1
|
Leestemaker-Palmer A, Bermudez LE. Mycobacteroides abscessus ability to interact with the host mucosal cells plays an important role in pathogenesis of the infection. Crit Rev Microbiol 2024:1-13. [PMID: 39460453 DOI: 10.1080/1040841x.2024.2418130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens ubiquitous in the environment. Mycobacteroides abscessus is a relatively new pathogen associated with underlying lung chronic pathologies, accounting for most of the pulmonary infections linked to the rapidly growing mycobacteria group. This includes chronic obstructive pulmonary disease, bronchiectasis, or cystic fibrosis. Patient outcomes from M. abscessus infections are poor due to complicated treatments and other factors. Intrinsic drug resistance plays an important role. The M. abscessus toolbox of resistance is varied leading to complex strategies for treatment. Mechanisms include waxy cell walls, drug export mechanisms, and acquired resistance. Many studies have also shown the impact of extracellular DNA found in the biofilm matrix during early infection and its possible advantage in pathogenicity. In this review, we discuss the current knowledge of early infection focusing on biofilm formation, an environmental strategy, and which treatments prevent its formation improving current antibiotic treatment outcomes in preliminary studies.
Collapse
Affiliation(s)
- Amy Leestemaker-Palmer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
2
|
Colombatti Olivieri MA, Fresia P, Graña M, Cuerda MX, Nagel A, Alvarado Pinedo F, Romano MI, Caimi K, Berná L, Santangelo MP. Genomic comparison of two strains of Mycobacterium avium subsp. paratuberculosis with contrasting pathogenic phenotype. Tuberculosis (Edinb) 2023; 138:102299. [PMID: 36587510 DOI: 10.1016/j.tube.2022.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In a previous study, we evaluated the degree of virulence of Mycobacterium avium subsp. paratuberculosis (Map) strains isolated from cattle in Argentina in a murine model. This assay allowed us to differentiate between high-virulent MapARG1347 and low-virulent MapARG1543 strains. To corroborate whether the differences in virulence could be attributed to genetic differences between the strains, we performed Whole Genome Sequencing and compared the genomes and gene content between them and determined the differences related to the reference strain MapK10. We found 233 SNPs/INDELS in one or both strains relative to Map K10. The two strains share most of the variations, but we found 15 mutations present in only one of the strains. Considering NS-SNP/INDELS that produced a severe effect in the coding sequence, we focus the analysis on four predicted proteins, putatively related to virulence. Survival of MapARG1347 strain in bMDM was higher than MapARG1543 and was more resistant to acidic pH and H2O2 stresses than MapK10. The genomic differences between the two strains found in genes MAP1203 (a putative peptidoglycan hydrolase), MAP0403 (a putative serine protease) MAP1003c (a member of the PE-PPE family) and MAP4152 (a putative mycofactocin binding protein) could contribute to explain the contrasting phenotype previously observed in mice models.
Collapse
Affiliation(s)
- M A Colombatti Olivieri
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - P Fresia
- Unidad Mixta Pasteur+INIA, Institut Pasteur de Montevideo, Mataojo 2020, CP11400, Montevideo, Uruguay.
| | - M Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Mataojo 2020, CP11400, Montevideo, Uruguay.
| | - M X Cuerda
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - A Nagel
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - F Alvarado Pinedo
- Centro de Diagnóstico e Investigaciones Veterinarias (CEDIVE), Facultad de Ciencias Veterinarias - Universidad de La Plata (UNLP), Chascomus, Buenos Aires, Argentina.
| | - M I Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - K Caimi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - L Berná
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| | - M P Santangelo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Dr. Nicolás Repetto y De Los Reseros S/Nº B1686IGC, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Li B, Zhang Y, Guo Q, He S, Fan J, Xu L, Zhang Z, Wu W, Chu H. Antibacterial peptide RP557 increases the antibiotic sensitivity of Mycobacterium abscessus by inhibiting biofilm formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151855. [PMID: 34813807 DOI: 10.1016/j.scitotenv.2021.151855] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Biofilm formation is an important factor for Mycobacterium abscessus to resist harsh environment and produce drug resistance. The anti-biofilm activity of a newly designed antibacterial peptide, RP557, was investigated. The effect of RP557 alone or in combination with several clinically effective antibiotics, including clarithromycin, amikacin, cefoxitin and imipenem, on M. abscessus growth in biofilms was determined. Microstructural changes in biofilms after RP557 treatment were observed by scanning electron microscope. The effect of RP557 on the viability of bacteria was determined by Syto9/PI staining and fluorescence microscopy. Finally, the potential mechanism of RP557 action on biofilm development was explored by transcriptome analysis. M. abscessus growing in biofilms showed increased resistance to antimicrobial drugs. RP557 alone exhibited only moderate anti-M. abscessus activity in vitro, but significantly increased the antibiotic sensitivity of M. abscessus in biofilms. The inhibitory effect of RP557 on biofilm formation was visualized by the scanning electron microscope; fluorescence staining demonstrated increased bacterial death in response to RP557 treatment. Furthermore, comparative analysis of transcriptomic data suggested RP557 may inhibit biofilm formation by down-regulating nitrogen and fatty acid metabolism, as well as peptidoglycan biosynthesis. As such, RP557 is a potential candidate to include in novel strategies to treat M. abscessus infections.
Collapse
Affiliation(s)
- Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yongjie Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Qi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Liyun Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wenye Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
4
|
Gorzynski M, Week T, Jaramillo T, Dzalamidze E, Danelishvili L. Mycobacterium abscessus Genetic Determinants Associated with the Intrinsic Resistance to Antibiotics. Microorganisms 2021; 9:microorganisms9122527. [PMID: 34946129 PMCID: PMC8707978 DOI: 10.3390/microorganisms9122527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium abscessus
subsp. abscessus (MAB) is a fast-growing nontuberculous mycobacterium causing pulmonary infections in immunocompromised and immunocompetent individuals. The treatment of MAB infections in clinics is extremely challenging, as this organism is naturally resistant to most available antibiotics. There is limited knowledge on the mechanisms of MAB intrinsic resistance and on the genes that are involved in the tolerance to antimicrobials. To identify the MAB genetic factors, including the components of the cell surface transport systems related to the efflux pumps, major known elements contributing to antibiotic resistance, we screened the MAB transposon library of 2000 gene knockout mutants. The library was exposed at either minimal inhibitory (MIC) or bactericidal concentrations (BC) of amikacin, clarithromycin, or cefoxitin, and MAB susceptibility was determined through the optical density. The 98 susceptible and 36 resistant mutants that exhibited sensitivity below the MIC and resistance to BC, respectively, to all three drugs were sequenced, and 16 mutants were found to belong to surface transport systems, such as the efflux pumps, porins, and carrier membrane enzymes associated with different types of molecule transport. To establish the relevance of the identified transport systems to antibiotic tolerance, the gene expression levels of the export related genes were evaluated in nine MAB clinical isolates in the presence or absence of antibiotics. The selected mutants were also evaluated for their ability to form biofilms and for their intracellular survival in human macrophages. In this study, we identified numerous MAB genes that play an important role in the intrinsic mechanisms to antimicrobials and further demonstrated that, by targeting components of the drug efflux system, we can significantly increase the efficacy of the current antibiotics.
