-qPCR) was used to measure the mRNA expression of the gene knockout and overexpression groups. RT-qPCR and western blot analysis were used to determine the expression of TLR4, MyD88, NF-κB p65 and GR in RSV and RSV+MP groups. The concentration of the detected substances in the TLR4-/- group was significantly lower than that in the normal group (P<0.01 and <0.001), and in the TLR4+ group was significantly higher than that in the normal group (P<0.05, <0.01 and <0.001); the expression of RSV in the TLR4-/- group was significantly higher than that in the normal group (P<0.001), and in the TLR4+ group was significantly lower than that in the normal group (P<0.05). The expression levels of TLR4, MyD88 and NF-κB p65 in the RSV and RSV+MP groups were significantly higher than those in the control group (P<0.05, <0.01 and <0.001), and the increase presented in the RSV+MP group was significantly lower than that in the RSV group (P<0.05 and <0.01). TLR4-mediated antiviral immunity of human AEC Ⅱ can reduce the levels of TLR4, MyD88, NF-κB p65 and TNF-α and increase the level of GR, participating in the immune defense and reducing the damage of the viral epithelial cells of human type Ⅱ alveoli, thus improving human immunity.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Infectious Disease, Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Jie Wang
- Department of Infectious Disease, Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
13
|
Janciauskiene S, Vijayan V, Immenschuh S. TLR4 Signaling by Heme and the Role of Heme-Binding Blood Proteins. Front Immunol 2020; 11:1964. [PMID: 32983129 PMCID: PMC7481328 DOI: 10.3389/fimmu.2020.01964] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs), also known as pattern recognition receptors, respond to exogenous pathogens and to intrinsic danger signals released from damaged cells and tissues. The tetrapyrrole heme has been suggested to be an agonist for TLR4, the receptor for the pro-inflammatory bacterial component lipopolysaccharide (LPS), synonymous with endotoxin. Heme is a double-edged sword with contradictory functions. On the one hand, it has vital cellular functions as the prosthetic group of hemoproteins including hemoglobin, myoglobin, and cytochromes. On the other hand, if released from destabilized hemoproteins, non-protein bound or “free” heme can have pro-oxidant and pro-inflammatory effects, the mechanisms of which are not fully understood. In this review, the complex interactions between heme and TLR4 are discussed with a particular focus on the role of heme-binding serum proteins in handling extracellular heme and its impact on TLR4 signaling. Moreover, the role of heme as a direct and indirect trigger of TLR4 activation and species-specific differences in the regulation of heme-dependent TLR4 signaling are highlighted.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hanover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hanover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hanover, Germany
| |
Collapse
|
14
|
Putz EJ, Nally JE. Investigating the Immunological and Biological Equilibrium of Reservoir Hosts and Pathogenic Leptospira: Balancing the Solution to an Acute Problem? Front Microbiol 2020; 11:2005. [PMID: 32922382 PMCID: PMC7456838 DOI: 10.3389/fmicb.2020.02005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Leptospirosis is a devastating zoonotic disease affecting people and animals across the globe. Pathogenic leptospires are excreted in urine of reservoir hosts which directly or indirectly leads to continued disease transmission, via contact with mucous membranes or a breach of the skin barrier of another host. Human fatalities approach 60,000 deaths per annum; though most vertebrates are susceptible to leptospirosis, complex interactions between host species and serovars of Leptospira can yield disease phenotypes that vary from asymptomatic shedding in reservoir hosts, to multi-organ failure in incidental hosts. Clinical symptoms of acute leptospirosis reflect the diverse range of pathogenic species and serovars that cause infection, the level of exposure, and the relationship of the pathogen with the given host. However, in all cases, pathogenic Leptospira are excreted into the environment via urine from reservoir hosts which are uniformly recognized as asymptomatic carriers. Therefore, the reservoir host serves as the cornerstone of persistent disease transmission. Although bacterin vaccines can be used to abate renal carriage and excretion in domestic animal species, there is an urgent need to advance our understanding of immune-mediated host–pathogen interactions that facilitate persistent asymptomatic carriage. This review summarizes the current understanding of host–pathogen interactions in the reservoir host and prioritizes research to unravel mechanisms that allow for colonization but not destruction of the host. This information is required to understand, and ultimately control, the transmission of pathogenic Leptospira.
Collapse
Affiliation(s)
- Ellie J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Jarlath E Nally
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
15
|
Marzec J, Cho HY, High M, McCaw ZR, Polack F, Kleeberger SR. Toll-like receptor 4-mediated respiratory syncytial virus disease and lung transcriptomics in differentially susceptible inbred mouse strains. Physiol Genomics 2019; 51:630-643. [PMID: 31736414 DOI: 10.1152/physiolgenomics.00101.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes severe lower respiratory tract disease in infants, young children, and susceptible adults. The pathogenesis of RSV disease is not fully understood, although toll-like receptor 4 (TLR4)-related innate immune response is known to play a role. The present study was designed to determine TLR4-mediated disease phenotypes and lung transcriptomics and to elucidate transcriptional mechanisms underlying differential RSV susceptibility in inbred strains of mice. Dominant negative Tlr4 mutant (C3H/HeJ, HeJ, Tlr4Lps-d) and its wild-type (C3H/HeOuJ, OuJ, Tlr4Lps-n) mice and five genetically diverse, differentially responsive strains bearing the wild-type Tlr4Lps-n allele were infected with RSV. Bronchoalveolar lavage, histopathology, and genome-wide transcriptomics were used to characterize the pulmonary response to RSV. RSV-induced lung neutrophilia [1 day postinfection (pi)], epithelial proliferation (1 day pi), and lymphocytic infiltration (5 days pi) were significantly lower in HeJ compared with OuJ mice. Pulmonary RSV expression was also significantly suppressed in HeJ than in OuJ. Upregulation of immune/inflammatory (Cxcl3, Saa1) and heat shock protein (Hspa1a, Hsph1) genes was characteristic of OuJ mice, while cell cycle and cell death/survival genes were modulated in HeJ mice following RSV infection. Strain-specific transcriptomics suggested virus-responsive (Oasl1, Irg1, Mx1) and epidermal differentiation complex (Krt4, Lce3a) genes may contribute to TLR4-independent defense against RSV in resistant strains including C57BL/6J. The data indicate that TLR4 contributes to pulmonary RSV pathogenesis and activation of cellular immunity, the inflammasome complex, and vascular damage underlies it. Distinct transcriptomics in differentially responsive Tlr4-wild-type strains provide new insights into the mechanism of RSV disease and potential therapeutic targets.
