1
|
Li Q, Zhang Y, Li W, Yan K, Liu Y, Xu H, Lu Y, Liang X, Yang X. Allicin protects porcine oocytes against LPS-induced defects during maturation in vitro. Theriogenology 2022; 182:138-147. [DOI: 10.1016/j.theriogenology.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
|
2
|
Otri I, El Sayed S, Medaglia S, Martínez-Máñez R, Aznar E, Sancenón F. Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles. Chemistry 2019; 25:3770-3774. [PMID: 30688381 DOI: 10.1002/chem.201806306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/28/2022]
Abstract
A nanodevice based on mesoporous silica nanoparticles with rhodamine B in the pore framework, functionalized with carboxylates on the outer surface and capped with the cationic polymyxin B peptide, was used to selectively detect endotoxin in aqueous solutions with a limit of detection in the picomolar range.
Collapse
Affiliation(s)
- Ismael Otri
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Sameh El Sayed
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Serena Medaglia
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
3
|
Moretti S, Smets W, Hofman J, Mubiana KV, Oerlemans E, Vandenheuvel D, Samson R, Blust R, Lebeer S. Human inflammatory response of endotoxin affected by particulate matter-bound transition metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:118-126. [PMID: 30326385 DOI: 10.1016/j.envpol.2018.09.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/11/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Bacterial endotoxins are a component of particulate matter (PM) with anticipated health implications, yet we know little about how host reception of endotoxin through toll-like receptor 4 (TLR4) is affected by its association with other PM components. Subsequently, we investigated the relationship between endotoxin concentration (recombinant Factor C (rFC) assay) and host recognition (HEK Blue-TLR4 NF-kB reporter cell line based assay) in various compositions of urban PM, including road traffic, industrial and urban green land use classes. While the assays did not correlate strongly between each other, the TLR4 reporter cell line was found to be better correlated to the IL-8 response of PM. Furthermore, the ability of the quantified endotoxin (rFC assay) to stimulate the TLR4/MD-2 complex was significantly affected by the urban land use class, where traffic locations were found to be significantly higher in bioactive endotoxin than the industrial and green locations. We subsequently turned our attention to PM composition and characterized the samples based on transition metal content (through ICP-MS). The effect of nickel and cobalt - previously reported to activate the hTLR4/MD-2 complex - was found to be negligible in comparison to that of iron. Here, the addition of iron as a factor significantly improved the regression model between the two endotoxin assays, explaining 77% of the variation of the TLR4 stimulation and excluding the significant effect of land use class. Moreover, the effect of iron proved to be more than a correlation, since dosing LPS with Fe2+ led to an increase up to 64% in TLR4 stimulation, while Fe2+ without LPS was unable to stimulate a response. This study shows that endotoxin quantification assays (such as the rFC assay) may not always correspond to human biological recognition of endotoxin in urban PM, while its toxicity can be synergistically influenced by the associated PM composition.
Collapse
Affiliation(s)
- Serena Moretti
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Wenke Smets
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Jelle Hofman
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Kayawe Valentine Mubiana
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Eline Oerlemans
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Dieter Vandenheuvel
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Roeland Samson
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
4
|
Panasevich MR, Meers GM, Linden MA, Booth FW, Perfield JW, Fritsche KL, Wankhade UD, Chintapalli SV, Shankar K, Ibdah JA, Rector RS. High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. Am J Physiol Endocrinol Metab 2018; 314:E78-E92. [PMID: 28899857 PMCID: PMC5866386 DOI: 10.1152/ajpendo.00015.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Pediatric obesity and nonalcoholic steatohepatitis (NASH) are on the rise in industrialized countries, yet our ability to mechanistically examine this relationship is limited by the lack of a suitable higher animal models. Here, we examined the effects of high-fat, high-fructose corn syrup, high-cholesterol Western-style diet (WD)-induced obesity on NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. Juvenile female Ossabaw swine (5 wk old) were fed WD (43.0% fat; 17.8% high-fructose corn syrup; 2% cholesterol) or low-fat diet (CON/lean; 10.5% fat) for 16 wk ( n = 6 each) or 36 wk ( n = 4 each). WD-fed pigs developed obesity, dyslipidemia, and systemic insulin resistance compared with CON pigs. In addition, obese WD-fed pigs developed severe NASH, with hepatic steatosis, hepatocyte ballooning, inflammatory cell infiltration, and fibrosis after 16 wk, with further exacerbation of histological inflammation and fibrosis after 36 wk of WD feeding. WD feeding also resulted in robust cecal microbiota changes including increased relative abundances of families and genera in Proteobacteria ( P < 0.05) (i.e., Enterobacteriaceae, Succinivibrionaceae, and Succinivibrio) and LPS-containing Desulfovibrionaceae and Desulfovibrio and a greater ( P < 0.05) predicted microbial metabolic function for LPS biosynthesis, LPS biosynthesis proteins, and peptidoglycan synthesis compared with CON-fed pigs. Overall, juvenile Ossabaw swine fed a high-fat, high-fructose, high-cholesterol diet develop obesity and severe microbiota dysbiosis with a proinflammatory signature and a NASH phenotype directly relevant to the pediatric/adolescent and young adult population.