Collapse
Affiliation(s)
- Mylene Gorzynski
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Biochemistry & Molecular Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Week
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Bioengineering, College of Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Jaramillo
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Elizaveta Dzalamidze
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- BioHealth Sciences, Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Correspondence:
| |
Collapse
|
5
|
Chen Y, Zhai W, Zhang K, Liu H, Zhu T, Su L, Bermudez L, Chen H, Guo A. Small RNA Profiling in Mycobacterium Provides Insights Into Stress Adaptability. Front Microbiol 2021; 12:752537. [PMID: 34803973 PMCID: PMC8600241 DOI: 10.3389/fmicb.2021.752537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022] Open
Abstract
Mycobacteria encounter a number of environmental changes during infection and respond using different mechanisms. Small RNA (sRNA) is a post-transcriptionally regulatory system for gene functions and has been investigated in many other bacteria. This study used Mycobacterium tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection models and sequenced whole bacterial RNAs before and after host cell infection. A comparison of differentially expressed sRNAs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) and target prediction was carried out. Six pathogenically relevant stress conditions, growth rate, and morphology were used to screen and identify sRNAs. From these data, a subset of sRNAs was differentially expressed in multiple infection groups and stress conditions. Many were found associated with lipid metabolism. Among them, ncBCG427 was significantly downregulated when BCG entered into macrophages and was associated with increased biofilm formation. The reduction of virulence possibility depends on regulating lipid metabolism.
Collapse
Affiliation(s)
- Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Wenjun Zhai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Kailun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Li Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Luiz Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Kleinwort KJH, Hobmaier BF, Mayer R, Hölzel C, Degroote RL, Märtlbauer E, Hauck SM, Deeg CA. Mycobacterium avium subsp. paratuberculosis Proteome Changes Profoundly in Milk. Metabolites 2021; 11:metabo11080549. [PMID: 34436489 PMCID: PMC8399727 DOI: 10.3390/metabo11080549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) are detectable viable in milk and other dairy products. The molecular mechanisms allowing the adaptation of MAP in these products are still poorly understood. To obtain information about respective adaptation of MAP in milk, we differentially analyzed the proteomes of MAP cultivated for 48 h in either milk at 37 °C or 4 °C or Middlebrook 7H9 broth as a control. From a total of 2197 MAP proteins identified, 242 proteins were at least fivefold higher in abundance in milk. MAP responded to the nutritional shortage in milk with upregulation of 32% of proteins with function in metabolism and 17% in fatty acid metabolism/synthesis. Additionally, MAP upregulated clusters of 19% proteins with roles in stress responses and immune evasion, 19% in transcription/translation, and 13% in bacterial cell wall synthesis. Dut, MmpL4_1, and RecA were only detected in MAP incubated in milk, pointing to very important roles of these proteins for MAP coping with a stressful environment. Dut is essential and plays an exclusive role for growth, MmpL4_1 for virulence through secretion of specific lipids, and RecA for SOS response of mycobacteria. Further, 35 candidates with stable expression in all conditions were detected, which could serve as targets for detection. Data are available via ProteomeXchange with identifier PXD027444.
Collapse
Affiliation(s)
- Kristina J. H. Kleinwort
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
| | - Bernhard F. Hobmaier
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
| | - Ricarda Mayer
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, D-85764 Oberschleißheim, Germany; (R.M.); (C.H.); (E.M.)
| | - Christina Hölzel
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, D-85764 Oberschleißheim, Germany; (R.M.); (C.H.); (E.M.)
- Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, CAU Kiel, D-24098 Kiel, Germany
| | - Roxane L. Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
| | - Erwin Märtlbauer
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, D-85764 Oberschleißheim, Germany; (R.M.); (C.H.); (E.M.)
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, D-80939 Munich, Germany;
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
- Correspondence:
| |
Collapse
|
7
|
Bay S, Begg D, Ganneau C, Branger M, Cochard T, Bannantine JP, Köhler H, Moyen JL, Whittington RJ, Biet F. Engineering Synthetic Lipopeptide Antigen for Specific Detection of Mycobacterium avium subsp. paratuberculosis Infection. Front Vet Sci 2021. [DOI: 10.3389/fvets.2021.637841
expr 832343215 + 929968715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Unlike other MAC members, Mycobacterium avium subsp. paratuberculosis (MAP) does not produce glycopeptidolipids (GPL) on the surface of the cell wall but a lipopentapeptide called L5P (also termed Lipopeptide-I or Para-LP-01) characterized in C-type (bovine) strains. This lipopeptide antigen contains a pentapeptide core, D-Phenylalanine-N-methyl-L-Valine-L-Isoleucine-L-Phenylalanine-L-Alanine, in which the N-terminal D-Phenylalanine is amido-linked with a fatty acid (C18–C20). The molecular and genetic characterization of this antigen demonstrated that L5P is unique to MAP. Knowledge of the structure of L5P enabled synthetic production of this lipopeptide in large quantities for immunological evaluation. Various studies described the immune response directed against L5P and confirmed its capability for detection of MAP infection. However, the hydrophobic nature of lipopeptide antigens make their handling and use in organic solvents unsuitable for industrial processes. The objectives of this study were to produce, by chemical synthesis, a water-soluble variant of L5P and to evaluate these compounds for the serological diagnosis of MAP using well-defined serum banks. The native L5P antigen and its hydrosoluble analog were synthesized on solid phase. The pure compounds were evaluated on collections of extensively characterized sera from infected and non-infected cattle. ROC analysis showed that L5P and also its water-soluble derivative are suitable for the development of a serological test for Johne's disease at a population level. However, these compounds used alone in ELISA have lower sensitivity (Se 82% for L5P and Se 62% for the water-soluble variant of L5P) compared to the Se 98% of a commercial test. Advantageously, these pure synthetic MAP specific antigens can be easily produced in non-limiting quantities at low cost and in standardized batches for robust studies. The fact that L5P has not been validated in the context of ovine paratuberculosis highlights the need to better characterize the antigens expressed from the different genetic lineages of MAP to discover new diagnostic antigens. In the context of infections due to other mycobacteria such as M. bovis or the more closely related species M. avium subsp. hominissuis, the L5P did not cross react and therefore may be a valuable antigen to solve ambiguous results in other tests.
