1
|
Feitosa PHR, Castellano MVCDO, Costa CHD, Cardoso ADRO, Pereira LFF, Fernandes FLA, Costa FM, Felisbino MB, Oliveira AFFD, Jardim JR, Miravitlles M. Recommendations for the diagnosis and treatment of alpha-1 antitrypsin deficiency. J Bras Pneumol 2024; 50:e20240235. [PMID: 39661838 PMCID: PMC11601085 DOI: 10.36416/1806-3756/e20240235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 12/13/2024] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a relatively rare genetic disorder, inherited in an autosomal codominant manner, that results in reduced serum AAT concentrations, with a consequent reduction in antielastase activity in the lungs, as well as an increased risk of diseases such as pulmonary emphysema, liver cirrhosis, and necrotizing panniculitis. It results from different mutations in the SERPINA1 gene, leading to changes in the AAT glycoprotein, which can alter its concentration, conformation, and function. Unfortunately, underdiagnosis is quite common; it is possible that only 10% of cases are diagnosed. The most common deficiency is in the Z variant, and it is estimated that more than 3 million people worldwide have combinations of alleles associated with severe AATD. Serum AAT concentrations should be determined, and allelic variants should be identified by phenotyping or genotyping. Monitoring lung function, especially through spirometry, is essential, because it provides information on the progression of the disease. Although pulmonary densitometry appears to be the most sensitive measure of emphysema progression, it should not be used in routine clinical practice to monitor patients. In general, the treatment is similar to that indicated for patients with COPD not caused by AATD. Exogenous administration of purified human serum-derived AAT is the only specific treatment approved for AATD in nonsmoking patients with severe deficiency (serum AAT concentration of < 57 mg/dL or < 11 µM), with evidence of functional loss above the physiological level.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederico Leon Arrabal Fernandes
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo ( SP) Brasil
| | - Fábio Marcelo Costa
- . Complexo Hospital das Clínicas, Universidade Federal do Paraná - CHC-UFPR - Curitiba (PR) Brasil
| | - Manuela Brisot Felisbino
- . Hospital Universitário, Universidade Federal de Santa Catarina - HU-UFSC - Florianópolis (SC) Brasil
| | | | - Jose R Jardim
- . Universidade Federal de São Paulo, São Paulo (SP) Brasil
| | - Marc Miravitlles
- . Vall d'Hebron Institut de Recerca - VHIR - Hospital Universitário Valld'Hebron, Barcelona, España
| |
Collapse
|
2
|
Ferrarotti I, Wencker M, Chorostowska-Wynimko J. Rare variants in alpha 1 antitrypsin deficiency: a systematic literature review. Orphanet J Rare Dis 2024; 19:82. [PMID: 38388492 PMCID: PMC10885523 DOI: 10.1186/s13023-024-03069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Alpha 1 Antitrypsin Deficiency (AATD) is a largely underrecognized genetic condition characterized by low Alpha 1 Antitrypsin (AAT) serum levels, resulting from variations in SERPINA1. Many individuals affected by AATD are thought to be undiagnosed, leading to poor patient outcomes. The Z (c.1096G > A; p.Glu366Lys) and S (c.863A > T; p.Glu288Val) deficiency variants are the most frequently found variants in AATD, with the Z variant present in most individuals diagnosed with AATD. However, there are many other less frequent variants known to contribute to lung and/or liver disease in AATD. To identify the most common rare variants associated with AATD, we conducted a systematic literature review with the aim of assessing AATD variation patterns across the world. METHODS A systematic literature search was performed to identify published studies reporting AATD/SERPINA1 variants. Study eligibility was assessed for the potential to contain relevant information, with quality assessment and data extraction performed on studies meeting all eligibility criteria. AATD variants were grouped by variant type and linked to the geographical region identified from the reporting article. RESULTS Of the 4945 articles identified by the search string, 864 contained useful information for this study. Most articles came from the United States, followed by the United Kingdom, Germany, Spain, and Italy. Collectively, the articles identified a total of 7631 rare variants and 216 types of rare variant across 80 counties. The F (c.739C > T; p.Arg247Cys) variant was identified 1,281 times and was the most reported known rare variant worldwide, followed by the I (c.187C > T; p.Arg63Cys) variant. Worldwide, there were 1492 Null/rare variants that were unidentified at the time of source article publication and 75 rare novel variants reported only once. CONCLUSION AATD goes far beyond the Z and S variants, suggesting there may be widespread underdiagnosis of patients with the condition. Each geographical region has its own distinctive variety of AATD variants and, therefore, comprehensive testing is needed to fully understand the true number and type of variants that exist. Comprehensive testing is also needed to ensure accurate diagnosis, optimize treatment strategies, and improve outcomes for patients with AATD.
Collapse
Affiliation(s)
- Ilaria Ferrarotti
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | | | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
3
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Tural Onur S, Natoli A, Dreger B, Arınç S, Sarıoğlu N, Çörtük M, Karadoğan D, Şenyiğit A, Yıldız BP, Köktürk N, Argun Barıs S, Kodalak Cengiz S, Polatli M. An Alpha-1 Antitrypsin Deficiency Screening Study in Patients with Chronic Obstructive Pulmonary Disease, Bronchiectasis, or Asthma in Turkey. Int J Chron Obstruct Pulmon Dis 2023; 18:2785-2794. [PMID: 38046982 PMCID: PMC10693271 DOI: 10.2147/copd.s425835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose Alpha-1 antitrypsin deficiency (AATD) is a rare hereditary condition characterized by decreased serum alpha-1 antitrypsin (AAT) levels. We aim to identify AATD in patients with chronic obstructive pulmonary disease (COPD), bronchiectasis, or asthma and to report the frequency of AAT variants in Turkey. Patients and Methods This non-interventional, multicenter, prospective study was conducted between October 2021 and June 2022. Adult patients with COPD, bronchiectasis, asthma, liver symptoms, or family members with AATD were included. Demographic and clinical characteristics, pulmonary diagnosis, respiratory symptoms, and AAT serum levels were assessed. Whole blood samples were collected as dried blood spots, and the most common AATD mutations were simultaneously tested by allele-specific genotyping. Results A total of 1088 patients, mainly diagnosed with COPD (92.7%) and shortness of breath (78.7%), were assessed. Fifty-one (5%) were found to have AATD mutations. Fifteen (29.4%) patients had Pi*S or Pi*Z mutations, whereas 36 (70.6%) patients carried rare alleles Pi*M malton (n=18, 35.3% of mutations), Pi*I (n=8, 16%), Pi*P lowell (n=7, 14%), Pi*M heerlen (n=2, 4%), and Pi*S iiyama (n=1, 2%). The most common heterozygous combinations were Pi*M/Z (n=12, 24%), and Pi*M/M malton (n=11, 22%). Ten patients with severe AATD due to two deficiency alleles were identified, two with the Pi*Z/Z genotype, four with the genotype Pi*M malton/M malton, three with Pi*Z/M malton, and one with Pi*Z/M heerlen. Conclusion Our results identified AATD mutations as a genetic-based contributor to lung disease in patients with COPD or bronchiectasis and assessed their frequency in a population of Turkish patients.
Collapse
Affiliation(s)
- Seda Tural Onur
- Department of Pulmonology, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Antonino Natoli
- Scientific and Medical Affairs, Scientific Innovation Office, Grifols, Frankfurt, Deutschland
| | - Bettina Dreger
- Scientific and Medical Affairs, Scientific Innovation Office, Grifols, Frankfurt, Deutschland
| | - Sibel Arınç
- Clinic of Chest Diseases, University of Health Sciences Turkey, S.B.Ü. Süreyyapaşa Chest Diseases and Thoracic Surgery Training and Research Hospital, İstanbul, Türkiye
| | - Nurhan Sarıoğlu
- Department of Pulmonology, Balıkesir University Faculty of Medicine, Pulmonology Clinic, Balıkesir, Türkiye
| | - Mustafa Çörtük
- Department of Pulmonology, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Dilek Karadoğan
- Department of Chest Diseases, Recep Tayyip Erdoğan University, School of Medicine, Rize, Türkiye
| | - Abdurrahman Şenyiğit
- Department of Chest Diseases, Dicle University Faculty of Medicine Hospital, Diyarbakır, Türkiye
| | - Birsen Pınar Yıldız
- Department of Pulmonology, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Nurdan Köktürk
- Department of Pulmonary Medicine, Gazi University, School of Medicine, Ankara, Türkiye
| | - Serap Argun Barıs
- Department of Pulmonary Diseases, Faculty of Medicine, Kocaeli University, Kocaeli, Türkiye
| | | | - Mehmet Polatli
- Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Türkiye
| |
Collapse
|
5
|
Lopez-Campos JL, Rapun N, Czischke K, Jardim JR, Acquier MF, Munive AA, Günen H, Drobnic E, Miravitlles M, Osaba L. Distribution of alpha1 antitrypsin rare alleles in six countries: Results from the Progenika diagnostic network. Hum Genomics 2023; 17:48. [PMID: 37277845 DOI: 10.1186/s40246-023-00497-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Knowledge of the frequency of rare SERPINA1 mutations could help in the management of alpha1 antitrypsin deficiency (AATD). The present study aims to assess the frequencies of rare and null alleles and their respiratory and hepatic pathogenicity. METHODS This is a secondary analysis of a study that evaluated the viability of the Progenika diagnostic genotyping system in six different countries by analyzing 30,827 samples from cases of suspected AATD. Allele-specific genotyping was carried out with the Progenika A1AT Genotyping Test which analyses 14 mutations in buccal swabs or dried blood spots samples. SERPINA1 gene sequencing was performed for serum AAT-genotype discrepancies or by request of the clinician. Only cases with rare mutations were included in this analysis. RESULTS There were 818 cases (2.6%) carrying a rare allele, excluding newly identified mutations. All were heterozygous except for 20 that were homozygous. The most frequent alleles were the M-like alleles, PI*Mmalton and PI*Mheerlen. Of the 14 mutations included in the Progenika panel, there were no cases detected of PI*Siiyama, PI*Q0granite falls and PI*Q0west. Other alleles not included in the 14-mutation panel and identified by gene sequencing included PI*Mwürzburg, PI*Zbristol, and PI*Zwrexham, and the null alleles PI*Q0porto, PI*Q0madrid, PI*Q0brescia, and PI*Q0kayseri. CONCLUSIONS The Progenika diagnostic network has allowed the identification of several rare alleles, some unexpected and not included in the initial diagnostic panel. This establishes a new perspective on the distribution of these alleles in different countries. These findings may help prioritize allele selection for routine testing and highlights the need for further research into their pathogenetic role.