Collapse
Affiliation(s)
- M. R. Panasevich
- Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - G. M. Meers
- Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - M. A. Linden
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - F. W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - J. W. Perfield
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Food Science, University of Missouri, Columbia, Missouri
| | - K. L. Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Umesh D. Wankhade
- Department of Pediatrics, Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sree V. Chintapalli
- Department of Pediatrics, Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - K. Shankar
- Department of Pediatrics, Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - J. A. Ibdah
- Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, Missouri
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - R. S. Rector
- Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
5
|
Tang FHM, Maggi F. Living microorganisms change the information (Shannon) content of a geophysical system. Sci Rep 2017; 7:3320. [PMID: 28607347 PMCID: PMC5468346 DOI: 10.1038/s41598-017-03479-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/28/2017] [Indexed: 12/03/2022] Open
Abstract
The detection of microbial colonization in geophysical systems is becoming of interest in various disciplines of Earth and planetary sciences, including microbial ecology, biogeochemistry, geomicrobiology, and astrobiology. Microorganisms are often observed to colonize mineral surfaces, modify the reactivity of minerals either through the attachment of their own biomass or the glueing of mineral particles with their mucilaginous metabolites, and alter both the physical and chemical components of a geophysical system. Here, we hypothesise that microorganisms engineer their habitat, causing a substantial change to the information content embedded in geophysical measures (e.g., particle size and space-filling capacity). After proving this hypothesis, we introduce and test a systematic method that exploits this change in information content to detect microbial colonization in geophysical systems. Effectiveness and robustness of this method are tested using a mineral sediment suspension as a model geophysical system; tests are carried out against 105 experiments conducted with different suspension types (i.e., pure mineral and microbially-colonized) subject to different abiotic conditions, including various nutrient and mineral concentrations, and different background entropy production rates. Results reveal that this method can systematically detect microbial colonization with less than 10% error in geophysical systems with low-entropy background production rate.
Collapse
Affiliation(s)
- Fiona H M Tang
- Laboratory for Advanced Environmental Engineering Research, School of Civil Engineering, The University of Sydney, Bld. J05, 2006, Sydney, NSW, Australia.
| | - Federico Maggi
- Laboratory for Advanced Environmental Engineering Research, School of Civil Engineering, The University of Sydney, Bld. J05, 2006, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Peters M, Bonowitz P, Bufe A. A Bioassay for the Determination of Lipopolysaccharides and Lipoproteins. Methods Mol Biol 2017; 1600:143-150. [PMID: 28478565 DOI: 10.1007/978-1-4939-6958-6_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The availability of convenient assays for the detection and quantification of pathogen-associated molecular patterns (PAMPs) is limited. In the case of lipopolysaccharide (LPS) the so-called LAL (limulus amebocyte lysate) test is available, an assay that is performed with the lysate of the blood of the horse shoe crab. Although a sensitive and convenient assay, it lacks specificity, since it is affected by other endotoxins like, for instance, fungal cell walls as well. Here, we describe a bioassay that can be used to detect and quantitate PAMPs in environmental samples. More specific we demonstrate the usage of TLR2 and TLR4/CD14/MD2 transfected Hek293 cells to quantitatively determine bacterial lipoproteins and LPS, respectively. We show the usefulness of these assays to measure LPS in tobacco before and after combustion.
