1
|
Huang JH, Lourenço BN, Coleman AE. The renin-angiotensin-aldosterone system in kidney diseases of cats and dogs. Vet J 2024; 309:106287. [PMID: 39672318 DOI: 10.1016/j.tvjl.2024.106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) has a well-established key pathophysiologic role in kidney diseases, and pharmacotherapy targeting this system is a mainstay of treatment of affected human beings, cats, and dogs. Several studies have evaluated the circulating RAAS in animals with spontaneous or experimentally induced kidney diseases. Evidence supporting the activation of this system has been demonstrated in some - but not all - studies and individuals, and the interindividual variability in circulating RAAS markers is high. Advances over the last few decades have expanded our understanding of the system, which now includes the existence of a counterbalancing "alternative" RAAS and tissular renin-angiotensin systems (RASs), the latter regulated independently of the circulating endocrine RAAS. The local RAS in the kidney, termed the intrarenal RAS, is currently recognized as an important regulator of kidney function and mediator of kidney disease. In general, information on the intrarenal RAS is lacking in cats and dogs with kidney diseases; however, existing limited data suggest its activation. Despite the inconsistent evidence for circulating RAAS activation in chronic kidney diseases, RAAS inhibitors have proven effective for the treatment of its common comorbidities, systemic arterial hypertension and renal proteinuria, in both cats and dogs. Further research of the circulating RAAS, the intrarenal RAS, and the interplay between these systems in the context of kidney diseases in companion animals might contribute to the development or refinement of future treatment strategies.
Collapse
Affiliation(s)
- Jane Hc Huang
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA
| | - Bianca N Lourenço
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA.
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA
| |
Collapse
|
2
|
Cao YL, Lin JH, Hammes HP, Zhang C. Flavonoids in Treatment of Chronic Kidney Disease. Molecules 2022; 27:molecules27072365. [PMID: 35408760 PMCID: PMC9000519 DOI: 10.3390/molecules27072365] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive systemic disease, which changes the function and structure of the kidneys irreversibly over months or years. The final common pathological manifestation of chronic kidney disease is renal fibrosis and is characterized by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. In recent years, numerous studies have reported the therapeutic benefits of natural products against modern diseases. Substantial attention has been focused on the biological role of polyphenols, in particular flavonoids, presenting broadly in plants and diets, referring to thousands of plant compounds with a common basic structure. Evidence-based pharmacological data have shown that flavonoids play an important role in preventing and managing CKD and renal fibrosis. These compounds can prevent renal dysfunction and improve renal function by blocking or suppressing deleterious pathways such as oxidative stress and inflammation. In this review, we summarize the function and beneficial properties of common flavonoids for the treatment of CKD and the relative risk factors of CKD.
Collapse
Affiliation(s)
- Yi-Ling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (J.-H.L.); (H.-P.H.)