Collapse
|
8
|
Bay S, Begg D, Ganneau C, Branger M, Cochard T, Bannantine JP, Köhler H, Moyen JL, Whittington RJ, Biet F. Engineering Synthetic Lipopeptide Antigen for Specific Detection of Mycobacterium avium subsp. paratuberculosis Infection. Front Vet Sci 2021; 8:637841. [PMID: 33969035 PMCID: PMC8103206 DOI: 10.3389/fvets.2021.637841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/24/2021] [Indexed: 01/06/2023] Open
Abstract
Unlike other MAC members, Mycobacterium avium subsp. paratuberculosis (MAP) does not produce glycopeptidolipids (GPL) on the surface of the cell wall but a lipopentapeptide called L5P (also termed Lipopeptide-I or Para-LP-01) characterized in C-type (bovine) strains. This lipopeptide antigen contains a pentapeptide core, D-Phenylalanine-N-methyl-L-Valine-L-Isoleucine-L-Phenylalanine-L-Alanine, in which the N-terminal D-Phenylalanine is amido-linked with a fatty acid (C18-C20). The molecular and genetic characterization of this antigen demonstrated that L5P is unique to MAP. Knowledge of the structure of L5P enabled synthetic production of this lipopeptide in large quantities for immunological evaluation. Various studies described the immune response directed against L5P and confirmed its capability for detection of MAP infection. However, the hydrophobic nature of lipopeptide antigens make their handling and use in organic solvents unsuitable for industrial processes. The objectives of this study were to produce, by chemical synthesis, a water-soluble variant of L5P and to evaluate these compounds for the serological diagnosis of MAP using well-defined serum banks. The native L5P antigen and its hydrosoluble analog were synthesized on solid phase. The pure compounds were evaluated on collections of extensively characterized sera from infected and non-infected cattle. ROC analysis showed that L5P and also its water-soluble derivative are suitable for the development of a serological test for Johne's disease at a population level. However, these compounds used alone in ELISA have lower sensitivity (Se 82% for L5P and Se 62% for the water-soluble variant of L5P) compared to the Se 98% of a commercial test. Advantageously, these pure synthetic MAP specific antigens can be easily produced in non-limiting quantities at low cost and in standardized batches for robust studies. The fact that L5P has not been validated in the context of ovine paratuberculosis highlights the need to better characterize the antigens expressed from the different genetic lineages of MAP to discover new diagnostic antigens. In the context of infections due to other mycobacteria such as M. bovis or the more closely related species M. avium subsp. hominissuis, the L5P did not cross react and therefore may be a valuable antigen to solve ambiguous results in other tests.
Collapse
Affiliation(s)
- Sylvie Bay
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS UMR 3523, Paris, France
| | - Douglas Begg
- School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| | - Christelle Ganneau
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS UMR 3523, Paris, France
| | | | | | - John P. Bannantine
- USDA-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA, United States
| | - Heike Köhler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Jean-Louis Moyen
- Laboratoire Départemental d'Analyse et de Recherche de Dordogne, Coulounieix Chamiers, France
| | | | - Franck Biet
- INRAE, Université de Tours, ISP, Nouzilly, France
| |
Collapse
|
9
|
Bay S, Begg D, Ganneau C, Branger M, Cochard T, Bannantine JP, Köhler H, Moyen JL, Whittington RJ, Biet F. Engineering Synthetic Lipopeptide Antigen for Specific Detection of Mycobacterium avium subsp. paratuberculosis Infection. Front Vet Sci 2021; 8:637841. [PMID: 33969035 PMCID: PMC8103206 DOI: 10.3389/fvets.2021.637841&set/a 848448336+997766693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Unlike other MAC members, Mycobacterium avium subsp. paratuberculosis (MAP) does not produce glycopeptidolipids (GPL) on the surface of the cell wall but a lipopentapeptide called L5P (also termed Lipopeptide-I or Para-LP-01) characterized in C-type (bovine) strains. This lipopeptide antigen contains a pentapeptide core, D-Phenylalanine-N-methyl-L-Valine-L-Isoleucine-L-Phenylalanine-L-Alanine, in which the N-terminal D-Phenylalanine is amido-linked with a fatty acid (C18-C20). The molecular and genetic characterization of this antigen demonstrated that L5P is unique to MAP. Knowledge of the structure of L5P enabled synthetic production of this lipopeptide in large quantities for immunological evaluation. Various studies described the immune response directed against L5P and confirmed its capability for detection of MAP infection. However, the hydrophobic nature of lipopeptide antigens make their handling and use in organic solvents unsuitable for industrial processes. The objectives of this study were to produce, by chemical synthesis, a water-soluble variant of L5P and to evaluate these compounds for the serological diagnosis of MAP using well-defined serum banks. The native L5P antigen and its hydrosoluble analog were synthesized on solid phase. The pure compounds were evaluated on collections of extensively characterized sera from infected and non-infected cattle. ROC analysis showed that L5P and also its water-soluble derivative are suitable for the development of a serological test for Johne's disease at a population level. However, these compounds used alone in ELISA have lower sensitivity (Se 82% for L5P and Se 62% for the water-soluble variant of L5P) compared to the Se 98% of a commercial test. Advantageously, these pure synthetic MAP specific antigens can be easily produced in non-limiting quantities at low cost and in standardized batches for robust studies. The fact that L5P has not been validated in the context of ovine paratuberculosis highlights the need to better characterize the antigens expressed from the different genetic lineages of MAP to discover new diagnostic antigens. In the context of infections due to other mycobacteria such as M. bovis or the more closely related species M. avium subsp. hominissuis, the L5P did not cross react and therefore may be a valuable antigen to solve ambiguous results in other tests.
Collapse
Affiliation(s)
- Sylvie Bay
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France.,CNRS UMR 3523, Paris, France
| | - Douglas Begg
- School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| | - Christelle Ganneau
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France.,CNRS UMR 3523, Paris, France
| | | | | | - John P Bannantine
- USDA-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA, United States
| | - Heike Köhler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Jean-Louis Moyen
- Laboratoire Départemental d'Analyse et de Recherche de Dordogne, Coulounieix Chamiers, France
| | | | - Franck Biet
- INRAE, Université de Tours, ISP, Nouzilly, France
| |
Collapse
|
10
|
Abstract
Mycobacterium avium paratuberculosis is responsible for paratuberculosis or Johne's disease in cows, having economic impacts on the dairy industry and a prevalence rate exceeding 50% in dairy herds. The economic burden of Johne's disease relates to decreased milk production and costs of disease prevention, treatment, and management, while having an economic impact on dairy producers, processors, consumers, and stakeholders of the dairy industry. Determining the true economic impact of the disease is difficult at regional and farm level as symptoms are not evident in subclinically infected animals. At present, the virulence, pathogenicity, persistence, and infectious dose of M. avium paratuberculosis are poorly understood, consequently effective paratuberculosis control measures remain obscure. M. avium paratuberculosis is potentially zoonotic with foodborne transmission a public health risk due to a possible causative link with inflammatory bowel disease in humans. A preventive approach is necessary to reduce the presence of this drug-resistant pathogen in dairy herds and subsequently dairy food. The use of inefficient diagnostic tests coupled with the long latency period of infection results in delayed animal culling and trade of asymptomatic animals, leading to regional transmission and increased disease prevalence. To date, there has been limited success at controlling and treating this terminal endemic disease, leading to significant prevalence rates. This study aims to outline the key factors associated with Johne's' disease while outlining its significant impact on the dairy sector.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland
| |
Collapse
|
11
|
Mycobacterium Avium Paratuberculosis: A Disease Burden on the Dairy Industry. Animals (Basel) 2020; 10:ani10101773. [PMID: 33019502 PMCID: PMC7601789 DOI: 10.3390/ani10101773] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium avium paratuberculosis is responsible for paratuberculosis or Johne's disease in cows, having economic impacts on the dairy industry and a prevalence rate exceeding 50% in dairy herds. The economic burden of Johne's disease relates to decreased milk production and costs of disease prevention, treatment, and management, while having an economic impact on dairy producers, processors, consumers, and stakeholders of the dairy industry. Determining the true economic impact of the disease is difficult at regional and farm level as symptoms are not evident in subclinically infected animals. At present, the virulence, pathogenicity, persistence, and infectious dose of M. avium paratuberculosis are poorly understood, consequently effective paratuberculosis control measures remain obscure. M. avium paratuberculosis is potentially zoonotic with foodborne transmission a public health risk due to a possible causative link with inflammatory bowel disease in humans. A preventive approach is necessary to reduce the presence of this drug-resistant pathogen in dairy herds and subsequently dairy food. The use of inefficient diagnostic tests coupled with the long latency period of infection results in delayed animal culling and trade of asymptomatic animals, leading to regional transmission and increased disease prevalence. To date, there has been limited success at controlling and treating this terminal endemic disease, leading to significant prevalence rates. This study aims to outline the key factors associated with Johne's' disease while outlining its significant impact on the dairy sector.
