1
|
Acevedo-Monroy SE, Rocha-Ramírez LM, Martínez Gómez D, Basurto-Alcántara FJ, Medina-Contreras Ó, Hernández-Chiñas U, Quiñones-Peña MA, García-Sosa DI, Ramírez-Lezama J, Rodríguez-García JA, González-Villalobos E, Castro-Luna R, Martínez-Cristóbal L, Eslava-Campos CA. Polyvalent Bacterial Lysate with Potential Use to Treatment and Control of Recurrent Urinary Tract Infections. Int J Mol Sci 2024; 25:6157. [PMID: 38892345 PMCID: PMC11173243 DOI: 10.3390/ijms25116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Overuse of antimicrobials has greatly contributed to the increase in the emergence of multidrug-resistant bacteria, a situation that hinders the control and treatment of infectious diseases. This is the case with urinary tract infections (UTIs), which represent a substantial percentage of worldwide public health problems, thus the need to look for alternatives for their control and treatment. Previous studies have shown the usefulness of autologous bacterial lysates as an alternative for the treatment and control of UTIs. However, a limitation is the high cost of producing individual immunogens. At the same time, an important aspect of vaccines is their immunogenic amplitude, which is the reason why they must be constituted of diverse antigenic components. In the case of UTIs, the etiology of the disease is associated with different bacteria, and even Escherichia coli, the main causal agent of the disease, is made up of several antigenic variants. In this work, we present results on the study of a bacterial lysate composed of 10 serotypes of Escherichia coli and by Klebsiella pneumoniae, Klebsiella aerogenes, Enterococcus faecalis, Proteus mirabilis, Citrobacter freundii, and Staphylococcus haemolyticus. The safety of the compound was tested on cells in culture and in an animal model, and its immunogenic capacity by analysing in vitro human and murine macrophages (cell line J774 A1). The results show that the polyvalent lysate did not cause damage to the cells in culture or alterations in the animal model used. The immunostimulatory activity assay showed that it activates the secretion of TNF-α and IL-6 in human macrophages and TNF-α in murine cells. The obtained results suggest that the polyvalent lysate evaluated can be an alternative for the treatment and control of chronic urinary tract infections, which will reduce the use of antimicrobials.
Collapse
Affiliation(s)
- Salvador Eduardo Acevedo-Monroy
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Laboratorio de Microbiología Molecular Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez. Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Daniel Martínez Gómez
- Departamento de Producción Agrícola y Animal, Laboratorio de Microbiología Agropecuaria, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Alcaldía Coyoacán, C.P., Ciudad de México 04960, Mexico;
| | - Francisco Javier Basurto-Alcántara
- Laboratorio de Vacunología y Constatación, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Óscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Ulises Hernández-Chiñas
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - María Alejandra Quiñones-Peña
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Department of Health & Biomedical Science College of Health Professions, Biomedical Science, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Daniela Itzel García-Sosa
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
| | - José Ramírez-Lezama
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - José Alejandro Rodríguez-García
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
| | - Edgar González-Villalobos
- Laboratorio de Epidemiología Molecular, Departamento de Salud Pública División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Raúl Castro-Luna
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Leonel Martínez-Cristóbal
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Carlos Alberto Eslava-Campos
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
2
|
Mizobuchi H. Oral route lipopolysaccharide as a potential dementia preventive agent inducing neuroprotective microglia. Front Immunol 2023; 14:1110583. [PMID: 36969154 PMCID: PMC10033586 DOI: 10.3389/fimmu.2023.1110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
In today's aging society, dementia is an urgent problem to be solved because no treatment or preventive methods have been established. This review focuses on oral administration of lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, as a novel preventive drug for dementia. LPS is also called endotoxin and is well known to induce inflammation when administered systemically. On the other hand, although we humans routinely ingest LPS derived from symbiotic bacteria of edible plants, the effect of oral administration of LPS has hardly been studied. Recently, oral administration of LPS was reported to prevent dementia by inducing neuroprotective microglia. Furthermore, it has been suggested that colony stimulating factor 1 (CSF1) is involved in the dementia prevention mechanism by oral administration of LPS. Thus, in this review, we summarized the previous studies of oral administration of LPS and discussed the predicted dementia prevention mechanism. In addition, we showed the potential of oral LPS administration as a preventive drug for dementia by highlighting research gaps and future issues for clinical application development.