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (J.-H.L.); (H.-P.H.)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Correspondence: ; Tel.: +86-027-85726712
| |
Collapse
|
3
|
Renin-Angiotensin System Induced Secondary Hypertension: The Alteration of Kidney Function and Structure. Int J Nephrol 2021. [PMID: 31628476 PMCID: PMC8505109 DOI: 10.1155/2021/5599754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Long-term hypertension is known as a major risk factor for cardiovascular and chronic kidney disease (CKD). The Renin-angiotensin system (RAS) plays a key role in hypertension pathogenesis. Angiotensin II (Ang II) enhancement in Ang II-dependent hypertension leads to progressive CKD and kidney fibrosis. In the two-kidney one-clip model (2K1C), more renin is synthesized in the principal cells of the collecting duct than juxtaglomerular cells (JGCs). An increase of renal Ang I and Ang II levels and a decrease of renal cortical and medullary Ang 1–7 occur in both kidneys of the 2K1C hypertensive rat model. In addition, the activity of the angiotensin-converting enzyme (ACE) increases, while ACE2's activity decreases in the medullary region of both kidneys in the 2K1C hypertensive model. Also, the renal prolyl carboxypeptidase (PrCP) expression and its activity reduce in the clipped kidneys. The imbalance in the production of renal ACE, ACE2, and PrCP expression causes the progression of renal injury. Intrarenal angiotensinogen (AGT) expression and urine AGT (uAGT) excretion rates in the unclipped kidney are greater than the clipped kidney in the 2K1C hypertensive rat model. The enhancement of Ang II in the clipped kidney is related to renin secretion, while the elevation of intrarenal Ang II in the unclipped kidney is related to stimulation of AGT mRNA and protein in proximal tubule cells by a direct effect of systemic Ang II level. Ang II-dependent hypertension enhances macrophages and T-cell infiltration into the kidney which increases cytokines, and AGT synthesis in proximal tubules is stimulated via cytokines. Accumulation of inflammatory cells in the kidney aggravates hypertension and renal damage. Moreover, Ang II-dependent hypertension alters renal Ang II type 1 & 2 receptors (AT1R & AT2R) and Mas receptor (MasR) expression, and the renal interstitial fluid bradykinin, nitric oxide, and cGMP response to AT1R, AT2R, or BK B2-receptor antagonists. Based on a variety of sources including PubMed, Google Scholar, Scopus, and Science-Direct, in the current review, we will discuss the role of RAS-induced secondary hypertension on the alteration of renal function.
Collapse
|
4
|
Weissenbacher A, Huang H, Surik T, Lo Faro ML, Ploeg RJ, Coussios CC, Friend PJ, Kessler BM. Urine recirculation prolongs normothermic kidney perfusion via more optimal metabolic homeostasis-a proteomics study. Am J Transplant 2021; 21:1740-1753. [PMID: 33021021 PMCID: PMC8246941 DOI: 10.1111/ajt.16334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/27/2020] [Accepted: 09/20/2020] [Indexed: 01/25/2023]
Abstract
We describe a proteomics analysis to determine the molecular differences between normothermically perfused (normothermic machine perfusion, NMP) human kidneys with urine recirculation (URC) and urine replacement (UR). Proteins were extracted from 16 kidney biopsies with URC (n = 8 donors after brain death [DBD], n = 8 donors after circulatory death [DCD]) and three with UR (n = 2 DBD, n = 1 DCD), followed by quantitative analysis by mass spectrometry. Damage-associated molecular patterns (DAMPs) were decreased in kidney tissue after 6 hours NMP with URC, suggesting reduced inflammation. Vasoconstriction was also attenuated in kidneys with URC as angiotensinogen levels were reduced. Strikingly, kidneys became metabolically active during NMP, which could be enhanced and prolonged by URC. For instance, mitochondrial succinate dehydrogenase enzyme levels as well as carbonic anhydrase were enhanced with URC, contributing to pH stabilization. Levels of cytosolic and the mitochondrial phosphoenolpyruvate carboxykinase were elevated after 24 hours of NMP, more prevalent in DCD than DBD tissue. Key enzymes involved in glucose metabolism were also increased after 12 and 24 hours of NMP with URC, including mitochondrial malate dehydrogenase and glutamic-oxaloacetic transaminase, predominantly in DCD tissue. We conclude that NMP with URC permits prolonged preservation and revitalizes metabolism to possibly better cope with ischemia reperfusion injury in discarded kidneys.