Collapse
Affiliation(s)
- José Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Avda. Manuel Siurot, S/N, 41013, Seville, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Noelia Rapun
- Progenika Biopharma, a Grifols Company. Derio, Vizcaya, Spain
| | - Karen Czischke
- Departamento de Neumología, Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
| | - José R Jardim
- Centro de Reabilitação Pulmonar da Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, Brazil
| | | | - Abraham Ali Munive
- Departamento Médico, Fundación Neumológica Colombiana, Bogotá, D.C., Colombia
| | - Hakan Günen
- University of Health Sciences, Süreyyapaşa Research and Training Center for Chest Diseases and Thoracic Surgery, Istanbul, Turkey
| | | | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Osaba
- Progenika Biopharma, a Grifols Company. Derio, Vizcaya, Spain
| |
Collapse
|
6
|
Gonzalez A, Belmonte I, Nuñez A, Farago G, Barrecheguren M, Pons M, Orriols G, Gabriel-Medina P, Rodríguez-Frías F, Miravitlles M, Esquinas C. New variants of alpha-1-antitrypsin: structural simulations and clinical expression. Respir Res 2022; 23:339. [PMID: 36496391 PMCID: PMC9741788 DOI: 10.1186/s12931-022-02271-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is characterized by reduced serum levels of the AAT protein and predisposes to liver and lung disease. The characterization at structural level of novel pathogenic SERPINA1 mutants coding for circulating AAT could provide novel insights into the mechanisms of AAT misfolding. The present study aimed to provide a practical framework for the identification and analysis of new AAT mutations, combining structural simulations and clinical data. METHODS We analysed a total of five mutations (four not previously described) in a total of six subjects presenting moderate to severe AATD: Gly95Alafs*18, Val210Glu, Asn247Ser, Pi*S + Asp341His and Pi*S + Leu383Phe + Lys394Ile. Clinical data, genotyping and phenotyping assays, structural mapping, and conformational characterization through molecular dynamic (MD) simulations were developed and combined. RESULTS Newly discovered AAT missense variants were localized both on the interaction surface and the hydrophobic core of the protein. Distribution of mutations across the structure revealed Val210Glu at the solvent exposed s4C strand and close to the "Gate" region. Asn247Ser was located on the accessible surface, which is important for glycan attachment. On the other hand, Asp341His, Leu383Phe were mapped close to the "breach" and "shutter" regions. MD analysis revealed the reshaping of local interactions around the investigated substitutions that have varying effects on AAT conformational flexibility, hydrophobic packing, and electronic surface properties. The most severe structural changes were observed in the double- and triple-mutant (Pi*S + Asp341His and Pi*S + Leu383Phe + Lys394Ile) molecular models. The two carriers presented impaired lung function. CONCLUSIONS The results characterize five variants, four of them previously unknown, of the SERPINA1 gene, which define new alleles contributing to the deficiency of AAT. Rare variants might be more frequent than expected, and therefore, in discordant cases, standardized screening of the S and Z alleles needs complementation with gene sequencing and structural approaches. The utility of computational modelling for providing supporting evidence of the pathogenicity of rare single nucleotide variations is discussed.
Collapse
Affiliation(s)
- Angel Gonzalez
- Department of Computational Medicine, Statistic Unit, Medicine Faculty, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irene Belmonte
- Department of Clinical Biochemistry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alexa Nuñez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Georgina Farago
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Mònica Pons
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gerard Orriols
- Department of Clinical Biochemistry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Pablo Gabriel-Medina
- Department of Clinical Biochemistry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Department of Clinical Biochemistry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBEREHD), Barcelona, Spain
- Clinical Biochemistry Research Group/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| | - Cristina Esquinas
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Public Health, Mental, Maternal and Child Health Nursing Departament, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Improving the Laboratory Diagnosis of M-like Variants Related to Alpha1-Antitrypsin Deficiency. Int J Mol Sci 2022; 23:ijms23179859. [PMID: 36077263 PMCID: PMC9456480 DOI: 10.3390/ijms23179859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Alpha1-antitrypsin (AAT) is a serine protease inhibitor that is encoded by the highly polymorphic SERPINA1 gene. Mutations in this gene can lead to AAT deficiency (AATD), which is associated with an increased risk of lung and/or liver disease. On the basis of electrophoretic migration, AAT variants are named with capital letters; M (medium) signifies the normal protein. Among pathological variants, the M-like ones represent a heterogeneous group of rare allelic variants that exhibit the same electrophoretic pattern as the M wild-type protein, which makes them difficult to detect with routine methods. In order to avoid their misdiagnosis, the present study defines and validates effective methods for the detection of two pathogenic M-like variants, Mwurzburg and Mwhitstable. Comparison of protein phenotypes using isoelectric focusing of samples that presented the Mwurzburg variant, as revealed by exons 5 sequencing, identified a particular electrophoretic pattern amenable to the Mwurzburg protein. The specific phenotyping pattern was retrospectively validated, thus enabling the detection of 16 patients with Mwurzburg variant among the subjects already tested but not sequenced according to our diagnostic algorithm. The Mwhitstable allele was detected by intron 4 sequencing of SERPINA1 gene. Mwurzburg and Mwhitstable are often misdiagnosed and the introduction of diagnostic improvements can help the clinical management, especially in patients with established lung disease without any other reported risk factors.
Collapse
|
8
|
Torres-Durán M, López-Campos JL, Rodríguez-Hermosa JL, Esquinas C, Martínez-González C, Hernández-Pérez JM, Rodríguez C, Bustamante A, Casas-Maldonado F, Barrecheguren M, González C, Miravitlles M. Demographic and clinical characteristics of patients with alpha-1 antitrypsin deficiency genotypes PI*ZZ and PI*SZ in the Spanish registry of EARCO. ERJ Open Res 2022; 8:00213-2022. [PMID: 36171983 PMCID: PMC9511153 DOI: 10.1183/23120541.00213-2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background The Spanish registry of α1-antitrypsin deficiency (AATD) integrated in the European Alpha-1 Research Collaboration (EARCO) provides information about the characteristics of patients, in particular those with the PI*SZ genotype, which is frequent in Spain. Method Individuals with severe AATD defined as proteinase inhibitor (PI) genotypes PI*ZZ, PI*SZ and other rare deficient variants were included from February 1, 2020, to February 1, 2022. The analysis focused on a comparison of the characteristics of PI*ZZ and PI*SZ patients. Results 409 patients were included (53.8% men) with a mean±sd age of 53.5±15.9 years. Genotypes were PI*ZZ in 181 (44.7%), PI*SZ in 163 (40.2%), PI*SS in 29 (7.2%) and other in 32 (7.9%). 271 (67.4%) had lung disease: 175 chronic obstructive pulmonary disease (43.5%), 163 emphysema (40.5%) and 83 bronchiectasis (20.6%). Patients with the PI*SZ genotype were younger, more frequently non-index cases and had a lower frequency of respiratory diseases except asthma compared with PI*ZZ patients. Among patients with respiratory diseases, PI*SZ individuals were significantly older both at onset of symptoms and at diagnosis; only asthma was more frequent in PI*SZ than in PI*ZZ individuals. Twelve PI*SZ patients (15.4%) received augmentation therapy compared with 94 PI*ZZ patients (66.2%; p<0.001). Conclusions There is a high prevalence of PI*SZ in Spain. Patients with the PI*SZ genotype were older at symptom onset and diagnosis and had less severe lung disease compared with PI*ZZ patients. The prevalence of asthma was higher in PI*SZ, and up to 15% of PI*SZ patients received augmentation therapy. Patients with the PI*ZZ genotype have more severe pulmonary disease than those with the PI*SZ genotype. However, asthma is as frequent in PI*SZ as in PI*ZZ.https://bit.ly/3m10MNN
Collapse
|
9
|
Foil KE. Variants of SERPINA1 and the increasing complexity of testing for alpha-1 antitrypsin deficiency. Ther Adv Chronic Dis 2021; 12_suppl:20406223211015954. [PMID: 34408833 PMCID: PMC8367212 DOI: 10.1177/20406223211015954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is caused by mutations in the SERPINA1 gene, which encodes the alpha-1 antitrypsin (AAT) protein. Currently, over 200 SERPINA1 variants have been identified, many of which cause the quantitative and/or qualitative changes in AAT responsible for AATD-associated lung and liver disease. The types of these pathogenic mutations are varied, often resulting in misfolding, or truncating of the AAT amino acid sequence, and improvements in sequencing technology are helping to identify known and novel genetic variants. However, due to the diversity and novelty of rare variants, the clinical significance of many is largely unknown. There is, therefore, a lack of guidance on how patients should be monitored and treated when the clinical significance of their variant combination is unclear or variable. Nevertheless, it is important that physicians understand the advantages and disadvantages of the different testing methodologies available to diagnose AATD. Owing to the autosomal inheritance of the genetic mutations responsible for AATD, genetic testing should be offered not only to patients at increased AATD risk (e.g. patients with chronic obstructive pulmonary disease), but also to relatives of those with an abnormal result. Genetic counseling may help patients and family members understand the possible outcomes of testing and the implications for the family. While stress/anxiety can arise from genetic diagnosis or confirmation of carrier status, there can be positive consequences to genetic testing, including improved lifestyle choices, directed medical care, and empowered family planning. As genetic testing technology grows and becomes more popular, testing without physician referral is becoming more prevalent, irrespective of the availability of genetic counseling. Therefore, the Alpha-1 Foundation offers genetic counseling, as well as other support and educational material, for patients with AATD, as well as their families and physicians, to help improve the understanding of potential benefits and consequences of genetic testing.