Collapse
Affiliation(s)
- Marcus Peters
- Department of Experimental Pneumology, Ruhr University Bochum, Bochum, Germany.
| | - Petra Bonowitz
- Department of Experimental Pneumology, Ruhr University Bochum, Bochum, Germany
| | - Albrecht Bufe
- Department of Experimental Pneumology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Peters M, Guidato PM, Peters K, Megger DA, Sitek B, Classen B, Heise EM, Bufe A. Allergy-Protective Arabinogalactan Modulates Human Dendritic Cells via C-Type Lectins and Inhibition of NF-κB. THE JOURNAL OF IMMUNOLOGY 2016; 196:1626-35. [PMID: 26746190 DOI: 10.4049/jimmunol.1502178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/08/2015] [Indexed: 01/07/2023]
Abstract
Arabinogalactan (AG) isolated from dust of a traditional farm prevents disease in murine models of allergy. However, it is unclear whether this polysaccharide has immune regulatory properties in humans. The aim of this study was to test the influence of AG on the immune-stimulating properties of human dendritic cells (DCs). Moreover, we sought to identify the receptor to which AG binds. AG was produced from plant callus tissue under sterile conditions to avoid the influence of pathogen-associated molecular patterns in subsequent experiments. The influence of AG on the human immune system was investigated by analyzing its impact on monocyte-derived DCs. To analyze whether the T cell stimulatory capacity of AG-stimulated DCs is altered, an MLR with naive Th cells was performed. We revealed that AG reduced T cell proliferation in a human MLR. In the search for a molecular mechanism, we found that AG binds to the immune modulatory receptors DC-specific ICAM-3 -: grabbing non integrin (DC-SIGN) and macrophage mannose receptor 1 (MMR-1). Stimulation of these receptors with AG simultaneously with TLR4 stimulation with LPS increased the expression of the E3 ubiquitin-protein ligase tripartite motif -: containing protein 21 and decreased the phosphorylation of NF-κB p65 in DCs. This led to a reduced activation profile with reduced costimulatory molecules and proinflammatory cytokine production. Blocking of MMR-1 or DC-SIGN with neutralizing Abs partially inhibits this effect. We conclude that AG dampens the activation of human DCs by LPS via binding to DC-SIGN and MMR-1, leading to attenuated TLR signaling. This results in a reduced T cell activation capacity of DCs.
Collapse
Affiliation(s)
- Marcus Peters
- Department of Experimental Pneumology, Ruhr University Bochum, 44801 Bochum, Germany;
| | - Patrick M Guidato
- Department of Experimental Pneumology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Karin Peters
- Department of Experimental Pneumology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Dominik A Megger
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; and
| | - Barbara Sitek
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; and
| | - Birgit Classen
- Department of Pharmaceutical Biology, Christian Albrechts University, 24118 Kiel, Germany
| | - Esther M Heise
- Department of Pharmaceutical Biology, Christian Albrechts University, 24118 Kiel, Germany
| | - Albrecht Bufe
- Department of Experimental Pneumology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
8
|
Haile LA, Puig M, Kelley-Baker L, Verthelyi D. Detection of innate immune response modulating impurities in therapeutic proteins. PLoS One 2015; 10:e0125078. [PMID: 25901912 PMCID: PMC4406594 DOI: 10.1371/journal.pone.0125078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/20/2015] [Indexed: 12/31/2022] Open
Abstract
Therapeutic proteins can contain multiple impurities, some of which are variants of the product, while others are derived from the cell substrate and the manufacturing process. Such impurities, even when present at trace levels, have the potential to activate innate immune cells in peripheral blood or embedded in tissues causing expression of cytokines and chemokines, increasing antigen uptake, facilitating processing and presentation by antigen presenting cells, and fostering product immunogenicity. Currently, while products are tested for host cell protein content, assays to control innate immune response modulating impurities (IIRMIs) in products are focused mainly on endotoxin and nucleic acids, however, depending on the cell substrate and the manufacturing process, numerous other IIRMI could be present. In these studies we assess two approaches that allow for the detection of a broader subset of IIRMIs. In the first, we use commercial cell lines transfected with Toll like receptors (TLR) to detect receptor-specific agonists. This method is sensitive to trace levels of IIRMI and provides information of the type of IIRMIs present but is limited by the availability of stably transfected cell lines and requires pre-existing knowledge of the IIRMIs likely to be present in the product. Alternatively, the use of a combination of macrophage cell lines of human and mouse origin allows for the detection of a broader spectrum of impurities, but does not identify the source of the activation. Importantly, for either system the lower limit of detection (LLOD) of impurities was similar to that of PBMC and it was not modified by the therapeutic protein tested, even in settings where the product had inherent immune modulatory properties. Together these data indicate that a cell-based assay approach could be used to screen products for the presence of IIRMIs and inform immunogenicity risk assessments, particularly in the context of comparability exercises.