Collapse
Affiliation(s)
- Annemarie Weissenbacher
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
- Present address:
Annemarie WeissenbacherDepartment of Visceral, Transplant and Thoracic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Honglei Huang
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
- Present address:
Honglei HuangOxford BioMedica PlcOxfordUK
| | - Tomas Surik
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Maria L. Lo Faro
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Rutger J. Ploeg
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Constantin C. Coussios
- Institute of Biomedical EngineeringDepartment of Engineering ScienceUniversity of OxfordOxfordUK
| | - Peter J. Friend
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Benedikt M. Kessler
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Dong Z, Dai H, Feng Z, Liu W, Gao Y, Liu F, Zhang Z, Zhang N, Dong X, Zhao Q, Zhou X, Du J, Liu B. Mechanism of herbal medicine on hypertensive nephropathy (Review). Mol Med Rep 2021; 23:234. [PMID: 33537809 PMCID: PMC7893801 DOI: 10.3892/mmr.2021.11873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Hypertensive nephropathy is the most common complication of hypertension, and is one of the main causes of end-stage renal disease (ESRD) in numerous countries. The basic pathological feature of hypertensive nephropathy is arteriolosclerosis followed by renal parenchymal damage. The etiology of this disease is complex, and its pathogenesis is mainly associated with renal hemodynamic changes and vascular remodeling. Despite the increased knowledge on the pathogenesis of hypertensive nephropathy, the current clinical treatment methods are still not effective in preventing the development of the disease to ESRD. Herbal medicine, which is used to relieve symptoms, can improve hypertensive nephropathy through multiple targets. Since there are few clinical studies on the treatment of hypertensive nephropathy with herbal medicine, this article aims to review the progress on the basic research on the treatment of hypertensive nephropathy with herbal medicine, including regulation of the renin angiotensin system, inhibition of sympathetic excitation, antioxidant stress and anti-inflammatory protection of endothelial cells, and improvement of obesity-associated factors. Herbal medicine with different components plays a synergistic and multi-target role in the treatment of hypertensive nephropathy. The description of the mechanism of herbal medicine in the treatment of hypertensive nephropathy will contribute towards the progress of modern medicine.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, P.R. China
| | - Zhandong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing 101200, P.R. China
| | - Wenbin Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Fei Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zihan Zhang
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jieli Du
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
6
|
Luzes R, Crisóstomo T, Silva PA, Iack R, de Abreu VG, Francischetti EA, Vieyra A. Angiotensin-(3-4) normalizes blood pressure, decreases Na + and energy intake, but preserves urinary Na + excretion in overweight hypertensive rats. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166012. [PMID: 33212189 DOI: 10.1016/j.bbadis.2020.166012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 01/13/2023]
Abstract
Hypertension, one of the most common and severe comorbidities of obesity and overweight, is a worldwide epidemic affecting over 30% of the population. We induced overweight in young male rats (aged 58 days) by exposure to a hypercaloric high lipid (HL) diet in which 70% of the calories originated from fat. The HL diet also contained 33 or 57% higher Na+ than the control (CTR) diet. Over the following weeks the HL rats gradually became overweight (490 ± 12 g vs 427 ± 7 g in the CTR group after 15 weeks) with high visceral fat. They developed elevated systolic blood pressure (SBP) (141 ± 1.9 mmHg), which was fully restored to CTR values (128 ± 1.1 mmHg) by oral administration of Ang-(3-4) (Val-Tyr), the shortest renin-angiotensin-derived peptide. The overweight rats had lower plasma Na+ concentration that augmented to CTR values by Ang-(3-4) treatment. Na+ ingestion was depressed by 40% as result of the Ang-(3-4) treatment, whereas the urinary excretion of Na+ (UNaV) remained unmodified. The preservation of UNaV after Ang-(3-4) treatment - despite the sharp decrease in the dietary Na+ intake - can be ascribed to the normalization of renal type 1 angiotensin II receptors and Na+-transporting ATPases, both up-regulated in overweight rats. These renal effects complete a counterregulatory action on elevated renin-angiotensin activity that allows the high SBP to be normalized and body Na+ homeostasis to be restored concomitantly in overweight rats.