Collapse
|
12
|
Exposure of Mycobacterium abscessus to Environmental Stress and Clinically Used Antibiotics Reveals Common Proteome Response among Pathogenic Mycobacteria. Microorganisms 2020; 8:microorganisms8050698. [PMID: 32397563 PMCID: PMC7285101 DOI: 10.3390/microorganisms8050698] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium abscessus subsp. abscessus (MAB) is a clinically important nontuberculous mycobacterium (NTM) causing pulmonary infection in patients such as cystic fibrosis and bronchiectasis. MAB is naturally resistant to the majority of available antibiotics. In attempts to identify the fundamental response of MAB to aerobic, anaerobic, and biofilm conditions (as it is encountered in patients) and during exposure to antibiotics, we studied bacterial proteome using tandem mass tag mass spectrometry sequencing. Numerous de novo synthesized proteins belonging to diverse metabolic pathways were found in anaerobic and biofilm conditions, including glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, nitrogen metabolism, and glyoxylate and dicarboxylate metabolism. Upon exposure to amikacin and linezolid under stress environments, MAB displayed metabolic enrichment for glycerophospholipid metabolism and oxidative phosphorylation. By comparing proteomes of two significant NTMs, MAB and M. avium subsp. hominissuis, we found highly synthesized shared enzymes of oxidative phosphorylation, TCA cycle, glycolysis/gluconeogenesis, glyoxylate/dicarboxylate, nitrogen metabolism, peptidoglycan biosynthesis, and glycerophospholipid/glycerolipid metabolism. The activation of peptidoglycan and fatty acid biosynthesis pathways indicates the attempt of bacteria to modify the cell wall, influencing the susceptibility to antibiotics. This study establishes global changes in the synthesis of enzymes promoting the metabolic shift and enhancing the pathogen resistance to antibiotics within different environments.
Collapse
|
13
|
Alonso-Hearn M, Magombedze G, Abendaño N, Landin M, Juste RA. Deciphering the virulence of Mycobacterium avium subsp. paratuberculosis isolates in animal macrophages using mathematical models. J Theor Biol 2019; 468:82-91. [PMID: 30794839 DOI: 10.1016/j.jtbi.2019.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 01/21/2023]
Abstract
Understanding why pathogenic Mycobacterium avium subsp. paratuberculosis (Map) isolates cause disparate disease outcomes with differing magnitudes of severity is important in designing and implementing new control strategies. We applied a suite of mathematical models: i) general linear, ii) and neurofuzzy logic, to explain how the host of origin of several Map isolates, Map genotype, host, macrophage-based in vitro model and time post-infection contributed to the infection. A logistic growth ordinary differential equation (ODE) model was applied to estimate within macrophage growth rates for the different Map isolates. The models revealed different susceptibilities of bovine and ovine macrophages to Map infection and confirmed distinct virulence profiles for the isolates, judged by their ability to grow within macrophages. Ovine macrophages were able to internalize Map isolates more efficiently than bovine macrophages. While bovine macrophages were able to internalize Map isolates from cattle with more efficiency, ovine macrophages were more efficient in internalizing ovine isolates. Overall, Map isolates from goat and sheep grew minimally within macrophages or did not grow but were able to persist by maintaining its initial population. In contrast, the ability of the bovine isolates and the non-domesticated animal isolates to grow to higher CFU numbers within macrophages suggests that these isolates are more virulent than the sheep and goat isolates, or that these isolates are better adapted to infect domestic ruminants. Overall, our study confirms the different virulence levels for the Map isolates and susceptibility profiles of host macrophages, which is crucial in increasing our understanding of Map infection.
Collapse
Affiliation(s)
- Marta Alonso-Hearn
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Derio, 48160 Bizkaia, Spain.
| | - Gesham Magombedze
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor University Medical Center, 75204 Dallas, TX, USA
| | - Naiara Abendaño
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Derio, 48160 Bizkaia, Spain
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramon A Juste
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Derio, 48160 Bizkaia, Spain
| |
Collapse
|
14
|
Liu B, Ge B, Ma J, Wei Q, Khan AA, Shi L, Zhang K. Identification of wysPII as an Activator of Morphological Development in Streptomyces albulus CK-15. Front Microbiol 2018; 9:2550. [PMID: 30405594 PMCID: PMC6207912 DOI: 10.3389/fmicb.2018.02550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Wuyiencin is produced by Streptomyces albulus var. wuyiensis and used widely in agriculture to control a variety of fungal diseases, such as cucumber downy mildew, strawberry powdery mildew, and tomato gray mold. As an industrially-produced biopesticide, reducing production costs is very important for popularization of this approach. To obtain a rapidly growing strain that effectively shortens the fermentation time, we investigated the effects of knockout and overexpression of the wysPII gene, a member of the LuxR regulatory gene family, in S. albulus strain CK-15. The ΔwysPII mutant exhibited a reduced rate of growth and sporulation. The time taken to reach the greatest mycelial biomass was approximately 18 h shorter in the ooPII (wysPII overexpressing) strain compared with that of the wild-type (WT) strain. In addition, the time to reach the greatest wuyiencin production was 56 h in the ooPII strain compared with 62 h in the WT strain. Furthermore, wysPII was shown to act as an activator of morphological development without affecting wuyiencin production. Thus, the ooPII strain can be used to reduce costs and increase efficiency in industrial fermentation processes for wuyiencin production.