Collapse
|
3
|
Reisinger N, Wendner D, Schauerhuber N, Mayer E. Effect of Lipopolysaccharides (LPS) and Lipoteichoic Acid (LTA) on the Inflammatory Response in Rumen Epithelial Cells (REC) and the Impact of LPS on Claw Explants. Animals (Basel) 2021; 11:ani11072058. [PMID: 34359186 PMCID: PMC8300308 DOI: 10.3390/ani11072058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endotoxins, often referred to as lipopolysaccharides (LPS), are bacterial toxins and play an essential role in several diseases in ruminants. One of the most common disorders in dairy cows, sub-acute rumen acidosis (SARA), is associated with a substantial increase of ruminal and intestinal endotoxin load. Other potentially harmful substances, e.g., lipoteichoic acid (LTA), derived from the cell wall of Gram-positive bacteria, might play an essential role during SARA as well. Besides the potential local effect of LPS, translocation to the blood can induce a strong immune response in cattle. Furthermore, LPS might reach the claw tissue after translocation. In our study, we used a cell culture model with epithelial cells isolated from rumen tissue to assess the effects of LPS and LTA. Furthermore, we evaluated the effects of LPS on claw tissue with an explant model. LPS and LTA could induce an inflammatory response in rumen epithelial cells. However, the effect of LPS was more substantial and seen at an earlier time point compared to LTA. Furthermore, in claw explants, LPS negatively affected the separation force, an indicator for tissue integrity, which decreased with increasing LPS concentrations. Overall, our data suggest that especially endotoxins can impact local inflammatory response in the rumen. Furthermore, if endotoxins reach the claw tissue, it might affect claw health. Abstract Endotoxins play a crucial role in ruminant health due to their deleterious effects on animal health. The study aimed to evaluate whether LPS and LTA can induce an inflammatory response in rumen epithelial cells. For this purpose, epithelial cells isolated from rumen tissue (REC) were stimulated with LPS and LTA for 1, 2, 4, and 24 h. Thereafter, the expression of selected genes of the LPS and LTA pathway and inflammatory response were evaluated. Furthermore, it was assessed whether LPS affects inflammatory response and structural integrity of claw explants. Therefore, claw explants were incubated with LPS for 4 h to assess the expression of selected genes and for 24 h to evaluate tissue integrity via separation force. LPS strongly affected the expression of genes related to inflammation (NFkB, TNF-α, IL1B, IL6, CXCL8, MMP9) in REC. LTA induced a delayed and weaker inflammatory response than LPS. In claw explants, LPS affected tissue integrity, as there was a concentration-dependent decrease of separation force. Incubation time had a strong effect on inflammatory genes in claw explants. Our data suggest that endotoxins can induce a local inflammatory response in the rumen epithelium. Furthermore, translocation of LPS might negatively impact claw health.
Collapse
|
4
|
Bacterial Endotoxins and Their Role in Periparturient Diseases of Dairy Cows: Mucosal Vaccine Perspectives. DAIRY 2020. [DOI: 10.3390/dairy1010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During the periparturient period there is a significant increase in the incidence of multiple metabolic and infectious diseases in dairy cows. Dairy cows are fed high-grain diets immediately after calving to support production of large amounts of milk. Mounting evidence indicates these types of diets are associated with the release of high amounts of endotoxins in the rumen fluid. If infected, the udder and uterus additionally become important sources of endotoxins during the postpartum period. There is increasing evidence that endotoxins translocate from rumen, uterus, or udder into the systemic circulation and trigger chronic low-grade inflammatory conditions associated with multiple diseases including fatty liver, mastitis, retained placenta, metritis, laminitis, displaced abomasum, milk fever, and downer cow syndrome. Interestingly, endotoxin-related diseases are triggered by a bacterial component and not by a specific bacterium. This makes prevention of these type of diseases different from classical infectious diseases. Prevention of translocation of endotoxins into the host systemic circulation needs to take priority and this could be achieved with a new approach: mucosal vaccination. In this review article, we discuss all the aforementioned issues in detail and also report some of our trials with regards to mucosal vaccination of periparturient dairy cows.