Collapse
Affiliation(s)
- Jacqui Marzec
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Hye-Youn Cho
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Monica High
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.,Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Zachary R McCaw
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Fernando Polack
- Fundación INFANT, Buenos Aires, Argentina.,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven R Kleeberger
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
16
|
Anderson JA, Loes AN, Waddell GL, Harms MJ. Tracing the evolution of novel features of human Toll-like receptor 4. Protein Sci 2019; 28:1350-1358. [PMID: 31075178 PMCID: PMC6566505 DOI: 10.1002/pro.3644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
Toll-like receptor 4 (TLR4) is a critical innate immune protein that activates inflammation in response to extracellular cues. Much of the work to understand how the protein works in humans has been done using mouse models. Although human and mouse TLR4 have many shared features, they have also diverged significantly since their last common ancestor, acquiring 277 sequence differences. Functional differences include the extent of ligand-independent activation, whether lipid IVa acts as an antagonist or agonist, and the relative species cross-compatibility of their MD-2 cofactor. We set out to understand the evolutionary origins for these functional differences between human and mouse TLR4. Using a combination of phylogenetics, ancestral sequence reconstruction, and functional characterization, we found that evolutionary changes to the human TLR4, rather than changes to the mouse TLR4, were largely responsible for these functional changes. Human TLR4 repressed ancestral ligand-independent activity and gained antagonism to lipid IVa. Additionally, mutations to the human TLR4 cofactor MD-2 led to lineage-specific incompatibility between human and opossum TLR4 complex members. These results were surprising, as mouse TLR4 has acquired many more mutations than human TLR4 since their last common ancestor. Our work has polarized this set of transitions and sets up work to study the mechanistic underpinnings for the evolution of new functions in TLR4.
Collapse
Affiliation(s)
- Jeremy A. Anderson
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| | - Andrea N. Loes
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| | - Grace L. Waddell
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| | - Michael J. Harms
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| |
Collapse
|
17
|
Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019; 332:16-30. [PMID: 30928868 DOI: 10.1016/j.jneuroim.2019.03.012] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLRs) are discovered as crucial pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs). Later studies showed their involvement in the recognition of various damage/danger-associated molecular patterns (DAMPs) generated by host itself. Thus, TLRs are capable of recognizing wide-array of patterns/molecules derived from pathogens and host as well and initiating a proinflammatory immune response through the activation of NF-κB and other transcription factors causing synthesis of proinflammatory molecules. The process of neuroinflammation is seen under both sterile and infectious inflammatory diseases of the central nervous system (CNS) and may lead to the development of neurodegeneration. The present article is designed to highlight the importance of TLRs in the pathogenesis of neuroinflammation under diverse conditions. TLRs are expressed by various immune cells present in CNS along with neurons. However out of thirteen TLRs described in mammals, some are present and active in these cells, while some are absent and are described in detail in main text. The role of various immune cells present in the brain and their role in the pathogenesis of neuroinflammation depending on the type of TLR expressed is described. Thereafter the role of TLRs in bacterial meningitis, viral encephalitis, stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and autoimmune disease including multiple sclerosis (MS) is described. The article is designed for both neuroscientists needing information regarding TLRs in neuroinflammation and TLR biologists or immunologists interested in neuroinflammation.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
18
|
Guerra-Maupome M, Palmer MV, McGill JL, Sacco RE. Utility of the Neonatal Calf Model for Testing Vaccines and Intervention Strategies for Use against Human RSV Infection. Vaccines (Basel) 2019; 7:vaccines7010007. [PMID: 30626099 PMCID: PMC6466205 DOI: 10.3390/vaccines7010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of pediatric respiratory tract infections. It is estimated that two-thirds of infants are infected with RSV during the first year of life and it is one of the leading causes of death in this age group worldwide. Similarly, bovine RSV is a primary viral pathogen in cases of pneumonia in young calves and plays a significant role in bovine respiratory disease complex. Importantly, naturally occurring infection of calves with bovine RSV shares many features in common with human RSV infection. Herein, we update our current understanding of RSV infection in cattle, with particular focus on similarities between the calf and human infection, and the recent reports in which the neonatal calf has been employed for the development and testing of vaccines and therapeutics which may be applied to hRSV infection in humans.
Collapse
Affiliation(s)
- Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
19
|
Bagheri M, Zahmatkesh A. Evolution and species-specific conservation of toll-like receptors in terrestrial vertebrates. Int Rev Immunol 2018; 37:217-228. [DOI: 10.1080/08830185.2018.1506780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoumeh Bagheri
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azadeh Zahmatkesh
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
20
|
Lee W, Kim M, Lee SH, Jung HG, Oh JW. Prophylactic efficacy of orally administered Bacillus poly-γ-glutamic acid, a non-LPS TLR4 ligand, against norovirus infection in mice. Sci Rep 2018; 8:8667. [PMID: 29875467 PMCID: PMC5989232 DOI: 10.1038/s41598-018-26935-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 12/22/2022] Open
Abstract
Poly-gamma-glutamic acid (γ-PGA), an extracellular biopolymer produced by Bacillus sp., is a non-canonical toll-like receptor 4 (TLR4) agonist. Here we show its antiviral efficacy against noroviruses. γ-PGA with a molecular mass of 2,000-kDa limited murine norovirus (MNV) replication in the macrophage cell line RAW264.7 by inducing interferon (IFN)-β and conferred resistance to viral infection-induced cell death. Additionally, γ-PGA interfered with viral entry into cells. The potent antiviral state mounted by γ-PGA was not attributed to the upregulation of TLR4 or TLR3, a sensor known to recognize norovirus RNA. γ-PGA sensing by TLR4 required the two TLR4-associated accessory factors MD2 and CD14. In ex vivo cultures of mouse ileum, γ-PGA selectively increased the expression of IFN-β in villi. In contrast, IFN-β induction was negligible in the ileal Peyer’s patches (PPs) where its expression was primarily induced by the replication of MNV. Oral administration of γ-PGA, which increased serum IFN-β levels without inducing proinflammatory cytokines, reduced MNV loads in the ileum with PPs and mesenteric lymph nodes in mice. Our results disclose a γ-PGA-mediated non-conventional TLR4 signaling in the ileum, highlighting the potential use of γ-PGA as a prophylactic antiviral agent against noroviruses.
