1
|
Fidanza M, Panigrahi P, Kollmann TR. Lactiplantibacillus plantarum-Nomad and Ideal Probiotic. Front Microbiol 2021; 12:712236. [PMID: 34690957 PMCID: PMC8527090 DOI: 10.3389/fmicb.2021.712236] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics are increasingly recognized as capable of positively modulating several aspects of human health. There are numerous attributes that make an ideal probiotic. Lactiplantibacillus plantarum (Lp) exhibits an ecological and metabolic flexibility that allows it to thrive in a variety of environments. The present review will highlight the genetic and functional characteristics of Lp that make it an ideal probiotic and summarizes the current knowledge about its potential application as a prophylactic or therapeutic intervention.
Collapse
Affiliation(s)
| | - Pinaki Panigrahi
- Georgetown University Medical Center, Department of Pediatrics, Washington, DC, United States
| | | |
Collapse
|
2
|
Chen L, Zhang L, Zhang H, Sun X, Liu D, Zhang J, Zhang Y, Cheng L, Santos HA, Cui W. Programmable immune activating electrospun fibers for skin regeneration. Bioact Mater 2021; 6:3218-3230. [PMID: 33778200 PMCID: PMC7966852 DOI: 10.1016/j.bioactmat.2021.02.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Immune cells play a crucial regulatory role in inflammatory phase and proliferative phase during skin healing. How to programmatically activate sequential immune responses is the key for scarless skin regeneration. In this study, an "Inner-Outer" IL-10-loaded electrospun fiber with cascade release behavior was constructed. During the inflammatory phase, the electrospun fiber released a lower concentration of IL-10 within the wound, inhibiting excessive recruitment of inflammatory cells and polarizing macrophages into anti-inflammatory phenotype "M2c" to suppress excessive inflammation response. During the proliferative phase, a higher concentration of IL-10 released by the fiber and the anti-fibrotic cytokines secreted by polarized "M2c" directly acted on dermal fibroblasts to simultaneously inhibit extracellular matrix overdeposition and promote fibroblast migration. The "Inner-Outer" IL-10-loaded electrospun fiber programmatically activated the sequential immune responses during wound healing and led to scarless skin regeneration, which is a promising immunomodulatory biomaterial with great potential for promoting complete tissue regeneration.
Collapse
Affiliation(s)
- Lu Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Liucheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Hongbo Zhang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.,Department of Pharmaceutical Sciences Laboratory and Turku Center for Biotechnology, Åbo Akademi University, Turku FI-20520, Finland
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Dan Liu
- National Research Center for Translational Medicine, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Jianming Zhang
- National Research Center for Translational Medicine, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Liying Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki FI-00014, Finland
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| |
Collapse
|
3
|
Kim H, Conway EM. Platelets and Complement Cross-Talk in Early Atherogenesis. Front Cardiovasc Med 2019; 6:131. [PMID: 31555668 PMCID: PMC6742699 DOI: 10.3389/fcvm.2019.00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis remains a ubiquitous and serious threat to human health. The initial formation of the atherosclerotic lesion (atheroma) is driven by pro-inflammatory signaling involving monocytes and vascular endothelial cells; later stages of the disease involve rupture of well-established atherosclerotic plaques, thrombosis, and blood vessel occlusion. While the central role of platelets in thrombosis is undisputed, platelets exhibit pro-inflammatory activities, and contribute to early-stage atheroma formation. Platelets also engage components of the complement system, an essential element of innate immunity that contributes to vascular inflammation. Here we provide an overview of the complex interplay between platelets and the complement system, with a focus on how the crosstalk between them may impact on the initiation of atheroma formation.
Collapse
Affiliation(s)
- Hugh Kim
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Morita N, Yamazaki T, Murakami Y, Fukui R, Yamai I, Ichimonji I, Nakashima A, Nagaoka F, Takagi H, Miyake K, Akashi-Takamura S. C4b-binding protein negatively regulates TLR4/MD-2 response but not TLR3 response. FEBS Lett 2017; 591:1732-1741. [DOI: 10.1002/1873-3468.12693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/17/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Naoko Morita
- Department of Microbiology and Immunology; Aichi Medical University School of Medicine; Japan
| | - Tatsuya Yamazaki
- Department of Microbiology and Immunology; Aichi Medical University School of Medicine; Japan
| | - Yusuke Murakami
- Division of Innate Immunity; Department of Microbiology and Immunology; Institute of Medical Science; University of Tokyo; Japan
| | - Ryutaro Fukui
- Division of Innate Immunity; Department of Microbiology and Immunology; Institute of Medical Science; University of Tokyo; Japan
| | - Ikuko Yamai
- Division of Innate Immunity; Department of Microbiology and Immunology; Institute of Medical Science; University of Tokyo; Japan
| | - Isao Ichimonji
- Department of Microbiology and Immunology; Aichi Medical University School of Medicine; Japan
| | - Akina Nakashima
- Department of Microbiology and Immunology; Aichi Medical University School of Medicine; Japan
| | - Fumiaki Nagaoka
- Department of Microbiology and Immunology; Aichi Medical University School of Medicine; Japan
| | - Hidekazu Takagi
- Department of Microbiology and Immunology; Aichi Medical University School of Medicine; Japan
| | - Kensuke Miyake
- Division of Innate Immunity; Department of Microbiology and Immunology; Institute of Medical Science; University of Tokyo; Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology; Aichi Medical University School of Medicine; Japan
| |
Collapse
|