Collapse
Affiliation(s)
- Kimberly E Foil
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
10
|
Jardim JR, Casas-Maldonado F, Fernandes FLA, Castellano MVCDO, Torres-Durán M, Miravitlles M. Update on and future perspectives for the diagnosis of alpha-1 antitrypsin deficiency in Brazil. J Bras Pneumol 2021; 47:e20200380. [PMID: 34076174 PMCID: PMC8332724 DOI: 10.36416/1806-3756/e20200380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/25/2021] [Indexed: 12/05/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disorder caused by a mutation in the SERPINA1 gene, which encodes the protease inhibitor alpha-1 antitrypsin (AAT). Severe AATD predisposes individuals to COPD and liver disease. Early diagnosis is essential for implementing preventive measures and limiting the disease burden. Although national and international guidelines for the diagnosis and management of AATD have been available for 20 years, more than 85% of cases go undiagnosed and therefore untreated. In Brazil, reasons for the underdiagnosis of AATD include a lack of awareness of the condition among physicians, a racially diverse population, serum AAT levels being assessed in a limited number of individuals, and lack of convenient diagnostic tools. The diagnosis of AATD is based on laboratory test results. The standard diagnostic approach involves the assessment of serum AAT levels, followed by phenotyping, genotyping, gene sequencing, or combinations of those, to detect the specific mutation. Over the past 10 years, new techniques have been developed, offering a rapid, minimally invasive, reliable alternative to traditional testing methods. One such test available in Brazil is the A1AT Genotyping Test, which simultaneously analyzes the 14 most prevalent AATD mutations, using DNA extracted from a buccal swab or dried blood spot. Such advances may contribute to overcoming the problem of underdiagnosis in Brazil and elsewhere, as well as being likely to increase the rate detection of AATD and therefore mitigate the harmful effects of delayed diagnosis.
Collapse
Affiliation(s)
- José R Jardim
- . Centro de Reabilitação Pulmonar, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo (SP) Brasil
| | | | - Frederico Leon Arrabal Fernandes
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | - María Torres-Durán
- . Departamento de Neumología, Hospital Álvaro Cunqueiro, Vigo, España
- . Instituto de Investigación Sanitaria Galicia Sur - IISGS - Vigo, España
| | - Marc Miravitlles
- . Departamento de Neumología, Hospital Universitario Vall d'Hebron, Barcelona, España
- . Vall d'Hebron Institut de Recerca - VHIR - Hospital Universitario Vall d'Hebron Barcelona, Barcelona, España
- . CIBER de Enfermedades Respiratorias - CIBERES - Barcelona, España
| |
Collapse
|
11
|
Ronzoni R, Ferrarotti I, D’Acunto E, Balderacchi AM, Ottaviani S, Lomas DA, Irving JA, Miranda E, Fra A. The Importance of N186 in the Alpha-1-Antitrypsin Shutter Region Is Revealed by the Novel Bologna Deficiency Variant. Int J Mol Sci 2021; 22:5668. [PMID: 34073489 PMCID: PMC8198886 DOI: 10.3390/ijms22115668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Alpha-1-antitrypsin (AAT) deficiency causes pulmonary disease due to decreased levels of circulating AAT and consequently unbalanced protease activity in the lungs. Deposition of specific AAT variants, such as the common Z AAT, within hepatocytes may also result in liver disease. These deposits are comprised of ordered polymers of AAT formed by an inter-molecular domain swap. The discovery and characterization of rare variants of AAT and other serpins have historically played a crucial role in the dissection of the structural mechanisms leading to AAT polymer formation. Here, we report a severely deficient shutter region variant, Bologna AAT (N186Y), which was identified in five unrelated subjects with different geographical origins. We characterized the new variant by expression in cellular models in comparison with known polymerogenic AAT variants. Bologna AAT showed secretion deficiency and intracellular accumulation as detergent-insoluble polymers. Extracellular polymers were detected in both the culture media of cells expressing Bologna AAT and in the plasma of a patient homozygous for this variant. Structural modelling revealed that the mutation disrupts the hydrogen bonding network in the AAT shutter region. These data support a crucial coordinating role for asparagine 186 and the importance of this network in promoting formation of the native structure.
Collapse
Affiliation(s)
- Riccardo Ronzoni
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK; (D.A.L.); (J.A.I.)
| | - Ilaria Ferrarotti
- Pneumology Unit, Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.M.B.); (S.O.)
| | - Emanuela D’Acunto
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy; (E.D.); (E.M.)
| | - Alice M. Balderacchi
- Pneumology Unit, Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.M.B.); (S.O.)
| | - Stefania Ottaviani
- Pneumology Unit, Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.M.B.); (S.O.)
| | - David A. Lomas
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK; (D.A.L.); (J.A.I.)
| | - James A. Irving
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK; (D.A.L.); (J.A.I.)
| | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy; (E.D.); (E.M.)
- Italian Pasteur Institute—Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
12
|
Seixas S, Marques PI. Known Mutations at the Cause of Alpha-1 Antitrypsin Deficiency an Updated Overview of SERPINA1 Variation Spectrum. APPLICATION OF CLINICAL GENETICS 2021; 14:173-194. [PMID: 33790624 PMCID: PMC7997584 DOI: 10.2147/tacg.s257511] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Alpha-1-Antitrypsin deficiency (AATD), caused by SERPINA1 mutations, is one of the most prevalent Mendelian disorders among individuals of European descend. However, this condition, which is characterized by reduced serum levels of alpha-1-antitrypsin (AAT) and associated with increased risks of pulmonary emphysema and liver disease in both children and adults, remains frequently underdiagnosed. AATD clinical manifestations are often correlated with two pathogenic variants, the Z allele (p.Glu342Lys) and the S allele (p.Glu264Val), which can be combined in severe ZZ or moderate SZ risk genotypes. Yet, screenings of AATD cases and large sequencing efforts carried out in both control and disease populations are disclosing outstanding numbers of rare SERPINA1 variants (>500), including many pathogenic and other likely deleterious mutations. Generally speaking, pathogenic variants can be subdivided into either loss- or gain-of-function according to their pathophysiological effects. In AATD, the loss-of-function is correlated with an uncontrolled activity of elastase by its natural inhibitor, the AAT. This phenomenon can result from the absence of circulating AAT (null alleles), poor AAT secretion from hepatocytes (deficiency alleles) or even from a modified inhibitory activity (dysfunctional alleles). On the other hand, the gain-of-function is connected with the formation of AAT polymers and their switching on of cellular stress and inflammatory responses (deficiency alleles). Less frequently, the gain-of-function is related to a modified protease affinity (dysfunctional alleles). Here, we revisit SERPINA1 mutation spectrum, its origins and population history with a greater emphasis on variants fitting the aforementioned processes of AATD pathogenesis. Those were selected based on their clinical significance and wider geographic distribution. Moreover, we also provide some directions for future studies of AATD clinically heterogeneity and comprehensive diagnosis.
Collapse
Affiliation(s)
- Susana Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Patricia Isabel Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
13
|
Belmonte I, Nuñez A, Barrecheguren M, Esquinas C, Pons M, López-Martínez RM, Ruiz G, Blanco-Grau A, Ferrer R, Genescà J, Miravitlles M, Rodríguez-Frías F. Trends in Diagnosis of Alpha-1 Antitrypsin Deficiency Between 2015 and 2019 in a Reference Laboratory. Int J Chron Obstruct Pulmon Dis 2020; 15:2421-2431. [PMID: 33116457 PMCID: PMC7548232 DOI: 10.2147/copd.s269641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Background Alpha-1 antitrypsin deficiency (AATD) remains largely underdiagnosed despite recommendations of healthcare institutions and programmes designed to increase awareness. The objective was to analyse the trends in AATD diagnosis during the last 5 years in a Spanish AATD reference laboratory. Methods This was a retrospective revision of all alpha-1 antitrypsin (AAT) determinations undertaken in our laboratory from 2015 to 2019. We analysed the number of AAT determinations performed and described the characteristics of the individuals tested, as well as the medical specialties and the reasons for requesting AAT determination. Results A total of 3507 determinations were performed, of which 5.5% corresponded to children. A significant increase in the number of AAT determinations was observed from 349 in 2015 to 872 in 2019. Among the samples, 57.6% carried an intermediate AATD (50-119 mg/dL) and 2.4% severe deficiency (<50 mg/dL). The most frequent phenotype in severe AATD individuals was PI*ZZ (78.5%), and aminotransferase levels were above normal in around 43% of children and 30% of adults. Respiratory specialists requested the highest number of AAT determinations (31.5%) followed by digestive diseases and internal medicine (27.5%) and primary care physicians (19.7%). The main reason for AAT determination in severe AATD adults was chronic obstructive pulmonary disease (41.7%), but reasons for requesting AAT determination were not reported in up to 41.7% of adults and 58.3% of children. Conclusion There is an increase in the frequency of AATD testing despite the rate of AAT determination remaining low. Awareness about AAT is probably increasing, but the reason for testing is not always clear.