Collapse
Affiliation(s)
- Binghua Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Beibei Ge
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjin Ma
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuhe Wei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Abid Ali Khan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Liming Shi
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kecheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Everman JL, Danelishvili L, Flores LG, Bermudez LE. MAP1203 Promotes Mycobacterium avium Subspecies paratuberculosis Binding and Invasion to Bovine Epithelial Cells. Front Cell Infect Microbiol 2018; 8:217. [PMID: 29998085 PMCID: PMC6030366 DOI: 10.3389/fcimb.2018.00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/07/2018] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's disease, chronic and ultimately fatal enteritis that affects ruminant populations worldwide. One mode of MAP transmission is oral when young animals ingest bacteria from the collostrum and milk of infected dams. The exposure to raw milk has a dramatic impact on MAP, resulting in a more invasive and virulent phenotype. The MAP1203 gene is upregulated over 28-fold after exposure of the bacterium to milk. In this study, the role of MAP1203 in binding and invasion of the bovine epithelial cells was investigated. By over-expressing the native MAP1203 gene and two clones of deletion mutant in the signal sequence and of missense mutations changing the integrin domain from RGD into RDE, we demonstrate that MAP1203 plays a role in increasing binding in more than 50% and invasion in 35% of bovine MDBK epithelial cells during early phase of infection. Furthermore, results obtained suggest that MAP1203 is a surface-exposed protein in MAP and the signal sequence is required for processing and expression of functional protein on the surface of the bacterium. Using the protein pull-down assay and far-Western blot, we also demonstrate that MAP1203 interacts with the host dihydropyrimidinase-related protein 2 and glyceraldehyde 3-phosphate dehydrogenase proteins, located on the membrane of epithelial cell and involved in the remodeling of the cytoskeleton. Our data suggests that MAP1203 plays a significant role in the initiation of MAP infection of the bovine epithelium.
Collapse
Affiliation(s)
- Jamie L Everman
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States.,Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Lucero G Flores
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
| | - Luiz E Bermudez
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States.,Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
16
|
Rathnaiah G, Zinniel DK, Bannantine JP, Stabel JR, Gröhn YT, Collins MT, Barletta RG. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne's Disease. Front Vet Sci 2017; 4:187. [PMID: 29164142 PMCID: PMC5681481 DOI: 10.3389/fvets.2017.00187] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal-oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn's disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Yrjö T. Gröhn
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Michael T. Collins
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
17
|
Kumar G, Hummel K, Welch TJ, Razzazi-Fazeli E, El-Matbouli M. Global proteomic profiling of Yersinia ruckeri strains. Vet Res 2017; 48:55. [PMID: 28931430 PMCID: PMC5607619 DOI: 10.1186/s13567-017-0460-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/06/2017] [Indexed: 11/10/2022] Open
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM) of salmonids. There is little information regarding the proteomics of Y. ruckeri. Herein, we perform whole protein identification and quantification of biotype 1 and biotype 2 strains of Y. ruckeri grown under standard culture conditions using a shotgun proteomic approach. Proteins were extracted, digested and peptides were separated by a nano liquid chromatography system and analyzed with a high-resolution hybrid triple quadrupole time of flight mass spectrometer coupled via a nano ESI interface. SWATH-MS technology and sophisticated statistical analyses were used to identify proteome differences among virulent and avirulent strains. GO annotation, subcellular localization, virulence proteins and antibiotic resistance ontology were predicted using bioinformatic tools. A total of 1395 proteins were identified in the whole cell of Y. ruckeri. These included proteases, chaperones, cell division proteins, outer membrane proteins, lipoproteins, receptors, ion binding proteins, transporters and catalytic proteins. In virulent strains, a total of 16 proteins were upregulated including anti-sigma regulatory factor, arginine deiminase, phosphate-binding protein PstS and superoxide dismutase Cu-Zu. Additionally, several virulence proteins were predicted such as Clp and Lon pro-teases, TolB, PPIases, PstS, PhoP and LuxR family transcriptional regulators. These putative virulence proteins might be used for development of novel targets for treatment of ERM in fish. Our study represents one of the first global proteomic reference profiles of Y. ruckeri and this data can be accessed via ProteomeXchange with identifier PXD005439. These proteomic profiles elucidate proteomic mechanisms, pathogenicity, host-interactions, antibiotic resistance ontology and localization of Y. ruckeri proteins.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Karin Hummel
- VetCore Facility for Research/Proteomics Unit, University of Veterinary Medicine, Vienna, Austria
| | - Timothy J Welch
- National Center for Cool and Cold Water Aquaculture, Kearneysville, USA
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility for Research/Proteomics Unit, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
18
|
Bannantine JP, Etienne G, Laval F, Stabel JR, Lemassu A, Daffé M, Bayles DO, Ganneau C, Bonhomme F, Branger M, Cochard T, Bay S, Biet F. Cell wall peptidolipids of Mycobacterium avium: from genetic prediction to exact structure of a nonribosomal peptide. Mol Microbiol 2017; 105:525-539. [PMID: 28558126 DOI: 10.1111/mmi.13717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Mycobacteria have a complex cell wall structure that includes many lipids; however, even within a single subspecies of Mycobacterium avium these lipids can differ. Total lipids from an M. avium subsp. paratuberculosis (Map) ovine strain (S-type) contained no identifiable glycopeptidolipids or lipopentapeptide (L5P), yet both lipids are present in other M. avium subspecies. We determined the genetic and phenotypic basis for this difference using sequence analysis as well as biochemical and physico-chemical approaches. This strategy showed that a nonribosomal peptide synthase, encoded by mps1, contains three amino acid specifying modules in ovine strains, compared to five modules in bovine strains (C-type). Sequence analysis predicted these modules would produce the tripeptide Phe-N-Methyl-Val-Ala with a lipid moiety, termed lipotripeptide (L3P). Comprehensive physico-chemical analysis of Map S397 extracts confirmed the structural formula of the native L3P as D-Phe-N-Methyl-L-Val-L-Ala-OMe attached in N-ter to a 20-carbon fatty acid chain. These data demonstrate that S-type strains, which are more adapted in sheep, produce a unique lipid. There is a dose-dependent effect observed for L3P on upregulation of CD25+ CD8 T cells from infected cows, while L5P effects were static. In contrast, L5P demonstrated a significantly stronger induction of CD25+ B cells from infected animals compared to L3P.
Collapse
Affiliation(s)
- John P Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Françoise Laval
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Judith R Stabel
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Anne Lemassu
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Darrell O Bayles
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Christelle Ganneau
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Frédéric Bonhomme
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Maxime Branger
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| | - Thierry Cochard
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| | - Sylvie Bay
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Franck Biet
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| |
Collapse
|
19
|
Alonso-Hearn M, Abendaño N, Ruvira MA, Aznar R, Landin M, Juste RA. Mycobacterium avium subsp. paratuberculosis (Map) Fatty Acids Profile Is Strain-Dependent and Changes Upon Host Macrophages Infection. Front Cell Infect Microbiol 2017; 7:89. [PMID: 28377904 PMCID: PMC5359295 DOI: 10.3389/fcimb.2017.00089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Johne's disease is a chronic granulomatous enteritis of ruminants caused by the intracellular bacterium Mycobacterium avium subsp. paratuberculosis (Map). We previously demonstrated that Map isolates from sheep persisted within host macrophages in lower CFUs than cattle isolates after 7 days of infection. In the current study, we hypothesize that these phenotypic differences between Map isolates may be driven be the fatty acids (FAs) present on the phosphadidyl-1-myo-inositol mannosides of the Map cell wall that mediate recognition by the mannose receptors of host macrophages. FAs modifications may influence Map's envelope fluidity ultimately affecting pathogenicity. To test this hypothesis, we investigated the responses of two Map isolates from cattle (K10 isolate) and sheep (2349/06-1) to the bovine and ovine macrophage environment by measuring the FAs content of extracellular and intracellular bacteria. For this purpose, macrophages cell lines of bovine (BOMAC) and ovine (MOCL-4) origin were infected with the two isolates of Map for 4 days at 37°C. The relative FAs composition of the two isolates recovered from infected BOMAC and MOCL-4 cells was determined by gas chromatography and compared with that of extracellular bacteria and that of bacteria grown in Middlebrook 7H9 medium. Using this approach, we demonstrated that the FAs composition of extracellular and 7H9-grown bacteria was highly conserved within each Map isolate, and statistically different from that of intracellular bacteria. Analysis of FAs composition from extracellular bacteria enabled the distinction of the two Map strains based on the presence of the tuberculostearic acid (18:0 10Me) exclusively in the K10 strain of Map. In addition, significant differences in the content of Palmitic acid and cis-7 Palmitoleic acid between both isolates harvested from the extracellular environment were observed. Once the infection established itself in BOMAC and MOCL-4 cells, the FAs profiles of both Map isolates appeared conserved. Our results suggest that the FAs composition of Map might influence its recognition by macrophages and influence the survival of the bacillus within host macrophages.