Collapse
|
5
|
Samarasinghe MB, Sehested J, Larsen T, Hernández-Castellano LE. Oral administration of lipopolysaccharides from Escherichia coli (serotype O111:B4) does not induce an effective systemic immune response in milk-fed Holstein calves. J Dairy Sci 2020; 103:5525-5531. [PMID: 32253037 DOI: 10.3168/jds.2019-17404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
Abstract
It is well established that intravenous administration of lipopolysaccharides (LPS)-cell wall components from gram-negative bacteria-induce acute inflammatory responses in dairy calves, but the effect of oral administration of LPS to dairy calves is currently unknown. To evaluate the effects of oral administration of LPS derived from Escherichia coli (serotype O111:B4) on innate immune responses in milk-fed Holstein calves, 20 visually healthy calves (34 ± 1 d) received 4 L of milk with LPS (12 μg/kg body weight; n = 10; LPS) or without LPS (n = 10; control) at the morning feeding. Samples were collected at 0.5 h before the morning feeding and at 3, 6, 24, 48, 72, and 168 h after the morning feeding to measure rectal temperature and heart rate, as well as plasma-negative and plasma-positive acute phase proteins (i.e., haptoglobin, serum amyloid A, albumin, total protein, and fibrinogen) and immunoglobulin concentrations (IgG, IgM, and IgA). None of these measurements was affected by the oral administration of LPS. Oral administration of LPS at 12 μg/kg of body weight did not induce an acute inflammatory response in visually healthy milk-fed Holstein calves when administered in milk.
Collapse
Affiliation(s)
- M B Samarasinghe
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - J Sehested
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - T Larsen
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | | |
Collapse
|
6
|
Impact of luminal and systemic endotoxin exposure on gut function, immune response and performance of chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Aditya S, Humer E, Pourazad P, Khiaosa-Ard R, Huber J, Zebeli Q. Intramammary infusion of Escherichia coli lipopolysaccharide negatively affects feed intake, chewing, and clinical variables, but some effects are stronger in cows experiencing subacute rumen acidosis. J Dairy Sci 2016; 100:1363-1377. [PMID: 27939552 DOI: 10.3168/jds.2016-11796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Abstract
Feeding high-grain diets increases the risk of subacute rumen acidosis (SARA) and adversely affects rumen health. This condition might impair the responsiveness of cows when they are exposed to external infectious stimuli such as lipopolysaccharide (LPS). The main objective of this study was to evaluate various responses to intramammary LPS infusion in healthy dairy cows and those experimentally subjected to SARA. Eighteen early-lactating Simmental cows were subjected to SARA (n = 12) or control (CON; n = 6) feeding conditions. Cows of the control group received a diet containing 40% concentrates (DM basis) throughout the experiment. The intermittent SARA feeding regimen consisted in feeding the cows a ration with 60% concentrate (DM basis) for 32 d, consisting of a first SARA induction for 8 d, switched to the CON diet for 7 d, and re-induction during the last 17 d. On d 30 of the experiment, 6 SARA (SARA-LPS) and 6 CON (CON-LPS) cows were intramammary challenged once with a single dose of 50 μg of LPS from Escherichia coli (O26:B6), whereas the other 6 SARA cows (SARA-PLA) received 10 mL of sterile saline solution as placebo. To confirm the induction of SARA, the reticular pH was continuously monitored via wireless pH probes. The DMI remained unchanged between SARA and CON cows during the feeding experiment, but was reduced in both treatment groups receiving the LPS infusion compared with SARA-PLA, whereby a significant decline was observed for cows of the SARA-LPS treatment (-38%) compared with CON-LPS (-19%). The LPS infusion did not affect the reticuloruminal pH dynamics, but significantly enhanced ruminal temperature and negatively affected chewing behavior. The ruminal temperature increased after the LPS infusion and peaked about 1 h earlier in SARA-LPS cows compared with the cows of the CON-LPS treatment. Moreover, a significant decline in milk yield was found in SARA-LPS compared with CON-LPS following the LPS infusion. Cows receiving LPS had elevated somatic cell counts, protein, and fat contents in milk as well as decreased lactose contents and pH following the LPS infusion, whereby the changes in milk constituents were more pronounced in SARA-LPS than CON-LPS cows. Rectal temperature and pulse rate were highest 6 h after LPS infusion, but rumen contractions were not affected by the LPS infusion. The data suggest that a single intramammary LPS infusion induced fever and negatively affected feed intake, chewing activity, rectal temperature, and milk yield and composition, whereby these effects were more pronounced in SARA cows.