Collapse
Affiliation(s)
- Rafael Luzes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | - Thuany Crisóstomo
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo A Silva
- Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | - Roxane Iack
- Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | | | - Emílio A Francischetti
- Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Ye F, Wang Y, Wu C, Howatt DA, Wu CH, Balakrishnan A, Mullick AE, Graham MJ, Danser AHJ, Wang J, Daugherty A, Lu HS. Angiotensinogen and Megalin Interactions Contribute to Atherosclerosis-Brief Report. Arterioscler Thromb Vasc Biol 2019; 39:150-155. [PMID: 30567480 DOI: 10.1161/atvbaha.118.311817] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective- AGT (Angiotensinogen) is the unique precursor of the renin-angiotensin system that is sequentially cleaved by renin and ACE (angiotensin-converting enzyme) to produce Ang II (angiotensin II). In this study, we determined how these renin-angiotensin components interact with megalin in kidney to promote atherosclerosis. Approach and Results- AGT, renin, ACE, and megalin were present in the renal proximal convoluted tubules of wild-type mice. Hepatocyte-specific AGT deficiency abolished AGT protein accumulation in proximal tubules and diminished Ang II concentrations in kidney, while renin was increased. Megalin was most abundant in kidney and exclusively present on the apical side of proximal tubules. Inhibition of megalin by antisense oligonucleotides (ASOs) led to ablation of AGT and renin proteins in proximal tubules, while leading to striking increases of urine AGT and renin concentrations, and 70% reduction of renal Ang II concentrations. However, plasma Ang II concentrations were unaffected. To determine whether AGT and megalin interaction contributes to atherosclerosis, we used both male and female low-density lipoprotein receptor-/- mice fed a saturated fat-enriched diet and administered vehicles (PBS or control ASO) or megalin ASO. Inhibition of megalin did not affect plasma cholesterol concentrations, but profoundly reduced atherosclerotic lesion size in both male and female mice. Conclusions- These results reveal a regulatory role of megalin in the intrarenal renin-angiotensin homeostasis and atherogenesis, positing renal Ang II to be an important contributor to atherosclerosis that is mediated through AGT and megalin interactions.
Collapse
Affiliation(s)
- Feiming Ye
- From the Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (F.Y., Y.W., J.W.).,Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington
| | - Ya Wang
- From the Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (F.Y., Y.W., J.W.).,Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington
| | - Congqing Wu
- Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington
| | - Deborah A Howatt
- Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington
| | - Chia-Hua Wu
- Department of Pharmacology and Nutritional Sciences (C.-H.W., A.D., H.S.L.) University of Kentucky, Lexington
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington
| | | | - Mark J Graham
- Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.)
| | | | - Jian'an Wang
- From the Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (F.Y., Y.W., J.W.)
| | - Alan Daugherty
- Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington.,Department of Pharmacology and Nutritional Sciences (C.-H.W., A.D., H.S.L.) University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.) University of Kentucky, Lexington
| | - Hong S Lu
- Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington.,Department of Pharmacology and Nutritional Sciences (C.-H.W., A.D., H.S.L.) University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.) University of Kentucky, Lexington
| |
Collapse
|
8
|
Mistry HD, Kurlak LO, Gardner DS, Torffvit O, Hansen A, Broughton Pipkin F, Strevens H. Evidence of Augmented Intrarenal Angiotensinogen Associated With Glomerular Swelling in Gestational Hypertension and Preeclampsia: Clinical Implications. J Am Heart Assoc 2019; 8:e012611. [PMID: 31237175 PMCID: PMC6662362 DOI: 10.1161/jaha.119.012611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022]
Abstract