Collapse
Affiliation(s)
- Irene Belmonte
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alexa Nuñez
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès). Barcelona, Spain
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Esquinas
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mònica Pons
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron; Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rosa M López-Martínez
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gerard Ruiz
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Albert Blanco-Grau
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roser Ferrer
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joan Genescà
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron; Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
14
|
Martín T, Miravitlles M, Furtado ST. A PI*MS is not always a PI*MS. An example of when genotyping for alpha-1 antitrypsin deficiency is necessary. Pulmonology 2020; 27:272-273. [PMID: 32723617 DOI: 10.1016/j.pulmoe.2020.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- T Martín
- Pneumology Department, Hospital Beatriz Ângelo, Loures, Portugal.
| | - M Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - S T Furtado
- Pneumology Department, Hospital Beatriz Ângelo, Loures, Portugal
| |
Collapse
|
15
|
Sousa CS, Teixeira V, Pereira V, Pinheiro RB, Seixas S, Martins N. A rare case of pulmonary disease combining alpha-1-antitrypsin deficiency and common variable immunodeficiency. Pulmonology 2020; 26:406-409. [PMID: 32518030 DOI: 10.1016/j.pulmoe.2020.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- C S Sousa
- Pulmonology Department, Hospital Central do Funchal, Portugal.
| | - V Teixeira
- Pulmonology Department, Hospital Central do Funchal, Portugal
| | - V Pereira
- Gastroenterology Department, Hospital Central do Funchal, Portugal
| | - R B Pinheiro
- Pulmonology Department, Hospital Central do Funchal, Portugal
| | - S Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - N Martins
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), Porto, Portugal; Faculty of Medicine, University of Porto, Portugal; Pulmonology Department, Centro Hospitalar Universitário de São João, Portugal
| |
Collapse
|
16
|
Ottaviani S, Barzon V, Buxens A, Gorrini M, Larruskain A, El Hamss R, Balderacchi AM, Corsico AG, Ferrarotti I. Molecular diagnosis of alpha1-antitrypsin deficiency: A new method based on Luminex technology. J Clin Lab Anal 2020; 34:e23279. [PMID: 32181528 PMCID: PMC7370739 DOI: 10.1002/jcla.23279] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Alpha1‐antitrypsin deficiency (AATD) is an under‐diagnosed hereditary disorder characterized by reduced serum levels of alpha1‐antitrypsin (AAT) and increased risk to develop lung and liver diseases at an early age. AAT is encoded by the highly polymorphic SERPINA1 gene. The most common deficiency alleles are S and Z, but more than 150 rare variants lead to low levels of the protein. To identify these pathological allelic variants, sequencing is required. Since traditional sequencing is expensive and time‐consuming, we evaluated the accuracy of A1AT Genotyping Test, a new diagnostic genotyping kit which allows to simultaneously identify and genotype 14 deficiency variants of the SERPINA1 gene based on Luminex technology. Methods A total of 418 consecutive samples with AATD suspicion and submitted to the Italian Reference laboratory between January and April 2016 were analyzed both by applying the diagnostic algorithm currently in use, and by applying A1AT Genotyping Test. Results The assay gave the following results: 101 samples (24.2%) were positive for at least one of the 14 deficiency variants, 316 (75.6%) were negative for all the variants analyzed. The identified mutations showed a 100% correlation with the results obtained with our diagnostic algorithm. Seventeen samples (4%) resulted negative for the assay but sequencing identified other rare pathological variants in SERPINA1 gene. Conclusion The A1AT Genotyping Test assay was highly reliable and robust and allowed shorter diagnostic times. In few cases, it has been necessary to sequence the SERPINA1 gene to identify other rare mutations not included in the kit.
Collapse
Affiliation(s)
- Stefania Ottaviani
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Laboratory of Biochemistry and Genetics, Institute for Respiratory Disease, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valentina Barzon
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Laboratory of Biochemistry and Genetics, Institute for Respiratory Disease, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amaya Buxens
- Progenika Biopharma, A Grifols Company, Derio, Spain
| | - Marina Gorrini
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Laboratory of Biochemistry and Genetics, Institute for Respiratory Disease, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Alice M Balderacchi
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Laboratory of Biochemistry and Genetics, Institute for Respiratory Disease, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Angelo G Corsico
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Laboratory of Biochemistry and Genetics, Institute for Respiratory Disease, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Ferrarotti
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Laboratory of Biochemistry and Genetics, Institute for Respiratory Disease, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
17
|
Laffranchi M, Berardelli R, Ronzoni R, Lomas DA, Fra A. Heteropolymerization of α-1-antitrypsin mutants in cell models mimicking heterozygosity. Hum Mol Genet 2019. [PMID: 29538751 DOI: 10.1093/hmg/ddy090] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The most common genotype associated with severe α-1-antitrypsin deficiency (AATD) is the Z homozygote. The Z variant (Glu342Lys) of α-1-antitrypsin (AAT) undergoes a conformational change and is retained within the endoplasmic reticulum (ER) of hepatocytes leading to the formation of ordered polymeric chains and inclusion bodies. Accumulation of mutated protein predisposes to cirrhosis whilst plasma AAT deficiency leads to emphysema. Increased risk of liver and lung disease has also been reported in heterozygous subjects who carry Z in association with the milder S allele (Glu264Val) or even with wild-type M. However, it is unknown whether Z AAT can co-polymerize with other AAT variants in vivo. We co-expressed two AAT variants, each modified by a different tag, in cell models that replicate AAT deficiency. We used pull-down assays to investigate interactions between co-expressed variants and showed that Z AAT forms heteropolymers with S and with the rare Mmalton (Phe52del) and Mwurzburg (Pro369Ser) mutants, and to a lesser extent with the wild-type protein. Heteropolymers were recognized by the 2C1 mAb that binds to Z polymers in vivo. There was increased intracellular accumulation of AAT variants when co-expressed with Z AAT, suggesting a dominant negative effect of the Z allele. The molecular interactions between S and Z AAT were confirmed by confocal microscopy showing their colocalization within dilated ER cisternae and by positivity in Proximity Ligation Assays. These results provide the first evidence of intracellular co-polymerization of AAT mutants and contribute to understanding the risk of liver disease in SZ and MZ heterozygotes.
Collapse
Affiliation(s)
- Mattia Laffranchi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Romina Berardelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Riccardo Ronzoni
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.,UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - David A Lomas
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
18
|
Sequencing Alpha-1 MZ Individuals Shows Frequent Biallelic Mutations. Pulm Med 2018; 2018:2836389. [PMID: 30254761 PMCID: PMC6145046 DOI: 10.1155/2018/2836389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/03/2018] [Accepted: 08/12/2018] [Indexed: 11/17/2022] Open
Abstract
Rationale Individuals with a single Z mutation in the SERPINA1 gene that codes for alpha-1 antitrypsin (AAT) are at increased risk for COPD if they have ever-smoked. Whether additional variants alter the risk for COPD in this population remains unknown. Objectives To determine whether additional SERPINA1 variants impact COPD development in a previously identified MZ (carrier) cohort. Methods Individuals with prior MZ results and AAT serum level <16uM were recruited from the Alpha-1 Coded Testing study and Alpha-1 Foundation Research Registry. Participants completed smoking history, demographics, and COPD Severity Score (Range 0-33) using REDCap data capture. At-home finger-stick tests were performed for next generation sequencing (NGS) at the Biocerna LLC laboratory. A genetic counselor reviewed records and interviewed participants with additional variants by NGS. A Wilcoxon Rank Sum test was used to assess correlation between variants and the COPD severity score. Results A second SERPINA1 variant of known or possible significance was identified in 6 (5.8%) participants. One each of ZZ, SZ, FZ, ZSmunich, ZM2obernburg, and Z/c.922G>T genotypes were identified. ZZ, SZ, and FZ are known pathogenic genotypes. Smunich is a likely pathogenic variant. M2obernburg and c.922G>T are variants of uncertain significance. The ZZ individual was on augmentation therapy when determined MZ by protease inhibitor (Pi) phenotyping; the others had limited targeted genotyping with MZ results. These six participants with biallelic variants had positive COPD severity scores >1. Presence of additional variants was not significantly associated with COPD symptoms in this small sample size. Conclusions Some diagnosed MZ individuals instead have biallelic variants. Larger studies are needed to determine COPD-risk liability of variants. Accurate diagnosis impacts medical management and familial risk assessment. Pi phenotyping can be confounded by augmentation therapy and liver transplantation. Because a normal M allele may be reported in the absence of tested mutation(s) in AATD genotyping, clinicians should consider clinical circumstances and laboratory methods when selecting and interpreting AATD tests. Advanced testing, including NGS, may be beneficial for select individuals with prior MZ results. Clinical Trial Registration This study was registered with clinicaltrials.gov (NCT NCT02810327).
Collapse
|
19
|
Editorial A. Diagnosis and treatment of pulmonarydisease in α1-antitrypsin deficiency: a statement of European Respiratory Society. RUSSIAN PULMONOLOGY 2018; 28:273-295. [DOI: 10.18093/0869-0189-2018-28-3-273-295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Alfa-1-antitrypsin deficiency (AATD) is the most common hereditary disorder in adults. It is associated with an increased risk of developing pulmonary emphysema and liver disease. The lung injury in AATD is closely associated with smoking, but progressive lung disease could occur even in never-smokers. A number of individuals with AATD remain undiagnosed and therefore do not receive appropriate care and treatment. The most recent international document on AATD was the joint statement of the American Thoracic Society and the European Respiratory Society published in 2003. Thereafter, there has been a continuous development of novel, more accurate and less expensive genetic diagnostic methods. Furthermore, new outcome parameters have been developed and validated for use in clinical trials and a new series of observational and randomized clinical trials have provided more evidence concerning the efficacy and safety of augmentation therapy, the only specific treatment available for the pulmonary disease associated with AATD. As AATD is a rare disease, it is important to createnational and international registries and to collect information prospectively about the natural history of the disease. Management of AATD patients must be supervised by national or regional expert centres and inequalities in access to therapies across Europe should be addressed.
Collapse
|
20
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
21
|
Miravitlles M, Dirksen A, Ferrarotti I, Koblizek V, Lange P, Mahadeva R, McElvaney NG, Parr D, Piitulainen E, Roche N, Stolk J, Thabut G, Turner A, Vogelmeier C, Stockley RA. European Respiratory Society statement: diagnosis and treatment of pulmonary disease in α1-antitrypsin deficiency. Eur Respir J 2017; 50:50/5/1700610. [PMID: 29191952 DOI: 10.1183/13993003.00610-2017] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/16/2017] [Indexed: 11/05/2022]
Abstract
α1-antitrypsin deficiency (AATD) is the most common hereditary disorder in adults. It is associated with an increased risk of developing pulmonary emphysema and liver disease. The pulmonary emphysema in AATD is strongly linked to smoking, but even a proportion of never-smokers develop progressive lung disease. A large proportion of individuals affected remain undiagnosed and therefore without access to appropriate care and treatment.The most recent international statement on AATD was published by the American Thoracic Society and the European Respiratory Society in 2003. Since then there has been a continuous development of novel, more accurate and less expensive genetic diagnostic methods. Furthermore, new outcome parameters have been developed and validated for use in clinical trials and a new series of observational and randomised clinical trials have provided more evidence concerning the efficacy and safety of augmentation therapy, the only specific treatment available for the pulmonary disease associated with AATD.As AATD is a rare disease, it is crucial to organise national and international registries and collect information prospectively about the natural history of the disease. Management of AATD patients must be supervised by national or regional expert centres and inequalities in access to therapies across Europe should be addressed.