Collapse
Affiliation(s)
- Lydia Asrat Haile
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Montserrat Puig
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Logan Kelley-Baker
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Daniela Verthelyi
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells. PLoS One 2014; 9:e113840. [PMID: 25478795 PMCID: PMC4257590 DOI: 10.1371/journal.pone.0113840] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/31/2014] [Indexed: 12/03/2022] Open
Abstract
Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002–2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.
Collapse
|
10
|
Chiominto A, Marcelloni AM, Tranfo G, Paba E, Paci E. Validation of a high performance liquid chromatography-tandem mass spectrometry method for β-hydroxy fatty acids as environmental markers of lipopolysaccharide. J Chromatogr A 2014; 1353:65-70. [DOI: 10.1016/j.chroma.2014.01.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 11/24/2022]
|
11
|
Bláhová L, Adamovský O, Kubala L, Švihálková Šindlerová L, Zounková R, Bláha L. The isolation and characterization of lipopolysaccharides from Microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria. Toxicon 2013; 76:187-96. [PMID: 24140921 DOI: 10.1016/j.toxicon.2013.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 02/05/2023]
Abstract
Massive toxic blooms of cyanobacteria represent a major threat to water supplies worldwide, yet serious gaps exist in understanding their complex toxic effects, including the role of lipopolysaccharides (LPS). The present comparative study focused on the levels and biological activities of LPS isolated from Microcystis aeruginosa, which is one of the most globally distributed toxic species. Using hot phenol extraction, LPS was isolated from 3 laboratory cultures and 11 natural water blooms. It formed 0.2-0.7% of the original dry biomass of the cyanobacteria, based on gravimetry. Additional analyses by commercial anti-LPS ELISA were correlated with gravimetry but showed concentrations that were about 7-times lower, which indicated either impurities in isolated LPS or the poor cross-reactivity of the antibodies used. LPS isolates from M. aeruginosa were potent pyrogens in the traditional Limulus amebocyte lysate (LAL)-test, but comparison with the PyroGene test demonstrated the limited selectivity of LAL with several interferences. The determined pyrogenicity (endotoxin units, EU) ranged from very low values in laboratory cultures (less than 0.003 up to 0.008-EU per 100 pg LPS) to higher values in complex bloom samples (0.01-0.078 EU per 100 pg of LPS), which suggested the role of bloom-associated bacteria in the overall effects. Potent pro-inflammatory effects of the studied LPS from both cultures and bloom samples were observed in a highly-relevant ex vivo human blood model by studying reactive oxygen species production in phagocytes as well as increased productions of interleukin 8, IL-8, and tumor necrosis factor α, TNF-α. LPS from M. aeruginosa seem to modulate several pathways involved in the regulation of both innate immunity and specific responses. In comparison to the standard pathogenic bacterial LPS (World Health Organization Escherichia coli O113:10 endotoxin; activity 1 EU per 100 pg), the studied cyanobacterial samples had pyrogenicity potencies that were at least 12-times lower. However, the health risks associated with LPS from M. aeruginosa should not be underestimated, especially with respect to diverse biological effects observed ex vivo and in the case of massive blooms in drinking water reservoirs, where the estimated pyrogenicity can reach up to 46,000 EU per mL of water.
Collapse
Affiliation(s)
- Lucie Bláhová
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|