Background AGT (angiotensinogen) synthesis occurs in renal proximal tubular epithelial cells, independent from systemic AGT , as a component of the intrarenal renin-angiotensin system. We investigated urinary AGT , as a biomarker for renin-angiotensin system activation, and electrolyte concentrations, in relation to glomerular volume, as a proxy for glomerular endotheliosis in renal biopsy tissue from pregnant normotensive control and hypertensive women. Methods and Results Urine samples were collected from normotensive control (n=10), gestational hypertensive (n=6), and pre-eclamptic (n=16) women at the time a renal biopsy was obtained. Samples were collected from Lund University Hospital between November 1999 and June 2001. Urinary AGT , potassium, and sodium were measured, normalized to urinary creatinine. Mean glomerular volume was estimated from biopsy sections. AGT protein expression and localization were assessed in renal biopsies by immunohistochemistry. Urinary AGT concentrations were higher in hypertensive pregnancies (median, gestational hypertension: 11.3 ng/mmol [interquartile range: 2.8-13.6]; preeclampsia: 8.4 ng/mmol [interquartile range: 4.2-29.1]; normotensive control: 0.6 ng/mmol [interquartile range: 0.4-0.8]; P<0.0001) and showed a positive relationship with estimated mean glomerular volume. Urinary potassium strongly correlated with urinary AGT ( P<0.0001). Although numbers were small, AGT protein was found in both glomeruli and proximal tubules in normotensive control but was present only in proximal tubules in women with hypertensive pregnancy. Conclusions This study shows that pregnant women with gestational hypertension or preeclampsia have increased urinary AGT and potassium excretion associated with signs of glomerular swelling. Our data suggest that the kidneys of women with hypertensive pregnancies and endotheliosis have inappropriate intrarenal renin-angiotensin system activation, which may contribute toward the pathogenesis of hypertension and renal injury.
Collapse
Affiliation(s)
- Hiten D. Mistry
- Division of Child Health, Obstetrics & GynaecologySchool of MedicineUniversity of NottinghamUnited Kingdom
| | - Lesia O. Kurlak
- Division of Child Health, Obstetrics & GynaecologySchool of MedicineUniversity of NottinghamUnited Kingdom
| | - David S. Gardner
- School of Veterinary Medicine and ScienceUniversity of NottinghamUnited Kingdom
| | | | - Alastair Hansen
- Department of PathologyHerlev University HospitalHerlevDenmark
| | - Fiona Broughton Pipkin
- Division of Child Health, Obstetrics & GynaecologySchool of MedicineUniversity of NottinghamUnited Kingdom
| | - Helena Strevens
- Department of ObstetricsSkåne University HospitalLund UniversityLundSweden
| |
Collapse
|
9
|
Plesiński K, Adamczyk P, Świętochowska E, Morawiec- Knysak A, Gliwińska A, Bjanid O, Szczepańska M. Angiotensinogen and interleukin 18 in serum and urine of children with kidney cysts. J Renin Angiotensin Aldosterone Syst 2019; 20:1470320319862662. [PMID: 31379247 PMCID: PMC6683321 DOI: 10.1177/1470320319862662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/17/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The most common disease associated with the presence of kidney cysts in the population is autosomal dominant polycystic kidney disease (ADPKD), which finally leads to end-stage renal disease. METHOD The study evaluated serum and urinary concentration of angiotensinogen (AGT) and interleukin 18 (IL-18) in a group of 39 children with renal cysts of different aetiology. RESULTS Serum and urinary AGT concentration in children with renal cysts was higher compared to controls, regardless of the underlying background and gender. Serum IL-18 concentration was lower, in contrast, and the concentration of IL-18 in the urine did not differ between affected and healthy children. Negative correlation between urinary IL-18 concentration and systolic and mean arterial blood pressure was noted. CONCLUSIONS Higher AGT levels in serum and urine in children with renal cysts may indicate the activation of the renin-angiotensin-aldosterone system, including its intrarenal part, even before the onset of hypertension. Lower serum concentration of IL-18 in children with kidney cysts may indicate the loss of the protective role of this cytokine with the occurrence of hypertension.