Collapse
Affiliation(s)
- Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Technological Park of Bizkaia Derio, Spain
| | - Naiara Abendaño
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Technological Park of Bizkaia Derio, Spain
| | - Maria A Ruvira
- Spanish Type Culture Collection (CECT), University of Valencia, Parc Científic Universitat de València Paterna, Spain
| | - Rosa Aznar
- Spanish Type Culture Collection (CECT), University of Valencia, Parc Científic Universitat de València Paterna, Spain
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago Santiago de Compostela, Spain
| | - Ramon A Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Technological Park of BizkaiaDerio, Spain; Servicio Regional de Investigación y Desarrollo Agroalimentario, Agri-Food Research and Development Regional ServiceVillaviciosa, Spain
| |
Collapse
|
20
|
Everman JL, Bermudez LE. Antibodies against invasive phenotype-specific antigens increase Mycobacterium avium subspecies paratuberculosis translocation across a polarized epithelial cell model and enhance killing by bovine macrophages. Front Cell Infect Microbiol 2015; 5:58. [PMID: 26301206 PMCID: PMC4528203 DOI: 10.3389/fcimb.2015.00058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/22/2015] [Indexed: 01/23/2023] Open
Abstract
Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a severe chronic enteritis which affects large populations of ruminants globally. Prevention strategies to combat the spread of Johne's disease among cattle herds involve adhering to strict calving practices to ensure young susceptible animals do not come in contact with MAP-contaminated colostrum, milk, or fecal material. Unfortunately, the current vaccination options available are associated with high cost and suboptimal efficacy. To more successfully combat the spread of Johne's disease to young calves, an efficient method of protection is needed. In this study, we examined passive immunization as a mode of introducing protective antibodies against MAP to prevent the passage of the bacterium to young animals via colostrum and milk. Utilizing the infectious MAP phenotype developed after bacterial exposure to milk, we demonstrate that in vitro opsonization with serum from Johne's-positive cattle results in enhanced translocation across a bovine MDBK polarized epithelial cell monolayer. Furthermore, immune serum opsonization of MAP results in a rapid host cell-mediated killing by bovine macrophages in an oxidative-, nitrosative-, and extracellular DNA trap-independent manner. This study illustrates that antibody opsonization of MAP expressing an infectious phenotype leads to the killing of the bacterium during the initial stage of macrophage infection.
Collapse
Affiliation(s)
- Jamie L. Everman
- Department of Microbiology, College of Science, Oregon State UniversityCorvallis, OR, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State UniversityCorvallis, OR, USA
| | - Luiz E. Bermudez
- Department of Microbiology, College of Science, Oregon State UniversityCorvallis, OR, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State UniversityCorvallis, OR, USA
| |
Collapse
|
21
|
Everman JL, Eckstein TM, Roussey J, Coussens P, Bannantine JP, Bermudez LE. Characterization of the inflammatory phenotype of Mycobacterium avium subspecies paratuberculosis using a novel cell culture passage model. MICROBIOLOGY-SGM 2015; 161:1420-1434. [PMID: 25957310 DOI: 10.1099/mic.0.000106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the pathogenic mechanisms of Mycobacterium avium subspecies paratuberculosis (MAP) and the host responses to Johne's disease is complicated by the multi-faceted disease progression, late-onset host reaction and the lack of available ex vivo infection models. We describe a novel cell culture passage model that mimics the course of infection in vivo. The developed model simulates the interaction of MAP with the intestinal epithelial cells, followed by infection of macrophages and return to the intestinal epithelium. MAP internalization triggers a minimal inflammatory response. After passage through a macrophage phase, bacterial reinfection of MDBK epithelial cells, representing the late phase of intestinal mucosal infection, is associated with increased synthesis of the pro-inflammatory transcripts of IL-6, CCL5, IL-8 and IL-18, paired with decreased levels of TGFβ. Transcriptome analysis of MAP from each stage of epithelial cell infection identified increased expression of lipid biosynthesis and lipopeptide modification genes in the inflammatory phenotype of MAP. Total lipid analysis by HPLC-ES/MS indicates different lipidomic profiles between the two phenotypes and a unique set of lipids composing the inflammatory MAP phenotype. The presence of selected upregulated lipid-modification gene transcripts in samples of ileal tissue from cows diagnosed with Johne's disease supports and validates the model. By using the relatively simple cell culture passage model, we show that MAP alters its lipid composition during intracellular infection and acquires a pro-inflammatory phenotype, which likely is associated with the inflammatory phase of Johne's disease.
Collapse
Affiliation(s)
- Jamie L Everman
- 1 Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA.,2 Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Torsten M Eckstein
- 3 Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jonathan Roussey
- 4 Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, USA
| | - Paul Coussens
- 4 Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, USA.,5 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - John P Bannantine
- 6 National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, USA
| | - Luiz E Bermudez
- 2 Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,1 Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
22
|
Motamedi N, Danelishvili L, Bermudez LE. Identification of Mycobacterium avium genes associated with resistance to host antimicrobial peptides. J Med Microbiol 2014; 63:923-930. [PMID: 24836414 DOI: 10.1099/jmm.0.072744-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides are an important component of the innate immune defence. Mycobacterium avium subsp. hominissuis (M. avium) is an organism that establishes contact with the respiratory and gastrointestinal mucosa as a necessary step for infection. M. avium is resistant to high concentrations of polymyxin B, a surrogate for antimicrobial peptides. To determine gene-encoding proteins that are associated with this resistance, we screened a transposon library of M. avium strain 104 for susceptibility to polymyxin B. Ten susceptible mutants were identified and the inactivated genes sequenced. The great majority of the genes were related to cell wall synthesis and permeability. The mutants were then examined for their ability to enter macrophages and to survive macrophage killing. Three clones among the mutants had impaired uptake by macrophages compared with the WT strain, and all ten clones were attenuated in macrophages. The mutants were also shown to be susceptible to cathelicidin (LL-37), in contrast to the WT bacterium. All but one of the mutants were significantly attenuated in mice. In conclusion, this study indicated that the M. avium envelope is the primary defence against host antimicrobial peptides.