Collapse
|
22
|
Zhumagaliyeva A, Ottaviani S, Greulich T, Gorrini M, Vogelmeier C, Karazhanova L, Nurgazina G, DeSilvestri A, Kotke V, Barzon V, Zorzetto M, Corsico A, Ferrarotti I. Case-finding for alpha1-antitrypsin deficiency in Kazakh patients with COPD. Multidiscip Respir Med 2017; 12:23. [PMID: 29090095 PMCID: PMC5655868 DOI: 10.1186/s40248-017-0104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022] Open
Abstract
Background Alpha-1-antitrypsin deficiency (AATD) is an under-diagnosed condition in patients with chronic obstructive pulmonary disease (COPD). The aim of this study was to screen for AATD in Kazakh patients with COPD using dried blood spot specimens. Methods The alpha1-antitrypsin (AAT) concentration was determined by nephelometry, PCR was used to detect PiS and PiZ alleles; and isoelectric focusing was used to confirm questionable genotype results and detect rare AAT variants. Results To this aim, 187 Kazakh subjects with COPD were recruited. Blood samples were collected as dried blood spot. Genotyping of 187 samples revealed 3 (1.6%) PI*MZ and 1 (0.53%) PI*MS, Phenotyping identified also two sample (1.1%) with phenotype PiMI. Allelic frequencies of pathological mutations Z, S and I resulted 0.8%, 0.3%, 0.5%, respectively, in COPD Kazakh population. Conclusion This study proved that AATD is present in the Kazakh population. These results support the general concept of targeted screening for AAT deficiency in countries like Kazakhstan, with a large population of COPD patients and low awareness among care-givers about this genetic condition.
Collapse
Affiliation(s)
| | - Stefania Ottaviani
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Dept of Internal Medicine and Therapeutics Pneumology Unit, IRCCS San Matteo Hospital Foundation University of Pavia, Piazza Golgi 1, 27100 Pavia, Italy
| | - Timm Greulich
- University Clinic of Marburg and Gissen, Center for Research alpha-1-antitrypsin deficiency, Marburg, Germany
| | - Marina Gorrini
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Dept of Internal Medicine and Therapeutics Pneumology Unit, IRCCS San Matteo Hospital Foundation University of Pavia, Piazza Golgi 1, 27100 Pavia, Italy
| | - Claus Vogelmeier
- University Clinic of Marburg and Gissen, Center for Research alpha-1-antitrypsin deficiency, Marburg, Germany
| | | | - Gulmira Nurgazina
- Kazakh Medical University of Continuing Education, Almaty, Kazakhstan
| | | | - Victor Kotke
- University Clinic of Marburg and Gissen, Center for Research alpha-1-antitrypsin deficiency, Marburg, Germany
| | - Valentina Barzon
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Dept of Internal Medicine and Therapeutics Pneumology Unit, IRCCS San Matteo Hospital Foundation University of Pavia, Piazza Golgi 1, 27100 Pavia, Italy
| | - Michele Zorzetto
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Dept of Internal Medicine and Therapeutics Pneumology Unit, IRCCS San Matteo Hospital Foundation University of Pavia, Piazza Golgi 1, 27100 Pavia, Italy
| | - Angelo Corsico
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Dept of Internal Medicine and Therapeutics Pneumology Unit, IRCCS San Matteo Hospital Foundation University of Pavia, Piazza Golgi 1, 27100 Pavia, Italy.,Dept of Internal Medicine and Therapeutics, Pneumology Unit, University of Pavia, Pavia, Italy
| | - Ilaria Ferrarotti
- Semey State Medical University, Semey, Kazakhstan.,Dept of Internal Medicine and Therapeutics, Pneumology Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
Martínez Bugallo F, Figueira Gonçalves JM, Martín Martínez MD, Díaz Pérez D. Spectrum of Alpha-1 Antitripsin Deficiency Mutations Detected in Tenerife. Arch Bronconeumol 2017; 53:595-596. [PMID: 28427797 DOI: 10.1016/j.arbr.2017.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/21/2017] [Accepted: 03/05/2017] [Indexed: 01/02/2025]
Affiliation(s)
- Francisco Martínez Bugallo
- Unidad de Diagnóstico Molecular, Servicio de Análisis Clínicos, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España.
| | | | - María Dolores Martín Martínez
- Unidad de Diagnóstico Molecular, Servicio de Análisis Clínicos, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| | - David Díaz Pérez
- Servicio de Neumología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| |
Collapse
|
24
|
|
25
|
Belmonte I, Barrecheguren M, Esquinas C, Rodríguez E, Miravitlles M, Rodríguez-Frías F. Genetic diagnosis of α1-antitrypsin deficiency using DNA from buccal swab and serum samples. Clin Chem Lab Med 2017; 55:1276-1283. [PMID: 28107169 DOI: 10.1515/cclm-2016-0842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND α1-Antitrypsin deficiency (AATD) is associated with a high risk of developing lung and liver disease. Despite being one of the most common hereditary disorders worldwide, AATD remains under-diagnosed and prolonged delays in diagnosis are usual. The aim of this study was to validate the use of buccal swab samples and serum circulating DNA for the complete laboratory study of AATD. METHODS Sixteen buccal swab samples from previously characterized AATD patients were analyzed using an allele-specific genotyping assay and sequencing method. In addition, 19 patients were characterized by quantification, phenotyping and genotyping using only serum samples. RESULTS The 16 buccal swab samples were correctly characterized by genotyping. Definitive results were obtained in the 19 serum samples analyzed by quantification, phenotyping and genotyping, thereby performing the complete AATD diagnostic algorithm. CONCLUSIONS Buccal swab samples may be useful to expand AATD screening programs and family studies. Genotyping using DNA from serum samples permits the application of the complete diagnostic algorithm without delay. These two methods will be useful for obtaining more in depth knowledge of the real prevalence of patients with AATD.
Collapse
|
26
|
Spectrum of Alpha-1 Antitripsin Deficiency Mutations Detected in Tenerife. Arch Bronconeumol 2017; 53:595-596. [PMID: 28427797 DOI: 10.1016/j.arbres.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/21/2017] [Accepted: 03/05/2017] [Indexed: 11/20/2022]
|
27
|
Belmonte I, Montoto L, Rodríguez-Frías F. Laboratory Diagnosis by Genotyping. Methods Mol Biol 2017; 1639:45-60. [PMID: 28752445 DOI: 10.1007/978-1-4939-7163-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1 antitrypsin (AAT) genotyping is useful to confirm the clinical diagnosis of AAT deficiency and determine the specific allelic variant. Genotyping is the reference standard procedure for identifying rare allelic variants and characterizing new variants. It is also useful when there is a discrepancy between the patients' AAT levels and their phenotypes. AAT genotype is determined by an allele-specific genotyping assay for the S, Z, and Mmalton variants and by exome sequencing.
Collapse
Affiliation(s)
- Irene Belmonte
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Vall d'Hebron Institut de Reserca (VHIR), Barcelona, Spain
| | - Luciana Montoto
- Molecular Biology Department, Hospital de Niños Pedro Elizalde, Buenos Aires, Argentina
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Figueira Gonçalves JM, Martínez Bugallo F, Díaz Pérez D, Martín Martínez MD, García-Talavera I. Alpha-1 Antitrypsin Deficiency Associated With the Mmalton Variant. Description of a Family. ACTA ACUST UNITED AC 2016. [PMID: 27320404 DOI: 10.1016/j.arbr.2016.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Figueira Gonçalves JM, Martínez Bugallo F, Díaz Pérez D, Martín Martínez MD, García-Talavera I. Déficit de alfa-1-antitripsina asociado a la variante Mmalton. Descripción de una familia. Arch Bronconeumol 2016; 52:617-618. [DOI: 10.1016/j.arbres.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 11/28/2022]
|
30
|
Belmonte I, Barrecheguren M, López-Martínez RM, Esquinas C, Rodríguez E, Miravitlles M, Rodríguez-Frías F. Application of a diagnostic algorithm for the rare deficient variant Mmalton of alpha-1-antitrypsin deficiency: a new approach. Int J Chron Obstruct Pulmon Dis 2016; 11:2535-2541. [PMID: 27877030 PMCID: PMC5113155 DOI: 10.2147/copd.s115940] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Alpha-1-antitrypsin deficiency (AATD) is associated with a high risk for the development of early-onset emphysema and liver disease. A large majority of subjects with severe AATD carry the ZZ genotype, which can be easily detected. Another rare pathologic variant, the Mmalton allele, causes a deficiency similar to that of the Z variant, but it is not easily recognizable and its detection seems to be underestimated. Therefore, we have included a rapid allele-specific genotyping assay for the detection of the Mmalton variant in the diagnostic algorithm of AATD used in our laboratory. The objective of this study was to test the usefulness of this new algorithm for Mmalton detection. MATERIALS AND METHODS We performed a retrospective revision of all AATD determinations carried out in our laboratory over 2 years using the new diagnostic algorithm. Samples with a phenotype showing one or two M alleles and AAT levels discordant with that phenotype were analyzed using the Mmalton allele-specific genotyping assay. RESULTS We detected 49 samples with discordant AAT levels; 44 had the MM and five the MS phenotype. In nine of these samples, a single rare Mmalton variant was detected. During the study period, two family screenings were performed and four additional Mmalton variants were identified. CONCLUSION The incorporation of the Mmalton allele-specific genotyping assay in the diagnostic algorithm of AATD resulted in a faster and cheaper method to detect this allele and avoided a significant delay in diagnosis when a sequencing assay was required. This methodology can be adapted to other rare variants. Standardized algorithms are required to obtain conclusive data of the real incidence of rare AAT alleles in each region.