Collapse
Affiliation(s)
| | - Piotr Adamczyk
- Department of Pediatrics, SMDZ in Zabrze, SUM in Katowice, Poland
| | | | | | | | - Omar Bjanid
- Department of Pediatrics, SMDZ in Zabrze, SUM in Katowice, Poland
| | | |
Collapse
|
10
|
An Angiotensinogen Gene Polymorphism (rs5050) Is Associated with the Risk of Coronary Artery Aneurysm in Southern Chinese Children with Kawasaki Disease. DISEASE MARKERS 2019; 2019:2849695. [PMID: 30719178 PMCID: PMC6335657 DOI: 10.1155/2019/2849695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 01/05/2023]
Abstract
Background Kawasaki disease (KD) is an acute vasculitis disease that commonly causes acquired heart disease in children. Coronary artery aneurysm (CAA) is a major complication of KD. However, the pathogenesis of KD remains unclear. The results of a genome-wide association study (GWAS) showed that two functional single-nucleotide polymorphisms (SNPs; rs699A>G and rs5050T>G) in the angiotensinogen (AGT) gene were related to cardiovascular disease susceptibility. The purpose of our study was to estimate the relationship between the two GWAS-identified AGT gene polymorphisms and the risk of CAA in Southern Chinese children with KD. Methods We genotyped the two AGT gene polymorphisms (rs699A>G and rs5050T>G) in 760 KD cases and 972 healthy controls. We used the odds ratios (ORs) and 95% confidence intervals (CIs) to estimate the degree of the associations. Results These two AGT gene polymorphisms were not associated with a risk of KD relative to the controls, but after adjusting for sex and age, the carriers of the rs5050G allele with TG/GG vs TT had an adjusted OR = 1.56, 95% CI = 1.01-2.41, and P = 0.044 relative to the carriers of the rs5050TT genotype. The susceptibility to CAA was more predominant in KD patients younger than 12 months old. Conclusions Our results indicate that the AGT gene polymorphism rs5050T>G may increase the risk of CAA in children with KD, especially those who are younger than 12 months. These results need to be verified by a validation study with a larger sample size.
Collapse
|
11
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 693] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
12
|
Zakrocka I, Targowska-Duda KM, Wnorowski A, Kocki T, Jóźwiak K, Turski WA. Angiotensin II type 1 receptor blockers decrease kynurenic acid production in rat kidney in vitro. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:209-217. [PMID: 30370429 DOI: 10.1007/s00210-018-1572-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023]
Abstract
Glutamate (GLU) mainly through N-methyl-D-aspartate (NMDA) receptors plays pivotal role in kidney function regulation. Kynurenic acid (KYNA), a GLU receptors antagonist, is synthesized from kynurenine by kynurenine aminotransferases (KATs). Previously, it was shown that angiotensin II type 1 receptor blockers (ARBs) decrease KYNA production in rat brain in vitro. The aim of this study was to examine the influence of six ARBs: candesartan, irbesartan, losartan, olmesartan, telmisartan, and valsartan on KYNA production on rat kidney in vitro. The effect of ARBs was determined in kidney homogenates and on isolated KAT II enzyme. Among tested ARBs, irbesartan was the most effective KYNA synthesis inhibitor with IC50 of 14.4 μM. Similar effects were observed after losartan (IC50 45.9 μM) and olmesartan administration (IC50 108.1 μM), whereas candesartan (IC50 475.3 μM), valsartan (IC50 513.9 μM), and telmisartan (IC50 669.5 μM) displayed lower activity in KYNA synthesis inhibition in rat kidney homogenates in vitro. On the other hand, valsartan (IC50 27.5 μM) was identified to be the strongest KAT II inhibitor in rat kidney in vitro. Candesartan, losartan, and telmisartan suppressed KAT II activity with IC50 equal to 83.2, 83.3, and 108.3 μM, respectively. Olmesartan and irbesartan were the weakest KAT II inhibitors with IC50 values of 237.4 and 809.9 μM, respectively. Moreover, molecular docking suggested that studied ARBs directly bind to an active site of KAT II. In conclusion, our results indicate that ARBs decrease KYNA synthesis in rat kidney through enzymatic inhibition of KAT II, which may have impact on kidney function.