Collapse
Affiliation(s)
- S Aditya
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; Directorate General of Human Resource for Science, Technology, and Higher Education-Indonesia, 10270 Jakarta, Indonesia
| | - E Humer
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - P Pourazad
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - R Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - J Huber
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
8
|
Bradford BJ, Yuan K, Farney JK, Mamedova LK, Carpenter AJ. Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J Dairy Sci 2015. [PMID: 26210279 DOI: 10.3168/jds.2015-9683] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For dairy cattle, the first several weeks of lactation represent the highest-risk period in their lives after their own neonatal period. Although more than 50% of cows during this period are estimated to suffer from at least one subclinical disorder, the complicated admixture of normal adaptations to lactation, infectious challenges, and metabolic disorders has made it difficult to determine which physiological processes are adaptive and which are pathological during this time. Subacute inflammation, a condition that has been well documented in obesity, has been a subject of great interest among dairy cattle physiologists in the past decade. Many studies have now clearly shown that essentially all cows experience some degree of systemic inflammation in the several days after parturition. The magnitude and likely persistence of the inflammatory state varies widely among cows, and several studies have linked the degree of postpartum inflammation to increased disease risk and decreased whole-lactation milk production. In addition to these associations, enhancing postpartum inflammation with repeated subacute administration of cytokines has impaired productivity and markers of health, whereas targeted use of nonsteroidal anti-inflammatory drugs during this window of time has enhanced whole-lactation productivity in several studies. Despite these findings, many questions remain about postpartum inflammation, including which organs are key initiators of this state and what signaling molecules are responsible for systemic and tissue-specific inflammatory states. Continued in vivo work should help clarify the degree to which mild postpartum inflammation is adaptive and whether the targeted use of anti-inflammatory drugs or nutrients can improve the health and productivity of dairy cows.
Collapse
Affiliation(s)
- B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506.
| | - K Yuan
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - J K Farney
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - A J Carpenter
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| |
Collapse
|
9
|
Iqbal S, Zebeli Q, Mansmann DA, Dunn SM, Ametaj BN. Repeated oronasal exposure to lipopolysaccharide induced mucosal IgA responses in periparturient dairy cows. PLoS One 2014; 9:e103504. [PMID: 25061754 PMCID: PMC4111619 DOI: 10.1371/journal.pone.0103504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/03/2014] [Indexed: 12/29/2022] Open
Abstract
This study investigated the effects of repeated oronasal treatment with lipopolysaccharide (LPS) on the humoral immune responses in saliva, vaginal mucus, and the plasma markers of the acute phase response in periparturient dairy cows. One hundred pregnant Holstein cows were administered either 3 increasing doses of LPS (n = 50) as follows: 1) 0.01 µg/kg body weight (BW) on d −28, 2) 0.05 µg/kg BW on d −25, and −21, and 3) 0.1 µg/kg BW on d −18, and −14, or sterile saline solution (controls; n = 50) oronasally for 3 consecutive wk starting at 28 d before parturition. Intensive sampling was conducted on thirty cows (n = 15/group). Multiple saliva, vaginal mucus and blood samples were collected around parturition and analyzed for total immunoglobulin-(Ig)A, plasma serum amyloid A (SAA), lipopolysaccharide-binding protein (LBP), anti-LPS IgA, IgG, IgM, tumour necrosis factor(TNF)-α, and interleukin(IL)-1. Results regarding total secretory IgA (sIgA) antibodies showed greater concentrations in the saliva and an overall tendency for higher total sIgA in the vaginal mucus of the LPS-treated cows. Treatment had no effect on plasma sIgA, IgG, IgM anti-LPS antibodies, haptoglobin, SAA, LBP, TNF-α, and IL-1. Treatments by time interactions were observed for SAA and IL-1 with lowered concentrations of both variables in the plasma of LPS-treated cows after parturition. Overall, repeated oronasal LPS treatment clearly enhanced total sIgA antibodies in the saliva, stimulated their production in vaginal mucus shortly before calving, and lowered plasma IL-1 around parturition, but showed limited effects on markers of the acute phase response in the plasma in dairy cows around parturition.