Collapse
Affiliation(s)
- Nima Motamedi
- Kuzell Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Luiz E Bermudez
- Department of Microbiology, College of Science, Oregon State University, OR, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Kuzell Institute, California Pacific Medical Center, San Francisco, CA, USA
| |
Collapse
|
23
|
Castillo D, Espejo R, Middelboe M. Genomic structure of bacteriophage 6H and its distribution as prophage in Flavobacterium psychrophilum strains. FEMS Microbiol Lett 2013; 351:51-58. [PMID: 24267868 DOI: 10.1111/1574-6968.12342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 02/02/2023] Open
Abstract
Flavobacterium psychrophilum is currently one of the most devastating fish pathogens worldwide causing considerable economic losses in salmonid aquaculture. Recently, attention has been drawn to the use of phages for controlling F. psychrophilum, and phages infecting the pathogen have been isolated. Here, we present the genome sequence of F. psychrophilum bacteriophage 6H and its distribution as prophage in F. psychrophilum isolates. The DNA sequence revealed a genome of 46 978 bp containing 63 predicted ORFs, of which 13% was assigned a putative function, including an integrase. Sequence analysis showed > 80% amino acid similarity to a specific region found in the virulent F. psychrophilum strain JIP02/86 (ATCC 49511), suggesting that a prophage similar to phage 6H was present in this strain. Screening for a collection of 49 F. psychrophilum strains isolated in Chile, Denmark, and USA for the presence of four phage 6H genes (integrase, tail tape protein and two hypothetical proteins) by PCR showed the presence of these prophage genes in 80% of the isolates. In conclusion, we hypothesize that bacteriophage 6H belongs to an abundant group of temperate phages which has lysogenized a large fraction of the global F. psychrophilum community.
Collapse
Affiliation(s)
- Daniel Castillo
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark; Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Macul, Santiago, Chile
| | | | | |
Collapse
|
24
|
No holes barred: invasion of the intestinal mucosa by Mycobacterium avium subsp. paratuberculosis. Infect Immun 2013; 81:3960-5. [PMID: 23940208 DOI: 10.1128/iai.00575-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The infection biology of Mycobacterium avium subsp. paratuberculosis has recently crystallized, with added details surrounding intestinal invasion. The involvement of pathogen-derived effector proteins such as the major membrane protein, oxidoreductase, and fibronectin attachment proteins have been uncovered. Mutations constructed in this pathogen have also shed light on genes needed for invasion. The host cell types that are susceptible to invasion have been defined, along with their transcriptional response. Recent details have given a new appreciation for the dynamic interplay between the host and bacterium that occurs at the outset of infection. An initial look at the global expression pathways of the host has shown a circumvention of the cell communication pathway by M. avium subsp. paratuberculosis, which loosens the integrity of the tight junctions. We now know that M. avium subsp. paratuberculosis activates the epithelial layer and also actively recruits macrophages to the site of infection. These notable findings are summarized along with added mechanistic details of the early infection model. We conclude by proposing critical next steps to further elucidate the process of M. avium subsp. paratuberculosis invasion.
Collapse
|
25
|
Key role for the alternative sigma factor, SigH, in the intracellular life of Mycobacterium avium subsp. paratuberculosis during macrophage stress. Infect Immun 2013; 81:2242-57. [PMID: 23569115 DOI: 10.1128/iai.01273-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis causes Johne's disease, an enteric infection in cattle and other ruminants, greatly afflicting the dairy industry worldwide. Once inside the cell, M. avium subsp. paratuberculosis is known to survive harsh microenvironments, especially those inside activated macrophages. To improve our understanding of M. avium subsp. paratuberculosis pathogenesis, we examined phagosome maturation associated with transcriptional responses of M. avium subsp. paratuberculosis during macrophage infection. Monitoring cellular markers, only live M. avium subsp. paratuberculosis bacilli were able to prevent phagosome maturation and reduce its acidification. On the transcriptional level, over 300 M. avium subsp. paratuberculosis genes were significantly and differentially regulated in both naive and IFN-γ-activated macrophages. These genes include the sigma factor H (sigH) that was shown to be important for M. avium subsp. paratuberculosis survival inside gamma interferon (IFN-γ)-activated bovine macrophages. Interestingly, an sigH-knockout mutant showed increased sensitivity to a sustained level of thiol-specific oxidative stress. Large-scale RNA sequence analysis revealed that a large number of genes belong to the sigH regulon, especially following diamide stress. Genes involved in oxidative stress and virulence were among the induced genes in the sigH regulon with a putative consensus sequence for SigH binding that was recognized in a subset of these genes (n = 30), suggesting direct regulation by SigH. Finally, mice infections showed a significant attenuation of the ΔsigH mutant compared to its parental strain, suggesting a role for sigH in M. avium subsp. paratuberculosis virulence. Such analysis could identify potential targets for further testing as vaccine candidates against Johne's disease.
Collapse
|
26
|
Abendaño N, Sevilla IA, Prieto JM, Garrido JM, Juste RA, Alonso-Hearn M. Mycobacterium avium subspecies paratuberculosis isolates from sheep and goats show reduced persistence in bovine macrophages than cattle, bison, deer and wild boar strains regardless of genotype. Vet Microbiol 2013; 163:325-34. [PMID: 23415474 DOI: 10.1016/j.vetmic.2012.12.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 01/04/2023]
Abstract
Assessment of the virulence of isolates of Mycobacterium avium subsp. paratuberculosis (Map) exhibiting distinct genotypes and isolated from different hosts may help to clarify the degree to which clinical manifestations of the disease in cattle can be attributed to bacterial or to host factors. The objective of this study was to test the ability of 10 isolates of Map representing distinct genotypes and isolated from domestic (cattle, sheep, and goat), and wildlife animal species (fallow deer, deer, wild boar, and bison) to enter and grow in bovine macrophages. The isolates were previously typed using IS1311 PCR followed by restriction endonuclease analysis into types C, S or B. Intracellular growth of the isolates in a bovine macrophage-like cell line (BoMac) and in primary bovine monocyte-derived macrophages (MDM) was evaluated by quantification of CFU numbers in the initial inoculum and inside of the host cells at 2h and 7 d p.i. using an automatic liquid culture system (Bactec MGIT 960). Individual data illustrated that growth was less variable in BoMac than in MDM cells. All the isolates from goat and sheep hosts persisted within BoMac cells in lower CFU numbers than the other tested isolates after 7 days of infection regardless of genotype. In addition, BoMac cells exhibited differential inflammatory, apoptotic and destructive responses when infected with a bovine or an ovine isolate; which correlated with the differential survival of these strains within BoMac cells. Our results indicated that the survival of the tested Map isolates within bovine macrophages is associated with the specific host from which the isolates were initially isolated.