Collapse
Affiliation(s)
- Irene Belmonte
- Liver Pathology Unit, Department of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | | | | | - Cristina Esquinas
- Pneumology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Esther Rodríguez
- Pneumology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- CIBER of Respiratory Diseases, Barcelona, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- CIBER of Respiratory Diseases, Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Department of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER of Liver and Digestive Diseases, Instituto Nacional de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Alpha-1-antitrypsin (SERPINA1) mutation spectrum: Three novel variants and haplotype characterization of rare deficiency alleles identified in Portugal. Respir Med 2016; 116:8-18. [PMID: 27296815 DOI: 10.1016/j.rmed.2016.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 05/02/2016] [Indexed: 01/24/2023]
|
32
|
Frequency of Rare Alpha-1 Antitrypsin Variants in Polish Patients with Chronic Respiratory Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [PMID: 26987331 DOI: 10.1007/5584_2016_213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The SERPINA1 gene encoding the alpha-1 antitrypsin (A1AT) protein is highly polymorphic. It is known that, apart from the most prevalent PI*S and PI*Z A1AT deficiency variants, other so-called rare variants also predispose individuals to severe chronic respiratory disorders such as emphysema and chronic obstructive pulmonary disease. Our aim was to assess the frequencies of common and rare SERPINA1 mutations in a group of 1033 Polish patients referred for A1AT deficiency diagnostics due to chronic respiratory disorders in the period of January 2014-September 2015. All blood samples were analyzed according to the routine diagnostic protocol, including A1AT serum concentration assessment by nephelometry and immune isoelectric focusing, followed by PCR genotyping and direct sequencing when necessary. A total of 890 out of the 1033 samples (86 %) carried the normal PI*MM genotype, whereas, in 143 samples (14 %), at least one A1AT deficiency variant was detected. In 132 subjects, PI*S (2.1 %) and PI*Z (10.8 %) common deficiency alleles were identified, yielding frequencies of 0.011 and 0.062, respectively. Rare SERPINA1 variants were detected in nine patients: PI*F (c.739C>T) (n = 5) and PI*I (c.187C>T) (n = 4). Samples from the patients with an A1AT serum concentration below 120 mg/dl and presenting a PI*MM-like phenotypic pattern were retrospectively analyzed by direct sequencing for rare SERPINA1 mutations, revealing a PI*M2Obernburg (c.514G>T) mutation in one patient and a non-pathogenic mutation (c.922G>T) in another. We conclude that the deficiency PI*Z A1AT allele is considerably more common in patients with chronic respiratory disorders than in the general Polish population. The prevalence of the PI*F allele seems higher than in other European studies.
Collapse
|
33
|
Denden S, Bouden B, Boudawara Keskes N, Knani J, Hassine M, Lefranc G, Ben Chibani J, Haj Khelil A. Aspects de la BPCO chez les porteurs de la mutation déficitaire rare de l’alpha-1 antitrypsine PIMMmalton. Rev Mal Respir 2016; 33:32-40. [PMID: 26071129 DOI: 10.1016/j.rmr.2015.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/27/2015] [Indexed: 11/25/2022]
|
34
|
Ronzoni R, Berardelli R, Medicina D, Sitia R, Gooptu B, Fra AM. Aberrant disulphide bonding contributes to the ER retention of alpha1-antitrypsin deficiency variants. Hum Mol Genet 2015; 25:642-50. [PMID: 26647313 DOI: 10.1093/hmg/ddv501] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/03/2015] [Indexed: 01/07/2023] Open
Abstract
Mutations in alpha1-antitrypsin (AAT) can cause the protein to polymerise and be retained in the endoplasmic reticulum (ER) of hepatocytes. The ensuing systemic AAT deficiency leads to pulmonary emphysema, while intracellular polymers are toxic and cause chronic liver disease. The severity of this process varies considerably between individuals, suggesting the involvement of mechanistic co-factors and potential for therapeutically beneficial interventions. We show in Hepa1.6 cells that the mildly polymerogenic I (Arg39Cys) AAT mutant forms aberrant inter- and intra-molecular disulphide bonds involving the acquired Cys39 and the only cysteine residue in the wild-type (M) sequence (Cys232). Substitution of Cys39 to serine partially restores secretion, showing that disulphide bonding contributes to the intracellular retention of I AAT. Covalent homodimers mediated by inter-Cys232 bonding alone are also observed in cells expressing the common Z and other polymerising AAT variants where conformational behaviour is abnormal, but not in those expressing M AAT. Prevention of such disulphide linkage through the introduction of the Cys232Ser mutation or by treatment of cells with reducing agents increases Z AAT secretion. Our results reveal that disulphide interactions enhance intracellular accumulation of AAT mutants and implicate the oxidative ER state as a pathogenic co-factor. Redox modulation, e.g. by anti-oxidant strategies, may therefore be beneficial in AAT deficiency-associated liver disease.
Collapse
Affiliation(s)
- Riccardo Ronzoni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Romina Berardelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | - Bibek Gooptu
- Institute of Structural and Molecular Biology/Crystallography, Birkbeck College, University of London, London, UK and Division of Asthma, Allergy and Lung Biology, King's College, London, UK
| | - Anna Maria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy,
| |
Collapse
|
35
|
SERPINA1 Full-Gene Sequencing Identifies Rare Mutations Not Detected in Targeted Mutation Analysis. J Mol Diagn 2015; 17:689-94. [PMID: 26321041 DOI: 10.1016/j.jmoldx.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/19/2015] [Accepted: 07/01/2015] [Indexed: 01/18/2023] Open
|
36
|
Cummings EE, O’Reilly LP, King DE, Silverman RM, Miedel MT, Luke CJ, Perlmutter DH, Silverman GA, Pak SC. Deficient and Null Variants of SERPINA1 Are Proteotoxic in a Caenorhabditis elegans Model of α1-Antitrypsin Deficiency. PLoS One 2015; 10:e0141542. [PMID: 26512890 PMCID: PMC4626213 DOI: 10.1371/journal.pone.0141542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/10/2015] [Indexed: 12/24/2022] Open
Abstract
α1-antitrypsin deficiency (ATD) predisposes patients to both loss-of-function (emphysema) and gain-of-function (liver cirrhosis) phenotypes depending on the type of mutation. Although the Z mutation (ATZ) is the most prevalent cause of ATD, >120 mutant alleles have been identified. In general, these mutations are classified as deficient (<20% normal plasma levels) or null (<1% normal levels) alleles. The deficient alleles, like ATZ, misfold in the ER where they accumulate as toxic monomers, oligomers and aggregates. Thus, deficient alleles may predispose to both gain- and loss-of-function phenotypes. Null variants, if translated, typically yield truncated proteins that are efficiently degraded after being transiently retained in the ER. Clinically, null alleles are only associated with the loss-of-function phenotype. We recently developed a C. elegans model of ATD in order to further elucidate the mechanisms of proteotoxicity (gain-of-function phenotype) induced by the aggregation-prone deficient allele, ATZ. The goal of this study was to use this C. elegans model to determine whether different types of deficient and null alleles, which differentially affect polymerization and secretion rates, correlated to any extent with proteotoxicity. Animals expressing the deficient alleles, Mmalton, Siiyama and S (ATS), showed overall toxicity comparable to that observed in patients. Interestingly, Siiyama expressing animals had smaller intracellular inclusions than ATZ yet appeared to have a greater negative effect on animal fitness. Surprisingly, the null mutants, although efficiently degraded, showed a relatively mild gain-of-function proteotoxic phenotype. However, since null variant proteins are degraded differently and do not appear to accumulate, their mechanism of proteotoxicity is likely to be different to that of polymerizing, deficient mutants. Taken together, these studies showed that C. elegans is an inexpensive tool to assess the proteotoxicity of different AT variants using a transgenic approach.
Collapse
Affiliation(s)
- Erin E. Cummings
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Linda P. O’Reilly
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Dale E. King
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Richard M. Silverman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Mark T. Miedel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Cliff J. Luke
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - David H. Perlmutter
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Gary A. Silverman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SCP); (GAS)
| | - Stephen C. Pak
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SCP); (GAS)
| |
Collapse
|
37
|
Joly P, Guillaud O, Hervieu V, Francina A, Mornex JF, Chapuis-Cellier C. Clinical heterogeneity and potential high pathogenicity of the Mmalton Alpha 1 antitrypsin allele at the homozygous, compound heterozygous and heterozygous states. Orphanet J Rare Dis 2015; 10:130. [PMID: 26446624 PMCID: PMC4596512 DOI: 10.1186/s13023-015-0350-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
Background Alpha 1 antitrypsin (A1AT) deficiency (A1ATD) is potentially associated with a high degree of liver and/or lung disease. Apart from the most frequent deficiency alleles, Pi S and Pi Z, some A1AT alleles of clinical significance may be easily misdiagnosed. This is typically the case of the Pi Mmalton variant which shares the same ‘gain-of-function’ liver toxicity than Pi Z and the same ‘loss of function’ lung disease as well. Methods The biological diagnosis of A1ATD typically relies on a low serum concentration associated with an abnormal isoelectric focusing (IEF) pattern of migration. However, Sanger direct DNA sequencing may be required for deficiency alleles without biochemical expression (Null alleles) or for A1AT variants whose IEF profiles resemble the wild-type and sub-types M allele but with a low concentration. Results We report four cases of A1ATD involving the deficient Pi Mmalton allele with very different clinical expressions: (i) one Mmalton/Mmalton with liver fibrosis and cirrhosis, (ii) two Mmalton/Z with chronic pulmonary obstructive disease in one case and (iii) one M/Mmalton without liver or lung disease. In both cases, the correct diagnosis has necessitated a genetic analysis. Conclusions Our study provides another example of Pi Mmalton homozygosity associated with a severe liver disease that emphasizes the necessity of a not delayed diagnosis. The great clinical heterogeneity of the other genotypes (which is in agreement with the literature data) questions about the role of environmental and other modifier genes in the pathogenicity of A1ATD.