Collapse
Affiliation(s)
- Summera Iqbal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Qendrim Zebeli
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
- Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Vienna, Austria
| | - Dominik A. Mansmann
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Suzanna M. Dunn
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Burim N. Ametaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
10
|
Ametaj BN, Iqbal S, Selami F, Odhiambo JF, Wang Y, Gänzle MG, Dunn SM, Zebeli Q. Intravaginal administration of lactic acid bacteria modulated the incidence of purulent vaginal discharges, plasma haptoglobin concentrations, and milk production in dairy cows. Res Vet Sci 2014; 96:365-70. [PMID: 24612560 DOI: 10.1016/j.rvsc.2014.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/17/2013] [Accepted: 02/09/2014] [Indexed: 12/31/2022]
Abstract
This investigation studied the effects of intravaginal administration of a mixture of lactic acid bacteria (LAB) on the incidence of purulent vaginal discharges (PVD), plasma haptoglobin concentrations, and milk production in dairy cows. A total of 82 pregnant primiparous and multiparous Holstein dairy cows were used in this study. Half of the cows received intravaginally 1mL of LAB at 10(10)-10(12)cfu/mL and the other half 1mL of reconstituted skim milk (i.e., carrier) (controls). Administration of LAB was conducted once per wk during 2 and 1wk before the expected day of calving and at 1, 2, 3, and 4wk postpartum. Data demonstrated that intravaginal administration of LAB decreased the occurrence of PVD at 3wk postpartum (P<0.05). Concentrations of plasma haptoglobin, an acute phase protein often associated with uterine infections, was lower in cows treated with the LAB mixture at 2wk (P<0.001) and 3wk (P<0.05) postpartum. Treatment with LAB did not improve overall pregnancy rate, but the treated multiparous cows produced more milk than their control counterparts (P<0.05), whereas no difference was observed in primiparous cows regarding milk yield (P>0.05). Overall, this is the first study demonstrating that intravaginal LAB administration lowers the incidence of PVD and enhances milk production in dairy cows. Further research is warranted to evaluate the effects of LAB on reproductive performance in a larger cohort of cows.
Collapse
Affiliation(s)
- B N Ametaj
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - S Iqbal
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - F Selami
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - J F Odhiambo
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Y Wang
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - M G Gänzle
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - S M Dunn
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Q Zebeli
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
11
|
Intermittently-induced endotoxaemia has no effect on post-challenge plasma metabolites, but increases body temperature and cortisol concentrations in periparturient dairy cows. Res Vet Sci 2013; 95:1155-62. [DOI: 10.1016/j.rvsc.2013.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 06/22/2013] [Accepted: 07/11/2013] [Indexed: 12/31/2022]
|
12
|
Iqbal S, Zebeli Q, Mansmann DA, Dunn SM, Ametaj BN. Oral administration of LPS and lipoteichoic acid prepartum modulated reactants of innate and humoral immunity in periparturient dairy cows. Innate Immun 2013; 20:390-400. [PMID: 23941759 DOI: 10.1177/1753425913496125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The study evaluated the effects of repeated oral exposure to LPS and lipoteichoic acid (LTA) on immune responses of dairy cows. Thirty pregnant Holstein cows were randomly assigned to two treatment groups. Cows received orally either 2 ml of 0.85% sterile saline solution (control group), or 2 ml of sterile saline solution containing three doses of LPS from Escherichia coli 0111 : B4 along with a flat dose of LTA from Bacillus subtilis. Blood and saliva samples were collected and analyzed for serum amyloid A (SAA); LPS-binding protein (LBP); anti-LPS plasma IgA, IgG and IgM; TNF-α; and IL-1. Results showed greater concentrations of IgA in the saliva of treated cows compared with the controls (P < 0.01). Treated cows had lower plasma concentrations of anti-LPS IgA, IgG and IgM Abs, and TNF-α than the controls (P < 0.05). There was a tendency for the concentrations of plasma LBP (P = 0.06) and haptoglobin (P = 0.10) to be lesser in the treatment group, although no differences were found in the concentration of plasma SAA and IL-1 (P > 0.10). Overall, the results of this study indicate that repeated oral administration with LPS and LTA stimulates innate and humoral immune responses in periparturient dairy cows.
Collapse
Affiliation(s)
- Summera Iqbal
- 1Department of Agricultural, Food and Nutritional Science, University of Alberta, AB, Canada
| | | | | | | | | |
Collapse
|