Collapse
Affiliation(s)
- Izabela Zakrocka
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland.
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | | | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
13
|
Smykiewicz P, Segiet A, Keag M, Żera T. Proinflammatory cytokines and ageing of the cardiovascular-renal system. Mech Ageing Dev 2018; 175:35-45. [DOI: 10.1016/j.mad.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
|
14
|
Ansary TM, Urushihara M, Fujisawa Y, Nagata S, Urata H, Nakano D, Hirofumi H, Kitamura K, Kagami S, Nishiyama A. Effects of the selective chymase inhibitor TEI-F00806 on the intrarenal renin-angiotensin system in salt-treated angiotensin I-infused hypertensive mice. Exp Physiol 2018; 103:1524-1531. [PMID: 30137655 DOI: 10.1113/ep087209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can chymase inhibition prevent angiotensin I-induced hypertension through inhibiting the conversion of angiotensin I to angiotensin II in the kidney? What is the main finding and its importance? Treatment with TEI-F00806 decreased angiotensin II content of the kidney, renal cortical angiotensinogen protein levels and chymase mRNA expression, and attenuated the development of hypertension. ABSTRACT The effects of the selective chymase inhibitor TEI-F00806 were examined on angiotensin I (Ang I)-induced hypertension and intrarenal angiotensin II (Ang II) production in salt-treated mice. Twelve-week-old C57BL male mice were given a high-salt diet (4% NaCl + saline (0.9% NaCl)), and divided into three groups: (1) sham + vehicle (5% acetic acid in saline), (2) Ang I (1 μg kg-1 min-1 , s.c.) + vehicle, and (3) Ang I + TEI-F00806 (100 mg kg-1 day-1 , p.o.) (n = 8-10 per group). Systolic blood pressure was measured weekly using a tail-cuff method. Kidney Ang II content was measured by radioimmunoassay. Chronic infusion of Ang I resulted in the development of hypertension (P < 0.001), and augmented intrarenal chymase gene expression (P < 0.05), angiotensinogen protein level (P < 0.001) and Ang II content (P < 0.01) in salt-treated mice. Treatment with TEI-F00806 attenuated the development of hypertension (P < 0.001) and decreased Ang II content of the kidney (P < 0.05), which was associated with reductions in renal cortical angiotensinogen protein levels (P < 0.001) and chymase mRNA expression (P < 0.05). These data suggest that a chymase inhibitor decreases intrarenal renin-angiotensin activity, thereby reducing salt-dependent hypertension.
Collapse
Affiliation(s)
- Tuba M Ansary
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Maki Urushihara
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshihide Fujisawa
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Sayaka Nagata
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hitomi Hirofumi
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kazuo Kitamura
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shoji Kagami
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
15
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
16
|
Nasser SA, Sabra R, Elmallah AI, El-Din MMM, Khedr MM, El-Mas MM. Facilitation by the renin-angiotensin system of cyclosporine-evoked hypertension in rats: Role of arterial baroreflexes and vasoreactivity. Life Sci 2016; 163:1-10. [DOI: 10.1016/j.lfs.2016.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 12/25/2022]
|
17
|
Shao W, Miyata K, Katsurada A, Satou R, Seth DM, Rosales CB, Prieto MC, Mitchell KD, Navar LG. Increased angiotensinogen expression, urinary angiotensinogen excretion, and tissue injury in nonclipped kidneys of two-kidney, one-clip hypertensive rats. Am J Physiol Renal Physiol 2016; 311:F278-90. [PMID: 27194718 DOI: 10.1152/ajprenal.00419.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 05/11/2016] [Indexed: 01/13/2023] Open
Abstract