Collapse
Affiliation(s)
- Philippe Joly
- Unité de Pathologie Moléculaire du Globule Rouge, Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France. .,Centre de Recherche et d'Innovation sur le Sport (CRIS)-EA 647, Université Claude-Bernard Lyon 1, Villeurbanne, France. .,Labex GR-Ex, Institut Universitaire de France, Paris, France.
| | - Olivier Guillaud
- Service d'hépato-gastroentérologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| | - Valérie Hervieu
- Service d'anatomie pathologique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| | - Alain Francina
- Unité de Pathologie Moléculaire du Globule Rouge, Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| | - Jean-François Mornex
- Service de pneumologie, Groupement Hospitalier Est, Hospices Civils & Université Claude Bernard-Lyon 1, Bron, France.
| | - Colette Chapuis-Cellier
- Laboratoire d'Immunologie, Centre de Biologie Sud, Centre hospitalier Lyon-Sud, Hospices Civils & Université Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
38
|
Lara B, Miravitlles M. Spanish Registry of Patients With Alpha-1 Antitrypsin Deficiency; Comparison of the Characteristics of PISZ and PIZZ Individuals. COPD 2015; 12 Suppl 1:27-31. [PMID: 25938288 DOI: 10.3109/15412555.2015.1021912] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Casas F, Blanco I, Martínez MT, Bustamante A, Miravitlles M, Cadenas S, Hernández JM, Lázaro L, Rodríguez E, Rodríguez-Frías F, Torres M, Lara B. Indications for active case searches and intravenous alpha-1 antitrypsin treatment for patients with alpha-1 antitrypsin deficiency chronic pulmonary obstructive disease: an update. Arch Bronconeumol 2015; 51:185-92. [PMID: 25027067 DOI: 10.1016/j.arbres.2014.05.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/10/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023]
Abstract
The effect of hereditary alpha-1 antitrypsin (AAT) deficiency can manifest clinically in the form of chronic obstructive pulmonary disease (COPD). AAT deficiency (AATD) is defined as a serum concentration lower than 35% of the expected mean value or 50 mg/dl (determined by nephelometry). It is associated in over 95% of cases with Pi*ZZ genotypes, and much less frequently with other genotypes resulting from combinations of Z, S, rare and null alleles. A systematic qualitative review was made of 107 articles, focusing mainly on an active search for AATD in COPD patients and intravenous (iv) treatment with AAT. On the basis of this review, the consultant committee of the Spanish Registry of Patients with AATD recommends that all COPD patients be screened for AATD with the determination of AAT serum concentrations, and when these are low, the evaluation must be completed with phenotyping and, on occasions, genotyping. Patients with severe AATD COPD should receive the pharmacological and non-pharmacological treatment recommended in the COPD guidelines. There is enough evidence from large observational studies and randomized placebo-controlled clinical trials to show that the administration of iv AAT reduces mortality and slows the progression of emphysema, hence its indication in selected cases that meet the inclusion criteria stipulated in international guidelines. The administration of periodic infusions of AAT is the only specific treatment for delaying the progression of emphysema associated with AATD.
Collapse
Affiliation(s)
- Francisco Casas
- Unidad de Gestión Clínica de Neumología, Hospital Universitario San Cecilio, Granada, España
| | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina, Fundación Española de Pulmón, Respira, SEPAR
| | | | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, España
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, España
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Salamanca, España
| | - José M Hernández
- Servicio de Neumología, Hospital General de la Palma, La Palma, Santa Cruz de Tenerife, España
| | - Lourdes Lázaro
- Servicio de Neumología, Hospital Universitario de Burgos, Burgos, España
| | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, España
| | | | - María Torres
- Servicio de Neumología, Complexo Universitario de Vigo, Pontevedra, España
| | - Beatriz Lara
- Servicio de Neumología, Hospital Universitario Arnau de Vilanova, Lleida, España.
| |
Collapse
|
40
|
Casas F, Blanco I, Martínez MT, Bustamante A, Miravitlles M, Cadenas S, Hernández JM, Lázaro L, Rodríguez E, Rodríguez-Frías F, Torres M, Lara B. Indications for active case searches and intravenous alpha-1 antitrypsin treatment for patients with alpha-1 antitrypsin deficiency chronic pulmonary obstructive disease: an update. Arch Bronconeumol 2015; 51:185-192. [PMID: 25027067 DOI: 10.1016/j.arbr.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/10/2014] [Accepted: 05/26/2014] [Indexed: 10/24/2022]
Abstract
The effect of hereditary alpha-1 antitrypsin (AAT) deficiency can manifest clinically in the form of chronic obstructive pulmonary disease (COPD). AAT deficiency (AATD) is defined as a serum concentration lower than 35% of the expected mean value or 50 mg/dl (determined by nephelometry). It is associated in over 95% of cases with Pi*ZZ genotypes, and much less frequently with other genotypes resulting from combinations of Z, S, rare and null alleles. A systematic qualitative review was made of 107 articles, focusing mainly on an active search for AATD in COPD patients and intravenous (iv) treatment with AAT. On the basis of this review, the consultant committee of the Spanish Registry of Patients with AATD recommends that all COPD patients be screened for AATD with the determination of AAT serum concentrations, and when these are low, the evaluation must be completed with phenotyping and, on occasions, genotyping. Patients with severe AATD COPD should receive the pharmacological and non-pharmacological treatment recommended in the COPD guidelines. There is enough evidence from large observational studies and randomized placebo-controlled clinical trials to show that the administration of iv AAT reduces mortality and slows the progression of emphysema, hence its indication in selected cases that meet the inclusion criteria stipulated in international guidelines. The administration of periodic infusions of AAT is the only specific treatment for delaying the progression of emphysema associated with AATD.
Collapse
Affiliation(s)
- Francisco Casas
- Unidad de Gestión Clínica de Neumología, Hospital Universitario San Cecilio, Granada, España
| | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina, Fundación Española de Pulmón, Respira, SEPAR
| | | | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, España
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, España
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Salamanca, España
| | - José M Hernández
- Servicio de Neumología, Hospital General de la Palma, La Palma, Santa Cruz de Tenerife, España
| | - Lourdes Lázaro
- Servicio de Neumología, Hospital Universitario de Burgos, Burgos, España
| | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, España
| | | | - María Torres
- Servicio de Neumología, Complexo Universitario de Vigo, Pontevedra, España
| | - Beatriz Lara
- Servicio de Neumología, Hospital Universitario Arnau de Vilanova, Lleida, España.
| |
Collapse
|
41
|
Hernández Pérez JM, Ramos Díaz R, Fumero García S, Pérez Pérez JA. Description of Alpha-1-Antitrypsin Deficiency Associated With PI*Q0ourém Allele in La Palma Island (Spain) and a Genotyping Assay for Detection. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.arbr.2014.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Potočnjak I, Tešović G, Kuna AT, Stefanović M, Zaja O. Unusually difficult clinical presentation of an infant suffering from congenital Cytomegalovirus (CMV) infection combined with alpha 1-antitrypsin (A1AT) deficiency. Biochem Med (Zagreb) 2014; 24:396-402. [PMID: 25351359 PMCID: PMC4210261 DOI: 10.11613/bm.2014.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/25/2014] [Indexed: 11/17/2022] Open
Abstract
Congenital Cytomegalovirus (CMV) infection and alpha 1-antitrypsin (A1AT) deficiency are separately well described entities, but their simultaneous occurrence can pose a special challenge to a clinician, especially dealing with optimal diagnostic as well as therapeutic approach. Congenital CMV infection is the most common vertically transmitted infection in developed countries. In 85–95% of newborns it runs asymptomatic, while in others it is presented with jaundice, petechias, hepatosplenomegaly and central nervous system damage. A1AT deficiency is on the other hand, the most common genetic liver disease in children, and the clinical spectrum varies from the accidentally detected increased levels of transaminases through to the severe infant cholestasis that can progress to cirrhosis. The following case report describes a two-month old male with severe clinical presentation of congenital CMV infection probably exacerbated due to A1AT deficiency comorbidity. The clinical manifestations and unusually difficult clinical signs this infant presented lead to assumption that the additional liver damage exists. Extensive laboratory analyses were performed, including PCR for CMV DNA, A1AT serum concentration, A1AT genotyping, followed and confirmed with phenotyping. Patient was treated parenteral with ganciclovir, what continued with oral valganciclovir and supportive therapy. Intensive and thorough supportive treatment of the infant resulted in satisfactory progress and excellent outcome. Patient was followed-up till the age of 18 months. The presented case provides excellent example about successful overcoming obstacles in differential diagnosis of A1AT in neonates and infants. Medical charts analysis was the methodology used in making this report.
Collapse
Affiliation(s)
- Ines Potočnjak
- Clinical Unit of Clinical Pharmacology and Toxicology, Clinical Hospital Centre Sestre milosrdnice, Zagreb, Croatia
| | - Goran Tešović
- University of Zagreb, School of Medicine, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Andrea Tešija Kuna
- University Department of Chemistry, Clinical Hospital Centre Sestre milosrdnice, Zagreb, Croatia
| | - Mario Stefanović
- University Department of Chemistry, Clinical Hospital Centre Sestre milosrdnice, Zagreb, Croatia
| | - Orjena Zaja
- Department of Paediatric Gastroenterology and Hepatology, Clinical Hospital Centre Sestre milosrdnice, Zagreb, Croatia
| |
Collapse
|
43
|
Lara B, Martínez MT, Blanco I, Hernández-Moro C, Velasco EA, Ferrarotti I, Rodriguez-Frias F, Perez L, Vazquez I, Alonso J, Posada M, Martínez-Delgado B. Severe alpha-1 antitrypsin deficiency in composite heterozygotes inheriting a new splicing mutation QOMadrid. Respir Res 2014; 15:125. [PMID: 25287719 PMCID: PMC4194419 DOI: 10.1186/s12931-014-0125-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/01/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Severe Alpha-1 Antitrypsin (AAT) deficiency is a hereditary condition caused by mutations in the SERPINA1 gene, which predisposes to lung emphysema and liver disease. It is usually related to PI*Z alleles, and less frequent to rare and null (QO) alleles. Null-AAT alleles represent the end of a continuum of variants associated with profound AAT deficiency and extremely increased risk of emphysema. METHODS A family with severe AAT deficiency was analyzed to achieve genetic diagnosis. The complete exons and introns of the SERPINA1 gene were sequenced and transcriptional analysis by RT-PCR was performed to characterize the effect of splicing variants found in the patients. In addition, a minigene MGserpa1_ex1b-1c was cloned into the pSAD vector to in vitro investigate the independent impact of variants on splicing process. RESULTS We report a new identified null allele (PI*QOMadrid) in two adult siblings with practically no detectable serum AAT. The PI*QOMadrid allele consist of a duplication of the thymine (T) in position +2 of the donor splice site of exon 1C (+2dupT). In these two subjects, PI*QOMadrid occurred in compound heterozygote combination with the previously described variant PI*QOPorto. Both QOMadrid and QOPorto variants are located very close together in a regulatory region of the SERPINA1 gene. Analysis of transcripts revealed that QOMadrid variant prevented the expression of transcripts from exon 1C, and then normally spliced RNA products are not expected in the liver of these patients. In addition, aberrant splicing patterns of both variants were clearly distinguished and quantified by functional in vitro assays lending further support to their pathogenicity. CONCLUSION Finding pathogenic mutations in non-coding regions of the SERPINA1 highlight the importance that regulatory regions might have in the disease. Regulatory regions should be seriously considered in discordant cases with severe AAT deficiency where no coding mutations were found.