Collapse
Affiliation(s)
- Wooseong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seung-Hoon Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
21
|
Al-Anazi MR, Nazir N, Abdo AA, Sanai FM, Alkahtani S, Alarifi S, Alkahtane AA, Al-Yahya H, Ali D, Alessia MS, Al-Ahdal MN, Al-Qahtani AA. Genetic variations of NOD2 and MD2 genes in hepatitis B virus infection. Saudi J Biol Sci 2016; 26:270-280. [PMID: 31485165 PMCID: PMC6717085 DOI: 10.1016/j.sjbs.2016.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Nucleotide oligomerization domain 2 (NOD2) and myeloid differentiation protein 2 (MD-2) have crucial roles in the innate immune system. NOD2 is a member of the NOD-like receptor (NLR) family of pattern recognition receptors (PRRs), while MD-2 is a co-receptor for Toll-like receptor 4 (TLR4), which comprises another group of PRRs. Genetic variations in the NOD2 and MD-2 genes may be susceptibility factors to viral pathogens including hepatitis B virus (HBV). We investigated whether polymorphisms at NOD2 (rs2066845 and rs2066844) or at MD-2 (rs6472812 and rs11466004) were associated with susceptibility to HBV infection and advancement to related liver complications in a Saudi Arabian population. Methods: A total of 786 HBV-infected patients and 600 healthy uninfected controls were analyzed in the present study. HBV-infected patients were categorized into three groups based on the clinical stage of the infection: inactive HBV carriers, active HBV carriers, and patients with liver cirrhosis + hepatocellular carcinoma (HCC). Results: All four SNPs were significantly associated with susceptibility to HBV infection although none of the SNPs tested in NOD2 and MD-2 were significantly associated with persistence of HBV infection. We found that HBV-infected patients that were homozygous CC for rs2066845 in the NOD2 gene were at a significantly increased risk of progression to HBV-related liver complications (Odds Ratio = 7.443 and P = 0.044). Furthermore, haplotype analysis found that the rs2066844-rs2066845 C-G and T-G haplotypes at the NOD2 gene and four rs6472812-rs11466004 haplotypes (G-C, G-T, A-C, and A-T) at the MD-2 gene were significantly associated with HBV infection in the affected cohort compared to those found in our control group. Conclusion: We found that the single nucleotide polymorphisms rs2066844 and rs2066845 at NOD2 and rs6472812 and rs11466004 at MD-2 were associated with susceptibility to HBV infection in a Saudi population.
Collapse
Affiliation(s)
- Mashael R Al-Anazi
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Nyla Nazir
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ayman A Abdo
- Section of Gastroenterology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Faisal M Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alkahtane
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Hamad Al-Yahya
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Alessia
- Department of Biology, Science College, AI-Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Schad J, Voigt CC. Adaptive evolution of virus-sensing toll-like receptor 8 in bats. Immunogenetics 2016; 68:783-795. [PMID: 27502317 PMCID: PMC7079948 DOI: 10.1007/s00251-016-0940-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/12/2016] [Indexed: 11/29/2022]
Abstract
Recently, bats have gained attention as potential reservoir hosts for emerging zoonotic single-stranded (ssRNA) viruses that may prove fatal for humans and other mammals. It has been hypothesized that some features of their innate immune system may enable bats to trigger an efficient early immune response. Toll-like receptors (TLRs) represent a first line defense within the innate immune system and lie directly at the host–pathogen interface in targeting specific microbe-molecular patterns. However, the direction and strength of selection acting on TLRs are largely unknown for bats. Here, we studied the selection on viral ssRNA sensing TLR8 based on sequence data of 21 bat species. The major part (63 %) of the TLR8 gene evolved under purifying selection, likely due to functional constraints. We also found evidence for persistent positive selection acting on specific amino acid sites (7 %), especially when compared to viral TLR evolution of other mammals. All of these putatively positively selected codons were located in the ligand-binding ectodomain, some coincidenced or were in close proximity to functional sites, as suggested by the crystallographic structure of the human TLR8. This might contribute to the inter-species variation in the ability to recognize molecular patterns of viruses. TLR8 evolution within bats revealed that branches leading to ancestral and recent lineages evolved under episodic positive selection, indicating selective selection pressures in restricted bat lineages. Altogether, we found that the TLR8 displays extensive sequence variation within bats and that unique features separate them from humans and other mammals.
Collapse
Affiliation(s)
- Julia Schad
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany.