In angiotensin II (ANG II)-dependent hypertension, there is an angiotensin type 1 receptor-dependent amplification mechanism enhancing intrarenal angiotensinogen (AGT) formation and secretion in the tubular fluid. To evaluate the role of increased arterial pressure, AGT mRNA, protein expression, and urinary AGT (uAGT) excretion and tissue injury were assessed in both kidneys of two-kidney, one-clip Sprague-Dawley hypertensive rats subjected to left renal arterial clipping (0.25-mm gap). By 18-21 days, systolic arterial pressure increased to 180 ± 3 mmHg, and uAGT increased. Water intake, body weights, 24-h urine volumes, and sodium excretion were similar. In separate measurements of renal function in anesthetized rats, renal plasma flow and glomerular filtration rate were similar in clipped and nonclipped kidneys and not different from those in sham rats, indicating that the perfusion pressure to the clipped kidneys remained within the autoregulatory range. The nonclipped kidneys exhibited increased urine flow and sodium excretion. The uAGT excretion was significantly greater in nonclipped kidneys compared with clipped and sham kidneys. AGT mRNA was 2.15-fold greater in the nonclipped kidneys compared with sham (1.0 ± 0.1) or clipped (0.98 ± 0.15) kidneys. AGT protein levels were also greater in the nonclipped kidneys. The nonclipped kidneys exhibited greater glomerular expansion and immune cell infiltration, medullary fibrosis, and cellular proliferation than the clipped kidneys. Because both kidneys have elevated ANG II levels, the greater tissue injury in the nonclipped kidneys indicates that an increased arterial pressure synergizes with increased intrarenal ANG II to stimulate AGT production and exert greater renal injury.
Collapse
Affiliation(s)
- Weijian Shao
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kayoko Miyata
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Akemi Katsurada
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Dale M Seth
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Carla B Rosales
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kenneth D Mitchell
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
18
|
Casare FAM, Thieme K, Costa-Pessoa JM, Rossoni LV, Couto GK, Fernandes FB, Casarini DE, Oliveira-Souza M. Renovascular remodeling and renal injury after extended angiotensin II infusion. Am J Physiol Renal Physiol 2016; 310:F1295-307. [PMID: 26962104 DOI: 10.1152/ajprenal.00471.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/05/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic angiotensin II (ANG II) infusion for 1 or 2 wk leads to progressive hypertension and induces inward hypertrophic remodeling in preglomerular vessels, which is associated with increased renal vascular resistance (RVR) and decreased glomerular perfusion. Considering the ability of preglomerular vessels to exhibit adaptive responses, the present study was performed to evaluate glomerular perfusion and renal function after 6 wk of ANG II infusion. To address this study, male Wistar rats were submitted to sham surgery (control) or osmotic minipump insertion (ANG II 200 ng·kg(-1)·min(-1), 42 days). A group of animals was treated or cotreated with losartan (10 mg·kg(-1)·day(-1)), an AT1 receptor antagonist, between days 28 and 42 Chronic ANG II infusion increased systolic blood pressure to 185 ± 4 compared with 108 ± 2 mmHg in control rats. Concomitantly, ANG II-induced hypertension increased intrarenal ANG II level and consequently, preglomerular and glomerular injury. Under this condition, ANG II enhanced the total renal plasma flow (RPF), glomerular filtration rate (GFR), urine flow and induced pressure natriuresis. These changes were accompanied by lower RVR and enlargement of the lumen of interlobular arteries and afferent arterioles, consistent with impairment of renal autoregulatory capability and outward preglomerular remodeling. The glomerular injury culminated with podocyte effacement, albuminuria, tubulointerstitial macrophage infiltration and intrarenal extracellular matrix accumulation. Losartan attenuated most of the effects of ANG II. Our findings provide new information regarding the contribution of ANG II infusion over 2 wk to renal hemodynamics and function via the AT1 receptor.
Collapse
Affiliation(s)
| | - Karina Thieme
- Laboratory of Cellular and Molecular Endocrinology, Medical School, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Juliana Martins Costa-Pessoa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana Venturini Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gisele Kruger Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Dulce Elena Casarini
- Division of Nephrology, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Oliveira-Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil;
| |
Collapse
|