1
|
Martínez-Díaz I, Martos N, Llorens-Cebrià C, Álvarez FJ, Bedard PW, Vergara A, Jacobs-Cachá C, Soler MJ. Endothelin Receptor Antagonists in Kidney Disease. Int J Mol Sci 2023; 24:3427. [PMID: 36834836 PMCID: PMC9965540 DOI: 10.3390/ijms24043427] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Endothelin (ET) is found to be increased in kidney disease secondary to hyperglycaemia, hypertension, acidosis, and the presence of insulin or proinflammatory cytokines. In this context, ET, via the endothelin receptor type A (ETA) activation, causes sustained vasoconstriction of the afferent arterioles that produces deleterious effects such as hyperfiltration, podocyte damage, proteinuria and, eventually, GFR decline. Therefore, endothelin receptor antagonists (ERAs) have been proposed as a therapeutic strategy to reduce proteinuria and slow the progression of kidney disease. Preclinical and clinical evidence has revealed that the administration of ERAs reduces kidney fibrosis, inflammation and proteinuria. Currently, the efficacy of many ERAs to treat kidney disease is being tested in randomized controlled trials; however, some of these, such as avosentan and atrasentan, were not commercialized due to the adverse events related to their use. Therefore, to take advantage of the protective properties of the ERAs, the use of ETA receptor-specific antagonists and/or combining them with sodium-glucose cotransporter 2 inhibitors (SGLT2i) has been proposed to prevent oedemas, the main ERAs-related deleterious effect. The use of a dual angiotensin-II type 1/endothelin receptor blocker (sparsentan) is also being evaluated to treat kidney disease. Here, we reviewed the main ERAs developed and the preclinical and clinical evidence of their kidney-protective effects. Additionally, we provided an overview of new strategies that have been proposed to integrate ERAs in kidney disease treatment.
Collapse
Affiliation(s)
- Irene Martínez-Díaz
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Nerea Martos
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Carmen Llorens-Cebrià
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | | | | | - Ander Vergara
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Maria José Soler
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
2
|
Farghaly AM, Rizk OH, Darwish I, Hamza M, Altowyan MS, Barakat A, Teleb M. Design, Synthesis, Pharmacodynamic and In Silico Pharmacokinetic Evaluation of Some Novel Biginelli-Derived Pyrimidines and Fused Pyrimidines as Calcium Channel Blockers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072240. [PMID: 35408650 PMCID: PMC9000669 DOI: 10.3390/molecules27072240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
Abstract
Some new pyrimidine derivatives comprising arylsulfonylhydrazino, ethoxycarbonylhydrazino, thiocarbamoylhydrazino and substituted hydrazone and thiosemicarbazide functionalities were prepared from Biginelli-derived pyrimidine precursors. Heterocyclic ring systems such as pyrazole, pyrazolidinedione, thiazoline and thiazolidinone ring systems were also incorporated into the designed pyrimidine core. Furthermore, fused triazolopyrimidine and pyrimidotriazine ring systems were prepared. The synthesized compounds were evaluated for their calcium channel blocking activity as potential hypotensive agents. Compounds 2, 3a, 3b, 4, 11 and 13 showed the highest ex vivo calcium channel blocking activities compared with the reference drug nifedipine. Compounds 2 and 11 were selected for further biological evaluation. They revealed good hypotensive activities following intravenous administration in dogs. Furthermore, 2 and 11 displayed drug-like in silico ADME parameters. A ligand-based pharmacophore model was developed to provide adequate information about the binding mode of the newly synthesized active compounds 2, 3a, 3b, 4, 11 and 13. This may also serve as a reliable basis for designing new active pyrimidine-based calcium channel blockers.
Collapse
Affiliation(s)
- Ahmed M. Farghaly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
- Correspondence: (A.M.F.); (A.B.); (M.T.)
| | - Ola H. Rizk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University, Alexandria 21521, Egypt
| | - Inas Darwish
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21521, Egypt; (I.D.); (M.H.)
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University, Alexandria 21521, Egypt
| | - Manal Hamza
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21521, Egypt; (I.D.); (M.H.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
- Correspondence: (A.M.F.); (A.B.); (M.T.)