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| |
Collapse
|
23
|
New insight into the pathogenesis of minimal change nephrotic syndrome: Role of the persistence of respiratory tract virus in immune disorders. Autoimmun Rev 2016; 15:632-7. [DOI: 10.1016/j.autrev.2016.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
24
|
Ma Y, Han F, Liang J, Yang J, Shi J, Xue J, Yang L, Li Y, Luo M, Wang Y, Wei J, Liu X. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections. Mol Immunol 2016; 71:23-33. [DOI: 10.1016/j.molimm.2016.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/29/2023]
|
25
|
Brogaard L, Klitgaard K, Heegaard PMH, Hansen MS, Jensen TK, Skovgaard K. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae. BMC Genomics 2015; 16:417. [PMID: 26018580 PMCID: PMC4446954 DOI: 10.1186/s12864-015-1557-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae causes pleuropneumonia in pigs, a disease which is associated with high morbidity and mortality, as well as impaired animal welfare. To obtain in-depth understanding of this infection, the interplay between virulence factors of the pathogen and defense mechanisms of the porcine host needs to be elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture of the transcriptional responses can be obtained by investigating both organisms in the same biological sample. Results Host and pathogen responses in pigs experimentally infected with A. pleuropneumoniae were analyzed by high-throughput RT-qPCR. This approach allowed concurrent analysis of selected genes encoding proteins known or hypothesized to be important in the acute phase of this infection. The expression of 17 bacterial and 31 porcine genes was quantified in lung samples obtained within the first 48 hours of infection. This provided novel insight into the early time course of bacterial genes involved in synthesis of pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, lipoprotein) and genes involved in pattern recognition (TLR4, CD14, MD2, LBP, MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B, IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host genes encoding proteins involved in iron metabolism, as well as bacterial genes encoding exotoxins, proteins involved in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate surroundings of the invading pathogen. Conclusions Microbial pathogenesis is the product of interactions between host and pathogen. Our results demonstrate the applicability of high-throughput RT-qPCR for the elucidation of dual-organism gene expression analysis during infection. We showed differential expression of 12 bacterial and 24 porcine genes during infection and significant correlation of porcine and bacterial gene expression. This is the first study investigating the concurrent transcriptional response of both bacteria and host at the site of infection during porcine respiratory infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1557-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise Brogaard
- Innate Immunology Group, Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Kirstine Klitgaard
- Section of Bacteriology, Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Peter M H Heegaard
- Innate Immunology Group, Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Mette Sif Hansen
- Section of Bacteriology, Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Tim Kåre Jensen
- Section of Bacteriology, Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Kerstin Skovgaard
- Innate Immunology Group, Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
26
|
Guzman E, Taylor G. Immunology of bovine respiratory syncytial virus in calves. Mol Immunol 2014; 66:48-56. [PMID: 25553595 DOI: 10.1016/j.molimm.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/28/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease in young calves. The virus is genetically and antigenically closely related to human (H)RSV, which is a major cause of respiratory disease in young infants. As a natural pathogen of calves, BRSV infection recapitulates the pathogenesis of respiratory disease in man more faithfully than semi-permissive, animal models of HRSV infection. With the increasing availability of immunological reagents, the calf can be used to dissect the pathogenesis of and mechanisms of immunity to RSV infection, to analyse the ways in which the virus proteins interact with components of the innate response, and to evaluate RSV vaccine strategies. Passively transferred, neutralising bovine monoclonal antibodies, which recognise the same epitopes in the HRSV and BRSV fusion (F) protein, can protect calves against BRSV infection, and depletion of different T cells subsets in calves has highlighted the importance of CD8(+) T cells in viral clearance. Calves can be used to model maternal-antibody mediated suppression of RSV vaccine efficacy, and to increase understanding of the mechanisms responsible for RSV vaccine-enhanced respiratory disease.
Collapse
Affiliation(s)
- Efrain Guzman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
27
|
Abstract
Acute respiratory tract infection (RTI) is a leading cause of morbidity and mortality worldwide and the majority of RTIs are caused by viruses, among which respiratory syncytial virus (RSV) and the closely related human metapneumovirus (hMPV) figure prominently. Host innate immune response has been implicated in recognition, protection and immune pathological mechanisms. Host-viral interactions are generally initiated via host recognition of pathogen-associated molecular patterns (PAMPs) of the virus. This recognition occurs through host pattern recognition receptors (PRRs) which are expressed on innate immune cells such as epithelial cells, dendritic cells, macrophages and neutrophils. Multiple PRR families, including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs), contribute significantly to viral detection, leading to induction of cytokines, chemokines and type I interferons (IFNs), which subsequently facilitate the eradication of the virus. This review focuses on the current literature on RSV and hMPV infection and the role of PRRs in establishing/mediating the infection in both in vitro and in vivo models. A better understanding of the complex interplay between these two viruses and host PRRs might lead to efficient prophylactic and therapeutic treatments, as well as the development of adequate vaccines.
Collapse
|
28
|
Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 2014; 5:316. [PMID: 25071777 PMCID: PMC4090903 DOI: 10.3389/fimmu.2014.00316] [Citation(s) in RCA: 563] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/23/2014] [Indexed: 01/16/2023] Open
Abstract
Toll-like receptors (TLRs) belong to the pattern recognition receptor (PRR) family, a key component of the innate immune system. TLRs detect invading pathogens and initiate an immediate immune response to them, followed by a long-lasting adaptive immune response. Activation of TLRs leads to the synthesis of pro-inflammatory cytokines and chemokines and the expression of co-stimulatory molecules. TLR4 specifically recognizes bacterial lipopolysaccharide, along with several other components of pathogens and endogenous molecules produced during abnormal situations, such as tissue damage. Evolution across species can lead to substantial diversity in the TLR4’s affinity and specificity to its ligands, the TLR4 gene and cellular expression patterns and tissue distribution. Consequently, TLR4 functions vary across different species. In recent years, the use of synthetic TLR agonists as adjuvants has emerged as a realistic therapeutic goal, notably for the development of vaccines against poorly immunogenic targets. Given that an adjuvanted vaccine must be assessed in pre-clinical animal models before being tested in humans, the extent to which an animal model represents and predicts the human condition is of particular importance. This review focuses on the current knowledge on the critical points of divergence between human and the mammalian species commonly used in vaccine research and development (non-human primate, mouse, rat, rabbit, swine, and dog), in terms of molecular, cellular, and functional properties of TLR4.
Collapse
Affiliation(s)
- Céline Vaure
- Research Department, Sanofi Pasteur , Marcy L'Etoile , France
| | - Yuanqing Liu
- Research Department, Sanofi Pasteur , Marcy L'Etoile , France
| |
Collapse
|
29
|
Metcalfe HJ, La Ragione RM, Smith DGE, Werling D. Functional characterisation of bovine TLR5 indicates species-specific recognition of flagellin. Vet Immunol Immunopathol 2013; 157:197-205. [PMID: 24461722 PMCID: PMC3969226 DOI: 10.1016/j.vetimm.2013.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 12/16/2013] [Accepted: 12/21/2013] [Indexed: 01/10/2023]
Abstract
Mammalian toll-like receptor 5 (TLR5) senses flagellin of several bacterial species and has been described to activate the innate immune system. To assess the role of bovine TLR5 (boTLR5) in the cattle system, we cloned and successfully expressed boTLR5 in human embryonic kidney (HEK) 293 cells, as indicated by quantitative PCR and confocal microscopy. However, in contrast to huTLR5-transfected cells, exposure of boTLR5-transfected cells to flagellin neither activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nor CXCL8 production. Subsequent comparison of the flagellin response induced in human and bovine primary macrophages revealed that flagellin did not lead to phosphorylation of major signalling molecules. Furthermore, the CXCL8 and TNFα response of primary bovine macrophages stimulated with flagellin was very low compared to that observed in human primary macrophages. Our results indicate that cattle express a functional TLR5 albeit with different flagellin sensing qualities compared to human TLR5. However, boTLR5 seemed to play a different role in the bovine system compared to the human system in recognizing flagellin, and other potentially intracellular expressed receptors may play a more important role in the bovine system to detect flagellin.