Collapse
Affiliation(s)
- Naiara Abendaño
- Department of Animal Health, Basque Institute for Agricultural Research and Development, NEIKER-Tecnalia, Technological Park of Bizkaia, Berreaga 1, Derio, E-48160 Bizkaia, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Santos CL, Correia-Neves M, Moradas-Ferreira P, Mendes MV. A walk into the LuxR regulators of Actinobacteria: phylogenomic distribution and functional diversity. PLoS One 2012; 7:e46758. [PMID: 23056438 PMCID: PMC3466318 DOI: 10.1371/journal.pone.0046758] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/05/2012] [Indexed: 01/08/2023] Open
Abstract
LuxR regulators are a widely studied group of bacterial helix-turn-helix (HTH) transcription factors involved in the regulation of many genes coding for important traits at an ecological and medical level. This regulatory family is particularly known by their involvement in quorum-sensing (QS) mechanisms, i.e., in the bacterial ability to communicate through the synthesis and binding of molecular signals. However, these studies have been mainly focused on Gram-negative organisms, and the presence of LuxR regulators in the Gram-positive Actinobacteria phylum is still poorly explored. In this manuscript, the presence of LuxR regulators among Actinobacteria was assayed using a domain-based strategy. A total of 991 proteins having one LuxR domain were identified in 53 genome-sequenced actinobacterial species, of which 59% had an additional domain. In most cases (53%) this domain was REC (receiver domain), suggesting that LuxR regulators in Actinobacteria may either function as single transcription factors or as part of two-component systems. The frequency, distribution and evolutionary stability of each of these sub-families of regulators was analyzed and contextualized regarding the ecological niche occupied by each organism. The results show that the presence of extra-domains in the LuxR-regulators was likely driven by a general need to physically uncouple the signal sensing from the signal transduction. Moreover, the total frequency of LuxR regulators was shown to be dependent on genetic, metabolic and ecological variables. Finally, the functional annotation of the LuxR regulators revealed that the bacterial ecological niche has biased the specialization of these proteins. In the case of pathogens, our results suggest that LuxR regulators can be involved in virulence and are therefore promising targets for future studies in the health-related biotechnology field.
Collapse
Affiliation(s)
- Catarina Lopes Santos
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
28
|
Quantification of Mycobacterium avium subsp. paratuberculosis strains representing distinct genotypes and isolated from domestic and wildlife animal species by use of an automatic liquid culture system. J Clin Microbiol 2012; 50:2609-17. [PMID: 22649014 DOI: 10.1128/jcm.00441-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Quantification of 11 clinical strains of Mycobacterium avium subsp. paratuberculosis isolated from domestic (cattle, sheep, and goat) and wildlife (fallow deer, deer, wild boar, and bison) animal species in an automatic liquid culture system (Bactec MGIT 960) was accomplished. The strains were previously isolated and typed using IS1311 PCR followed by restriction endonuclease analysis (PCR-REA) into type C, S, or B. A strain-specific quantification curve was generated for each M. avium subsp. paratuberculosis strain by relating the time to detection in the liquid culture system to the estimated log(10) CFU in each inoculum. According to their growth curves, the tested M. avium subsp. paratuberculosis strains were classified into two distinct groups. The first group included the S-type strain isolated from goat and all the sheep strains with C, S, and B genotypes. A second group contained the C- and B-type strains isolated from cattle, goat, and wildlife animals with the exception of the fallow deer strain. The strains isolated from cattle or sheep showed similar strain-specific standard curves irrespective of their genotype. In contrast, the strains isolated from goat or from wildlife animal species varied in their rates of growth in liquid culture. Universal-standard curves and algorithms for the quantification of each group of strains were generated. In addition, the liquid culture system was compared with a real-time quantitative PCR system for the quantification of the 11 M. avium subsp. paratuberculosis strains. Correlations between the estimated log(10) CFU and M. avium subsp. paratuberculosis DNA copy numbers were very high for all the tested strains (R ≥ 0.9).
Collapse
|
29
|
Castellanos E, Aranaz A, de Juan L, Dominguez L, Linedale R, Bull TJ. A 16 kb naturally occurring genomic deletion including mce and PPE genes in Mycobacterium avium subspecies paratuberculosis isolates from goats with Johne's disease. Vet Microbiol 2012; 159:60-8. [PMID: 22472702 DOI: 10.1016/j.vetmic.2012.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/23/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
In this study we characterise the genomic and transcriptomic variability of a natural deletion strain of Mycobacterium avium subspecies paratuberculosis (MAP) prevalent in Spanish Guadarrama goats. Using a pan-genome microarray including MAP and M. avium subspecies hominissuis 104 genomes (MAPAC) we demonstrate the genotype to be MAP Type II with a single deletion of 19 contiguous ORFs (16 kb) including a complete mammalian cell entry (mce7_1) operon and adjacent proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) genes. A deletion specific PCR test was developed and a subsequent screening identified four goat herds infected with the variant strain. Each was located in central Spain and showed epidemiological links suggestive of transmission between herds. A majority of animals infected with the variant manifested a paucibacillary form of the disease. Comparisons between virulent complete genome compliment strains isolated from multibacillary diseased goats and the MAP variant strain during entry into activated macrophages demonstrated an increased sensitivity in the variant to intracellular killing in human and ovine macrophages. As PPE and mce genes are associated with mycobacterial virulence and pathogenesis we investigated the interplay of these gene sets during cell entry using the MAPAC array. This showed significant differential transcriptome profiles compared to full genome complement MAP controls that included changes in other undeleted mce operons and PE/PPE genes, esx-like signalling operons and stress response/fatty acid metabolism pathways. This strain represents the first report of a MAP Type II genotype with significant natural genomic deletions which remains able to cause disease and is transmissible in goats.
Collapse
Affiliation(s)
- Elena Castellanos
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET) and Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Chen J, Xie J. Role and regulation of bacterial LuxR-like regulators. J Cell Biochem 2011; 112:2694-702. [DOI: 10.1002/jcb.23219] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Comparative immunological and microbiological aspects of paratuberculosis as a model mycobacterial infection. Vet Immunol Immunopathol 2011; 148:29-47. [PMID: 21450348 DOI: 10.1016/j.vetimm.2011.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 02/12/2011] [Accepted: 03/03/2011] [Indexed: 11/20/2022]
Abstract
Paratuberculosis or Johne's disease of livestock, which is caused by Mycobacterium avium subsp. paratuberculosis (MAP), has increased in prevalence and expanded in geographic and host ranges over about 100 years. The slow and progressive spread of MAP reflects its substantial adaptation to its hosts, the technical limitations of diagnosis, the lack of practical therapeutic approaches, the lack of a vaccine that prevents transmission and the complexity and difficulty of the on-farm control strategies needed to prevent infection. More recently evidence has accumulated for an association of MAP with Crohn's disease in humans, adding to the pressure on animal health authorities to take precautions by controlling paratuberculosis. Mycobacterial infections invoke complex immune responses but the essential determinants of virulence and pathogenesis are far from clear. In this review we compare the features of major diseases in humans and animals that are caused by the pathogenic mycobacteria M. ulcerans, M. avium subsp. avium, M. leprae, M. tuberculosis and MAP. We seek to answer key questions: are the common mycobacterial infections of humans and animals useful "models" for each other, or are the differences between them too great to enable meaningful extrapolation? To simplify this, the immunopathogenesis of mycobacterial infections will be defined at cellular, tissue, animal and population levels and the key events at each level will be discussed. Many pathogenic processes are similar between divergent mycobacterial diseases, and at variance between virulent and avirulent isolates of mycobacteria, suggesting that the research on the pathogenesis of one mycobacterial disease will be informative for the others.
Collapse
|