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
- Correspondence: (A.M.F.); (A.B.); (M.T.)
| |
Collapse
|
3
|
Fotopoulos I, Hadjipavlou-Litina D. Hybrids of Coumarin Derivatives as Potent and Multifunctional Bioactive Agents: A Review. Med Chem 2020; 16:272-306. [PMID: 31038071 DOI: 10.2174/1573406415666190416121448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/22/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coumarins exhibit a plethora of biological activities, e.g. antiinflammatory and anti-tumor. Molecular hybridization technique has been implemented in the design of novel coumarin hybrids with several bioactive groups in order to obtain molecules with better pharmacological activity and improved pharmacokinetic profile. OBJECTIVE Therefore, we tried to gather as many as possible biologically active coumarin hybrids referred in the literature till now, to delineate the structural characteristics in relation to the activities and to have a survey that might help the medicinal chemists to design new coumarin hybrids with drug-likeness and varied bioactivities. RESULTS The biological activities of the hybrids in most of the cases were found to be different from the biological activities presented by the parent coumarins. The results showed that the hybrid molecules are more potent compared to the standard drugs used in the evaluation experiments. CONCLUSION Conjugation of coumarin with varied pharmacophore groups/druglike molecules responsible for different biological activities led to many novel hybrid molecules, with a multitarget behavior and improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Ioannis Fotopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
4
|
Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02289-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Toda N, Nakanishi S, Tanabe S. Aldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: therapeutic implications. Br J Pharmacol 2013. [PMID: 23190073 DOI: 10.1111/j.1476-5381.2012.02194.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aldosterone, in doses inappropriate to the salt status, plays an important role in the development of cardiovascular injury, including endothelial dysfunction, independent of its hypertensive effects. Acute non-genomic effects of aldosterone acting on mineralocorticoid receptors are inconsistent in healthy humans: vasoconstriction or forearm blood flow decrease via endothelial dysfunction, vasodilatation mediated by increased NO actions, or no effects. However, in studies with experimental animals, aldosterone mostly enhances vasodilatation mediated by endothelium-derived NO. Chronic exposure to aldosterone, which induces genomic responses, results in impairments of endothelial function through decreased NO synthesis and action in healthy individuals, experimental animals and isolated endothelial cells. Chronic aldosterone reduces NO release from isolated human endothelial cells only when extracellular sodium is raised. Oxidative stress is involved in the impairment of endothelial function by promoting NO degradation. Aldosterone liberates endothelin-1 (ET-1) from endothelial cells, which elicits ET(A) receptor-mediated vasoconstriction by inhibiting endothelial NO synthesis and action and through its own direct vasoconstrictor action. Ca(2+) flux through T-type Ca(2+) channels activates aldosterone synthesis and thus enhances unwanted effects of aldosterone on the endothelium. Mineralocorticoid receptor inhibitors, ET(A) receptor antagonists and T-type Ca(2) + channel blockers appear to diminish the pathophysiological participation of aldosterone in cardiovascular disease and exert beneficial actions on bioavailability of endothelium-derived NO, particularly in resistant hypertension and aldosteronism.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Osaka, Japan.
| | | | | |
Collapse
|
6
|
Amin KM, Awadalla FM, Eissa AA, Abou-Seri SM, Hassan GS. Design, synthesis and vasorelaxant evaluation of novel coumarin–pyrimidine hybrids. Bioorg Med Chem 2011; 19:6087-97. [DOI: 10.1016/j.bmc.2011.08.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 01/27/2023]
|
7
|
Grassi G, Quarti-Trevano F, Brambilla G, Seravalle G. Blood pressure control in resistant hypertension: new therapeutic options. Expert Rev Cardiovasc Ther 2011; 8:1579-85. [PMID: 21090933 DOI: 10.1586/erc.10.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Resistant hypertension, namely the hypertensive state characterized by the inability of multiple antihypertensive drug interventions to lower blood pressure to goal levels, represents a condition frequently detected in clinical practice. Its main features are represented by its heterogeneous etiology as well as its very high cardiovascular risk. This latter peculiarity has implemented the research for new approaches to the treatment of the disease. This article will focus on two of them, namely carotid baroreceptor electric stimulation and the renal denervation procedure. Clinical studies and large-scale clinical trials are presently ongoing with the aim of defining the long-term efficacy and safety profile of the two interventions.
Collapse
Affiliation(s)
- Guido Grassi
- Clinica Medica, Dipartimento di Medicina Clinica, Prevenzione e Biotecnologie Sanitarie, Università Milano-Bicocca, Ospedale San Gerardo, Via Pergolesi 33, 20052 Monza, Milan, Italy.
| | | | | | | |
Collapse
|