Collapse
Affiliation(s)
- Hannah J Metcalfe
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Roberto M La Ragione
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7TE, UK; Animal Health and Veterinary Laboratories Agency, Weybridge, Surrey KT15 3NB, UK
| | - David G E Smith
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow G12 8TA, UK; Bacterial Functional Genomics, Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, UK
| | - Dirk Werling
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK.
| |
Collapse
|
30
|
Schijf MA, Lukens MV, Kruijsen D, van Uden NOP, Garssen J, Coenjaerts FEJ, van’t Land B, van Bleek GM. Respiratory syncytial virus induced type I IFN production by pDC is regulated by RSV-infected airway epithelial cells, RSV-exposed monocytes and virus specific antibodies. PLoS One 2013; 8:e81695. [PMID: 24303065 PMCID: PMC3841124 DOI: 10.1371/journal.pone.0081695] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/15/2013] [Indexed: 12/25/2022] Open
Abstract
Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14+ myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.
Collapse
Affiliation(s)
- Marcel A. Schijf
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- Department of Immunology, Danone Research - Centre for Specialised Nutrition, Wageningen, The Netherlands
| | - Michael V. Lukens
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Debby Kruijsen
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Nathalie O. P. van Uden
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Johan Garssen
- Department of Immunology, Danone Research - Centre for Specialised Nutrition, Wageningen, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht, The Netherlands
| | | | - Belinda van’t Land
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- Department of Immunology, Danone Research - Centre for Specialised Nutrition, Wageningen, The Netherlands
| | - Grada M. van Bleek
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Sacco RE, McGill JL, Pillatzki AE, Palmer MV, Ackermann MR. Respiratory syncytial virus infection in cattle. Vet Pathol 2013; 51:427-36. [PMID: 24009269 DOI: 10.1177/0300985813501341] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bovine respiratory syncytial virus (RSV) is a cause of respiratory disease in cattle worldwide. It has an integral role in enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV infection can predispose calves to secondary bacterial infection by organisms such as Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, resulting in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Even in cases where animals do not succumb to bovine respiratory disease complex, there can be long-term losses in production performance. This includes reductions in feed efficiency and rate of gain in the feedlot, as well as reproductive performance, milk production, and longevity in the breeding herd. As a result, economic costs to the cattle industry from bovine respiratory disease have been estimated to approach $1 billion annually due to death losses, reduced performance, and costs of vaccinations and treatment modalities. Human and bovine RSV are closely related viruses with similarities in histopathologic lesions and mechanisms of immune modulation induced following infection. Therefore, where appropriate, we provide comparisons between RSV infections in humans and cattle. This review article discusses key aspects of RSV infection of cattle, including epidemiology and strain variability, clinical signs and diagnosis, experimental infection, gross and microscopic lesions, innate and adaptive immune responses, and vaccination strategies.
Collapse
Affiliation(s)
- R E Sacco
- National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
32
|
Willcocks S, Offord V, Seyfert HM, Coffey TJ, Werling D. Species-specific PAMP recognition by TLR2 and evidence for species-restricted interaction with Dectin-1. J Leukoc Biol 2013; 94:449-58. [DOI: 10.1189/jlb.0812390] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
Garg R, Shrivastava P, van Drunen Littel-van den Hurk S. The role of dendritic cells in innate and adaptive immunity to respiratory syncytial virus, and implications for vaccine development. Expert Rev Vaccines 2013; 11:1441-57. [PMID: 23252388 DOI: 10.1586/erv.12.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Respiratory syncytial virus (RSV) is a common human pathogen that causes cold-like symptoms in most healthy adults and children. However, RSV often moves into the lower respiratory tract in infants and young children predisposed to respiratory illness, making it the most common cause of pediatric broncheolitis and pneumonia. The development of an appropriate balanced immune response is critical for recovery from RSV, while an unbalanced and/or excessively vigorous response may lead to immunopathogenesis. Different dendritic cell (DC) subsets influence the magnitude and quality of the host response to RSV infection, with myeloid DCs mediating and plasmacytoid DCs modulating immunopathology. Furthermore, stimulation of DCs through Toll-like receptors is essential for induction of protective immunity to RSV. These characteristics have implications for the rational design of a RSV vaccine.
Collapse
Affiliation(s)
- Ravendra Garg
- VIDO-Intervac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | | | | |
Collapse
|
34
|
Kolli D, Bao X, Casola A. Human metapneumovirus antagonism of innate immune responses. Viruses 2012; 4:3551-71. [PMID: 23223197 PMCID: PMC3528279 DOI: 10.3390/v4123551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 12/03/2022] Open
Abstract
Human metapneumovirus (hMPV) is a recently identified RNA virus belonging to the Paramyxoviridae family, which includes several major human and animal pathogens. Epidemiological studies indicate that hMPV is a significant human respiratory pathogen with worldwide distribution. It is associated with respiratory illnesses in children, adults, and immunocompromised patients, ranging from upper respiratory tract infections to severe bronchiolitis and pneumonia. Interferon (IFN) represents a major line of defense against virus infection, and in response, viruses have evolved countermeasures to inhibit IFN production as well as IFN signaling. Although the strategies of IFN evasion are similar, the specific mechanisms by which paramyxoviruses inhibit IFN responses are quite diverse. In this review, we will present an overview of the strategies that hMPV uses to subvert cellular signaling in airway epithelial cells, the major target of infection, as well as in primary immune cells.