Collapse
Affiliation(s)
- Beatriz Lara
- />Servicio de Neumología, Hospital Universitario Arnau de Vilanova, Lleida, Spain
| | | | - Ignacio Blanco
- />Board of Directors of the Alpha-1 Antitrypsin Deficiency Spanish Registry, Lung Foundation Breathe, Spanish Society of Pneumology (SEPAR), Barcelona, Spain
| | - Cristina Hernández-Moro
- />Grupo de Splicing y Cáncer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Eladio A Velasco
- />Grupo de Splicing y Cáncer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Ilaria Ferrarotti
- />Center for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Molecular Medicine, Section of Pneumology, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | | | - Laura Perez
- />Molecular Genetics Unit, Instituto de Investigación en Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2,200, Majadahonda, Madrid, 28220 Spain
| | - Irene Vazquez
- />Molecular Genetics Unit, Instituto de Investigación en Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2,200, Majadahonda, Madrid, 28220 Spain
| | - Javier Alonso
- />Human Genetics Area, Instituto de Investigación en Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Posada
- />Instituto de Investigación en Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Spain RDR and CIBERER, Madrid, Spain
| | - Beatriz Martínez-Delgado
- />Molecular Genetics Unit, Instituto de Investigación en Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2,200, Majadahonda, Madrid, 28220 Spain
| |
Collapse
|
44
|
Abstract
Alpha-1 antitrypsin (AAT) deficiency is an under-recognized hereditary disorder associated with the premature onset of chronic obstructive pulmonary disease, liver cirrhosis in children and adults, and less frequently, relapsing panniculitis, systemic vasculitis and other inflammatory, autoimmune and neoplastic diseases. Severe AAT deficiency mainly affects Caucasian individuals and has its highest prevalence (1 : 2000-1 : 5000 individuals) in Northern, Western and Central Europe. In the USA and Canada, the prevalence is 1: 5000-10 000. Prevalence is five times lower in Latin American countries and is rare or nonexistent in African and Asian individuals. The key to successful diagnosis is by measuring serum AAT, followed by the determination of the phenotype or genotype if low concentrations are found. Case detection allows implementation of genetic counselling and, in selected cases, the application of augmentation therapy. Over the past decade, it has been demonstrated that AAT is a broad-spectrum anti-inflammatory, immunomodulatory, anti-infective and tissue-repair molecule. These new capacities are promoting an increasing number of clinical studies, new pharmacological formulations, new patent applications and the search for alternative sources of AAT (including transgenic and recombinant AAT) to meet the expected demand for treating a large number of diseases, inside and outside the context of AAT deficiency.
Collapse
Affiliation(s)
- F de Serres
- Center for the Evaluation of Risks to Human Reproduction, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
45
|
Malling TH, Carlsen LS, Ferrarotti I, Omland Ø. Rare α1-antitrypsin genotype in a grass seed worker. Eur Respir J 2014; 44:1703-4. [PMID: 25186266 DOI: 10.1183/09031936.00118214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Campos MA, Lascano J. α1 Antitrypsin deficiency: current best practice in testing and augmentation therapy. Ther Adv Respir Dis 2014; 8:150-61. [PMID: 25013223 DOI: 10.1177/1753465814542243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
α1 Antitrypsin deficiency (AATD) increases the risk of chronic obstructive pulmonary disease (COPD), liver disease and other conditions. Although it is not a rare disease, it is a condition rarely diagnosed because of unawareness by most healthcare providers who manage subjects at risk. Testing recommendations have been published and strongly suggest testing all subjects with confirmed COPD, cryptogenic liver cirrhosis, subjects with incompletely reversible airflow obstruction and siblings of affected individuals. Testing strategies usually imply a combination of measures of α1 antitrypsin (AAT) levels, phenotyping and genotyping, techniques that have been facilitated for in-office use by development of testing kits using dried blood spots. Early detection of subjects is crucial to apply effective preventive measures and early institution of therapy. The only specific Food and Drug Administration - approved therapy for this condition is lifelong weekly intravenous AAT replacement (augmentation therapy). Observational studies strongly suggest a beneficial effect of augmentation therapy in slowing lung function decline and randomized trials suggest a beneficial effect in slowing the progression of emphysema over time as measured by computed tomography. In addition, augmentation therapy has been shown to modulate systemic inflammatory responses and affect markers of elastin degradation. As new markers of disease progression are discovered, new doses of AAT replacement are tested and sub-phenotypes of disease are described, treatment recommendations are likely to change towards a more individualized therapeutic approach.
Collapse
Affiliation(s)
- Michael A Campos
- Associate Professor of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, PO Box 016960 (R-47), Miami, FL 33101, USA
| | - Jorge Lascano
- Assistant Professor, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
47
|
Beletic A, Dudvarski-Ilic A, Milenkovic B, Nagorni-Obradovic L, Ljujic M, Djordjevic V, Mirkovic D, Radojkovic D, Majkic-Singh N. Is an integrative laboratory algorithm more effective in detecting alpha-1-antitrypsin deficiency in patients with premature chronic obstructive pulmonary disease than AAT concentration based screening approach? Biochem Med (Zagreb) 2014; 24:293-8. [PMID: 24969923 PMCID: PMC4083581 DOI: 10.11613/bm.2014.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/22/2014] [Indexed: 11/22/2022] Open
Abstract
Introduction: Alpha-1-antitrypsin deficiency (AATD), genetic risk factor for premature chronic obstructive pulmonary disease (COPD), often remains undetected. The aim of our study was to analyse the effectiveness of an integrative laboratory algorithm for AATD detection in patients diagnosed with COPD by the age of 45 years, in comparison with the screening approach based on AAT concentration measurement alone. Subjects and methods: 50 unrelated patients (28 males/22 females, age 52 (24–75 years) diagnosed with COPD before the age of 45 years were enrolled. Immunonephelometric assay for alpha-1-antitrypsin (AAT) and PCR-reverse hybridization for Z and S allele were first-line, and isoelectric focusing and DNA sequencing (ABI Prism BigDye) were reflex tests. Results: AATD associated genotypes were detected in 7 patients (5 ZZ, 1 ZMmalton, 1 ZQ0amersfoort), 10 were heterozygous carriers (8 MZ and 2 MS genotypes) and 33 were without AATD (MM genotype). Carriers and patients without AATD had comparable AAT concentrations (P = 0.125). In majority of participants (48) first line tests were sufficient to analyze AATD presence. In two remaining cases reflex tests identified rare alleles, Mmalton and Q0amersfoort, the later one being reported for the first time in Serbian population. Detection rate did not differ between algorithm and screening both for AATD (P = 0.500) and carriers (P = 0.063). Conclusion: There is a high prevalence of AATD affected subjects and carriers in a group of patients with premature COPD. The use of integrative laboratory algorithm does not improve the effectiveness of AATD detection in comparison with the screening based on AAT concentration alone.
Collapse
Affiliation(s)
- Andjelo Beletic
- Center for Medical Biochemistry, Clinical Center of Serbia, Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hernández Pérez JM, Ramos Díaz R, Fumero García S, Pérez Pérez JA. Description of alpha-1-antitrypsin deficiency associated with PI*Q0ourém allele in La Palma Island (Spain) and a genotyping assay for its detection. Arch Bronconeumol 2014; 51:e1-3. [PMID: 24673984 DOI: 10.1016/j.arbres.2014.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 11/16/2022]
Abstract
By analysis of a case of discrepancy between serum alpha-1-antitrypsin (AAT) level and genotype for the most common defective alleles associated with AAT deficiency (PI*S and PI*Z), a patient carrying the allele PI*Q0ourém has been identified for the first time outside of Portugal. This null allele has been implicated in cases of severe pulmonary emphysema. After developing a clinical assay for detection of c.1130insT mutation, based on fluorescent probes (HybProbe®), another 4 carriers of PI*Q0ourém allele were identified among 43 patients with abnormally low serum AAT levels based on their genotypes for PI*S and PI*Z alleles. Since 4 out 5 cases are from the same locality (La Palma Island, Spain), it is advisable to conduct genetic analyses of affected families and, possibly, a focused population screening.
Collapse
Affiliation(s)
| | - Ruth Ramos Díaz
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, España
| | - Sergio Fumero García
- Sección de Neumología, Hospital General de La Palma, Breña Alta, La Palma, Islas Canarias, España
| | - José Antonio Pérez Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, España.
| |
Collapse
|
49
|
Lara B, Martínez-Delgado B, Torres ML, Marín-Arguedas S, Bustamante A, Miravitlles M. Alpha-1-antitrypsin deficiency associated with the Mattawa variant. Arch Bronconeumol 2013; 49:548-550. [PMID: 24183282 DOI: 10.1016/j.arbr.2013.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 01/03/2025]
Abstract
The most common deficiency alleles for alpha-1-antitrypsin deficiency (AATD) are Pi*S and Pi*S, but there are also other deficiency variants. This case report describes the first two cases of AATD detected in Spain resulting from the combination of a null Mattawa allele with a normal PI*M, and a rare Mmalton. Both cases were initially diagnosed as Pi*MM by isoelectric focusing (IEF), but the low serum AAT values led us to suspect the existence of rare deficiency alleles that were undetectable using this technique, and to performing molecular analysis of the gene, which provided the correct diagnosis. Inconsistencies between serum AAT values and the phenotype should make one suspect the existence of one of these rare alleles.
Collapse
Affiliation(s)
- Beatriz Lara
- Servicio de Neumología, Hospital Universitario Arnau de Vilanova, Lleida, España.
| | | | | | | | | | | |
Collapse
|
50
|
Lara B, Martínez-Delgado B, Torres ML, Marín-Arguedas S, Bustamante A, Miravitlles M. Déficit de alfa-1-antitripsina asociado a la variante Matawa. Arch Bronconeumol 2013; 49:548-50. [DOI: 10.1016/j.arbres.2013.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
|