Collapse
Affiliation(s)
- Deepthi Kolli
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
| | - Xiaoyong Bao
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
| | - Antonella Casola
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
- Microbiology and Immunology, University of Texas Medical Branch at Galveston, Texas, USA
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Texas, USA
| |
Collapse
|
35
|
Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. THE AMERICAN JOURNAL OF PATHOLOGY 2012. [PMID: 23201091 DOI: 10.1016/j.ajpath.2012.10.014] [Citation(s) in RCA: 435] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial-derived lipopolysaccharides (LPS) play an essential role in the inflammatory process of inflammatory bowel disease. A defective intestinal tight junction (TJ) barrier is an important pathogenic factor of inflammatory bowel disease and other inflammatory conditions of the gut. Despite its importance in mediating intestinal inflammation, the physiological effects of LPS on the intestinal epithelial barrier remain unclear. The major aims of this study were to determine the effects of physiologically relevant concentrations of LPS (0 to 1 ng/mL) on intestinal barrier function using an in vitro (filter-grown Caco-2 monolayers) and an in vivo (mouse intestinal perfusion) intestinal epithelial model system. LPS, at physiologically relevant concentrations (0 to 1 ng/mL), in the basolateral compartment produced a time-dependent increase in Caco-2 TJ permeability without inducing cell death. Intraperitoneal injection of LPS (0.1 mg/kg), leading to clinically relevant plasma concentrations, also caused a time-dependent increase in intestinal permeability in vivo. The LPS-induced increase in intestinal TJ permeability was mediated by an increase in enterocyte membrane TLR-4 expression and a TLR-4-dependent increase in membrane colocalization of membrane-associated protein CD14. In conclusion, these studies show for the first time that LPS causes an increase in intestinal permeability via an intracellular mechanism involving TLR-4-dependent up-regulation of CD14 membrane expression.
Collapse
Affiliation(s)
- Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | | | | |
Collapse
|
36
|
Glass EJ, Baxter R, Leach RJ, Jann OC. Genes controlling vaccine responses and disease resistance to respiratory viral pathogens in cattle. Vet Immunol Immunopathol 2012; 148:90-9. [PMID: 21621277 PMCID: PMC3413884 DOI: 10.1016/j.vetimm.2011.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 04/21/2011] [Accepted: 05/02/2011] [Indexed: 12/27/2022]
Abstract
Farm animals remain at risk of endemic, exotic and newly emerging viruses. Vaccination is often promoted as the best possible solution, and yet for many pathogens, either there are no appropriate vaccines or those that are available are far from ideal. A complementary approach to disease control may be to identify genes and chromosomal regions that underlie genetic variation in disease resistance and response to vaccination. However, identification of the causal polymorphisms is not straightforward as it generally requires large numbers of animals with linked phenotypes and genotypes. Investigation of genes underlying complex traits such as resistance or response to viral pathogens requires several genetic approaches including candidate genes deduced from knowledge about the cellular pathways leading to protection or pathology, or unbiased whole genome scans using markers spread across the genome. Evidence for host genetic variation exists for a number of viral diseases in cattle including bovine respiratory disease and anecdotally, foot and mouth disease virus (FMDV). We immunised and vaccinated a cattle cross herd with a 40-mer peptide derived from FMDV and a vaccine against bovine respiratory syncytial virus (BRSV). Genetic variation has been quantified. A candidate gene approach has grouped high and low antibody and T cell responders by common motifs in the peptide binding pockets of the bovine major histocompatibility complex (BoLA) DRB3 gene. This suggests that vaccines with a minimal number of epitopes that are recognised by most cattle could be designed. Whole genome scans using microsatellite and single nucleotide polymorphism (SNP) markers has revealed many novel quantitative trait loci (QTL) and SNP markers controlling both humoral and cell-mediated immunity, some of which are in genes of known immunological relevance including the toll-like receptors (TLRs). The sequencing, assembly and annotation of livestock genomes and is continuing apace. In addition, provision of high-density SNP chips should make it possible to link phenotypes with genotypes in field populations without the need for structured populations or pedigree information. This will hopefully enable fine mapping of QTL and ultimate identification of the causal gene(s). The research could lead to selection of animals that are more resistant to disease and new ways to improve vaccine efficacy.
Collapse
Affiliation(s)
- Elizabeth J Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | | | | | | |
Collapse
|
37
|
Marr N, Turvey SE. Role of human TLR4 in respiratory syncytial virus-induced NF-κB activation, viral entry and replication. Innate Immun 2012; 18:856-65. [PMID: 22535679 DOI: 10.1177/1753425912444479] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TLRs play a key role in innate immune defenses. It was previously reported that purified respiratory syncytial virus (RSV) fusion protein elicits an inflammatory response in hematopoietic cells, which required expression of TLR4 and its co-receptor CD14. However, a biological role of TLR4 in immunity to RSV, as initially proposed, has remained inconclusive and controversial. Here, we directly assess the role of human TLR4 and its co-receptors in NF-κB activation, viral entry and replication using intact virions rather than purified RSV components. We used HEK 293 reporter cells that are highly permissive for RSV and that either express or a lack a functional human TLR4/MD-2/CD14 complex. We demonstrate that RSV-mediated NF-κB activation, viral entry and replication are independent of the expression of a functional human TLR4/MD-2/CD14 complex and that, in turn, human TLR4 activation by LPS remains unaffected in RSV-infected cells. Thus, although isolated viral compounds such as purified RSV F protein may bind TLR4 and/or CD14, a direct interaction between intact RSV particles and the human TLR4 receptor complex does not seem to play a biological role in RSV pathogenesis.
Collapse
Affiliation(s)
- Nico Marr
- Department of Pediatrics, University of British Columbia and the Child & Family Research Institute, Vancouver, Canada.
| | | |
Collapse
|
38
|
Gershwin LJ. Immunology of bovine respiratory syncytial virus infection of cattle. Comp Immunol Microbiol Infect Dis 2012; 35:253-7. [PMID: 22410266 DOI: 10.1016/j.cimid.2012.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 10/28/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) is a respiratory pathogen of cattle that causes severe disease in calves alone and as one of several viruses and bacteria that cause bovine respiratory disease complex. Like human RSV this virus modulates the immune response to avoid stimulation of a vibrant CD8+ T cytotoxic cell response and instead promotes a Th2 response. The Th2 skew sometimes results in the production of IgE antibodies and depresses production of the Th1 cytokine interferon γ. Innate immune cells have a pivotal role in guiding the adaptive response to BRSV, with selective secretion of cytokines by pulmonary dendritic cells. Here we review some of the pertinent observations on immune responses to BRSV infection and vaccination and illustrate how experimental infection models have been used to elucidate the immunopathogenesis of BRSV infection. Recent experiments using intranasal vaccination and/or immune modulation with DNA based adjuvants show promise for effective vaccination by the stimulation of Th1 T cell responses.
Collapse
Affiliation(s)
- Laurel J Gershwin
- Department of Pathology, Microbiology, & Immunology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
39
|
Comparative analysis of species-specific ligand recognition in Toll-like receptor 8 signaling: a hypothesis. PLoS One 2011; 6:e25118. [PMID: 21949866 PMCID: PMC3176813 DOI: 10.1371/journal.pone.0025118] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 08/25/2011] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs) play a central role in the innate immune response by recognizing conserved structural patterns in a variety of microbes. TLRs are classified into six families, of which TLR7 family members include TLR7, 8, and 9, which are localized to endolysosomal compartments recognizing viral infection in the form of foreign nucleic acids. In our current study, we focused on TLR8, which has been shown to recognize different types of ligands such as viral or bacterial ssRNA as well as small synthetic molecules. The primary sequences of rodent and non-rodent TLR8s are similar, but the antiviral compound (R848) that activates the TLR8 pathway is species-specific. Moreover, the factors underlying the receptor's species-specificity remain unknown. To this end, comparative homology modeling, molecular dynamics simulations refinement, automated docking and computational mutagenesis studies were employed to probe the intermolecular interactions between this anti-viral compound and TLR8. Furthermore, comparative analyses of modeled TLR8 (rodent and non-rodent) structures have shown that the variation mainly occurs at LRR14-15 (undefined region); hence, we hypothesized that this variation may be the primary reason for the exhibited species-specificity. Our hypothesis was further bolstered by our docking studies, which clearly showed that this undefined region was in close proximity to the ligand-binding site and thus may play a key role in ligand recognition. In addition, the interface between the ligand and TLR8s varied depending upon the amino acid charges, free energy of binding, and interaction surface. Therefore, our current work provides a hypothesis for previous in vivo studies in the context of TLR signaling.
Collapse
|
40
|
Kolli D, Bao X, Liu T, Hong C, Wang T, Garofalo RP, Casola A. Human metapneumovirus glycoprotein G inhibits TLR4-dependent signaling in monocyte-derived dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:47-54. [PMID: 21632720 DOI: 10.4049/jimmunol.1002589] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human metapneumovirus (hMPV) is a major cause of upper and lower respiratory infections in children and adults. Recent work from our group demonstrated that hMPV G glycoprotein is an important virulence factor, responsible for inhibiting innate immune responses in airway epithelial cells. Myeloid dendritic cells (DCs) are potent APCs and play a major role in initiating and modulating the innate and adaptive immune responses. In this study, we found that TLR4 plays a major role in hMPV-induced activation of monocyte-derived DCs (moDCs), as downregulation of its expression by small interfering RNA significantly blocked hMPV-induced chemokine and type I IFN expression. Similar results were found in bone marrow-derived DCs from TLR4-deficient mice. moDCs infected with a virus lacking G protein expression produced higher levels of cytokines and chemokines compared with cells infected with wild-type virus, suggesting that G protein plays an inhibitory role in viral-induced cellular responses. Specifically, G protein affects TLR4-dependent signaling, as infection of moDCs with recombinant hMPV lacking G protein inhibited LPS-induced production of cytokine and chemokines significantly less than did wild-type virus, and treatment of moDCs with purified G protein resulted in a similar inhibition of LPS-dependent signaling. Our results demonstrate that hMPV G protein plays an important role in inhibiting host innate immune responses, likely affecting adaptive responses too.
Collapse
Affiliation(s)
- Deepthi Kolli
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Activation of the NF-kappaB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy. Proc Natl Acad Sci U S A 2011; 108:3743-8. [PMID: 21321191 DOI: 10.1073/pnas.1012753108] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Because our in silico analysis with a human transcription factor database demonstrated the presence of several binding sites for NF-κB, a central regulator of cellular immune and inflammatory responses, in the adeno-associated virus (AAV) genome, we investigated whether AAV uses NF-κB during its life cycle. We used small molecule modulators of NF-κB in HeLa cells transduced with recombinant AAV vectors. VP16, an NF-κB activator, augmented AAV vector-mediated transgene expression up to 25-fold. Of the two NF-κB inhibitors, Bay11, which blocks both the canonical and the alternative NF-κB pathways, totally ablated transgene expression, whereas pyrrolidone dithiocarbamate, which interferes with the classical NF-κB pathway, had no effect. Western blot analyses confirmed the abundance of the nuclear p52 protein component of the alternative NF-κB pathway in the presence of VP16, which was ablated by Bay11, suggesting that AAV transduction activates the alternative NF-κB pathway. In vivo, hepatic AAV gene transfer activated the canonical NF-κB pathway within 2 h, resulting in expression of proinflammatory cytokines and chemokines (likely reflecting the sensing of viral particles by antigen-presenting cells), whereas the alternative pathway was activated by 9 h. Bay11 effectively blocked activation of both pathways without interfering with long-term transgene expression while eliminating proinflammatory cytokine expression. These studies suggest that transient immunosuppression with NF-κB inhibitors before transduction with AAV vectors should lead to a dampened immune response, which has significant implications in the optimal use of AAV vectors in human gene therapy.
Collapse
|
42
|
Sprong T, Ley PVD, Abdollahi-Roodsaz S, Joosten L, Meer JVD, Netea M, Deuren MV. Neisseria meningitidis lipid A mutant LPSs function as LPS antagonists in humans by inhibiting TLR 4-dependent cytokine production. Innate Immun 2010; 17:517-25. [PMID: 21088052 DOI: 10.1177/1753425910383999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lipopolysaccharide is a major constituent of the outer membrane of Gram-negative bacteria and important in the induction of pro-inflammatory responses. Recently, novel LPS species derived from Neisseria meningitidis H44/76 by insertional inactivation of the lpxL1 and lpxL2 genes have been created with a lipid A portion consisting of five (penta-acylated lpxL1) or four (tetra-acylated lpxL2) fatty acids connected to the glucosamine backbone instead of six fatty acids in the wild-type LPS. We show that these mutant LPS-types are poor inducers of cytokines (tumor-necrosis factor-α, IL-1β, IL-10, IL-RA) in human mononuclear cells. Both penta- and tetra-acylated meningococcal LPSs were able to inhibit cytokine production by wild-type Escherichia coli or meningococcal LPS. Binding of FITC-labelled E. coli LPS TLR4 transfected Chinese hamster ovary (CHO) cells was inhibited by both mutant LPS-types. Experiments with CHO fibroblasts transfected with human CD14 and TLR4 showed that the antagonizing effect was dependent on the expression of human TLR4. In contrast to the situation in humans, lpxL1 LPS has agonistic activity for cytokine production in peritoneal macrophages of DBA mice, and exacerbated arthritis in murine collagen induced arthritis model. N. meningitidis lipid A mutant LPSs lpxL1 and lpxL2 function as LPS antagonists in humans by inhibiting TLR4-dependent cytokine production but have agonistic activity in mice.
Collapse
Affiliation(s)
- Tom Sprong
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Coffey TJ, Werling D. Therapeutic targeting of the innate immune system in domestic animals. Cell Tissue Res 2010; 343:251-61. [DOI: 10.1007/s00441-010-1054-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/08/2010] [Indexed: 12/23/2022]
|
44
|
Kwong LS, Parsons R, Patterson R, Coffey TJ, Thonur L, Chang JS, Russell G, Haig D, Werling D, Hope JC. Characterisation of antibodies to bovine Toll-like receptor (TLR)-2 and cross-reactivity with ovine TLR2. Vet Immunol Immunopathol 2010; 139:313-8. [PMID: 21067818 DOI: 10.1016/j.vetimm.2010.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 10/19/2022]
Abstract
Host recognition of conserved pathogen-associated molecular patterns (PAMPs) and their interactions with pattern-recognition receptors, including the Toll-like receptors (TLR) is essential for innate immune response induction. The TLR1 family (TLR1, 2, 6 and 10) is involved in the recognition of gram-positive and gram-negative bacteria and heterodimers of TLR1 or TLR6 with TLR2 are crucial for the identification of several PAMPs. Studies on cell surface expression of TLR in ruminants are hampered by the lack of specific antibodies and no convincingly cross-reactive anti-human antibodies have been described so far. We describe herein four antibodies which recognise bovine TLR2. Differences in TLR2 expression were evident on bovine antigen presenting cells with high level expression on peripheral blood monocytes and monocyte-derived macrophages. Lower levels of expression were evident on dendritic cell populations derived in vitro and ex vivo, and on alveolar macrophages. One of the antibodies recognised TLR2 expression on ovine peripheral blood monocytes. The identification of antibodies specific for bovine and ovine TLR2 will facilitate studies of the role of this important PRR in the initiation of immune responses to important pathogens.
Collapse
Affiliation(s)
- Lai Shan Kwong
- Institute for Animal Health, High Street, Compton, Newbury, Berkshire RG207NN, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1. J Virol 2010; 84:27-33. [PMID: 19846529 DOI: 10.1128/jvi.01462-09] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ebola virus initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal Ebola virus infections. Here we report that host Toll-like receptor 4 (TLR4) is a sensor for Ebola virus glycoprotein (GP) on virus-like particles (VLPs) and that resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines and suppressor of cytokine signaling 1 (SOCS1) in a human monocytic cell line and in HEK293-TLR4/MD2 cells stably expressing the TLR4/MD2 complex. Ebola virus GP was found to interact with TLR4 by immunoprecipitation/Western blot analyses, and Ebola virus GP on VLPs was able to stimulate expression of NF-kappaB in a TLR4-dependent manner. Interestingly, we found that budding of Ebola virus VLPs was more pronounced in TLR4-stimulated cells than in unstimulated control cells. In sum, these findings identify the host innate immune protein TLR4 as a sensor for Ebola virus GP which may play an important role in the immunopathogenesis of Ebola virus infection.
Collapse
|
46
|
Stevens MP, Humphrey TJ, Maskell DJ. Molecular insights into farm animal and zoonotic Salmonella infections. Philos Trans R Soc Lond B Biol Sci 2009; 364:2709-23. [PMID: 19687040 PMCID: PMC2865095 DOI: 10.1098/rstb.2009.0094] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica is a facultative intracellular pathogen of worldwide importance. Infections may present in a variety of ways, from asymptomatic colonization to inflammatory diarrhoea or typhoid fever depending on serovar- and host-specific factors. Human diarrhoeal infections are frequently acquired via the food chain and farm environment by virtue of the ability of selected non-typhoidal serovars to colonize the intestines of food-producing animals and contaminate the avian reproductive tract and egg. Colonization of reservoir hosts often occurs in the absence of clinical symptoms; however, some S. enterica serovars threaten animal health owing to their ability to cause acute enteritis or translocate from the intestines to other organs causing fever, septicaemia and abortion. Despite the availability of complete genome sequences of isolates representing several serovars, the molecular mechanisms underlying Salmonella colonization, pathogenesis and transmission in reservoir hosts remain ill-defined. Here we review current knowledge of the bacterial factors influencing colonization of food-producing animals by Salmonella and the basis of host range, differential virulence and zoonotic potential.
Collapse
Affiliation(s)
- Mark P Stevens
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | |
Collapse
|
47
|
Werling D, Jann OC, Offord V, Glass EJ, Coffey TJ. Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol 2009; 30:124-30. [PMID: 19211304 DOI: 10.1016/j.it.2008.12.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 12/18/2008] [Accepted: 12/18/2008] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors that are an important link between innate and adaptive immunity. Many vaccines incorporate ligands for TLRs as an adjuvant and are developed in rodent models, with the resulting data transferred to other species. Vaccine features can be improved markedly by emphasizing the biological relevance when evaluating other animal models for host-pathogen interaction and by taking greater advantage of the unique experimental opportunities that are offered by large animal, non-rodent models. Here, we aim to summarize our current knowledge of species-specific TLR responses and briefly discuss that vaccine efficacy in relevant host species might be improved by considering the species-specific TLR responses.
Collapse
Affiliation(s)
- Dirk Werling
- Royal Veterinary College. Department of Pathology and Infectious Diseases, Hawkshead Lane, Hatfield, AL9 7TA, UK.
| | | | | | | | | |
Collapse
|