1
|
Gan PXL, Liao W, Linke KM, Mei D, Wu XD, Wong WSF. Targeting the renin angiotensin system for respiratory diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:111-144. [PMID: 37524485 DOI: 10.1016/bs.apha.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Renin-angiotensin system (RAS) plays an indispensable role in regulating blood pressure through its effects on fluid and electrolyte balance. As an aside, cumulative evidence from experimental to clinical studies supports the notion that dysregulation of RAS contributes to the pro-inflammatory, pro-oxidative, and pro-fibrotic processes that occur in pulmonary diseases like asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute lung injury (ALI). Pharmacological intervention of the various RAS components can be a novel therapeutic strategy for the treatment of these respiratory diseases. In this chapter, we first give a recent update on the RAS, and then compile, review, and analyse recent reports on targeting RAS components as treatments for respiratory diseases. Inhibition of the pro-inflammatory renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and Ang II type 1 receptor (AT1R) axis, and activation of the protective ACE2, AT2R, Ang (1-7), and Mas receptor axis have demonstrated varying degrees of efficacies in experimental respiratory disease models or in human trials. The newly identified alamandine/Mas-related G-protein-coupled receptor member D pathway has shown some therapeutic promise as well. However, our understanding of the RAS ligand-and-receptor interactions is still inconclusive, and the modes of action and signaling cascade mediating the newly identified RAS receptors remain to be better characterized. Clinical data are obviously lacking behind the promising pre-clinical findings of certain well-established molecules targeting at different pathways of the RAS in respiratory diseases. Translational human studies should be the focus for RAS drug development in lung diseases in the next decade.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Singapore-HUJ Alliance for Research Enterprise, National University of Singapore, Singapore, Singapore
| | - Kira M Linke
- Department of Pharmacology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - D Mei
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - X D Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Singapore-HUJ Alliance for Research Enterprise, National University of Singapore, Singapore, Singapore; Drug Discovery and Optimization Platform, National University Health System, Singapore, Singapore.
| |
Collapse
|
2
|
Stanley JC. Renal Artery Occlusive Disease, Renin-Angiotensin-Aldosterone, Inflammation and Refractory Arterial Hypertension, A Half-Century’s Perspective. J Vasc Surg 2022; 76:46-52. [DOI: 10.1016/j.jvs.2022.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
|
3
|
Drugs Interfering with Insulin Resistance and Their Influence on the Associated Hypermetabolic State in Severe Burns: A Narrative Review. Int J Mol Sci 2021; 22:ijms22189782. [PMID: 34575946 PMCID: PMC8466307 DOI: 10.3390/ijms22189782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
It has become widely accepted that insulin resistance and glucose hypermetabolism can be linked to acute pathologies, such as burn injury, severe trauma, or sepsis. Severe burns can determine a significant increase in catabolism, having an important effect on glucose metabolism and on muscle protein metabolism. It is imperative to acknowledge that these alterations can lead to increased mortality through organ failure, even when the patients survive the initial trauma caused by the burn. By limiting the peripheral use of glucose with consequent hyperglycemia, insulin resistance determines compensatory increased levels of insulin in plasma. However, the significant alterations in cellular metabolism lead to a lack of response to insulin's anabolic functions, as well as to a decrease in its cytoprotective role. In the end, via pathological insulin signaling associated with increased liver gluconeogenesis, elevated levels of glucose are detected in the blood. Several cellular mechanisms have been incriminated in the development of insulin resistance in burns. In this context, the main aim of this review article is to summarize some of the drugs that might interfere with insulin resistance in burns, taking into consideration that such an approach can significantly improve the prognosis of the burned patient.
Collapse
|
4
|
Tomaz de Castro QJ, Araujo CM, Watai PY, de Castro E Silva SS, de Lima WG, Becker LK, Locatelli J, Guimarães HN, Grabe-Guimarães A. Effects of physical exercise combined with captopril or losartan on left ventricular hypertrophy of hypertensive rats. Clin Exp Hypertens 2021; 43:536-549. [PMID: 33870805 DOI: 10.1080/10641963.2021.1907399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Left ventricular hypertrophy (LVH) is an endpoint of hypertensive cardiac alterations. Renin-angiotensin-aldosterone system (RAAS) blockers are among the most effective on LVH regression. Physical exercise combined to antihypertensive drug contributes to arterial pressure (AP) control and LVH prevention. We evaluated the effects of physical exercise combined to captopril or losartan during eight weeks for spontaneously hypertensive rats (SHR) on some cardiac parameters.Methods: SHR (n=5-6 per group) were sedentary or trained 5 days a week in treadmill during 8 weeks; and they were treated with daily oral captopril (12.5, 25, or 50mg/kg), losartan (2.5, 5, or 10mg/kg), or vehicle. At the end, it was obtained systolic AP (SAP), electrocardiogram (ECG), and hearts metalloproteinase 2 (MMP-2) activity and histology.Results: Captopril 25 and 50 mg/kg, and losartan 10 mg/kg lowered SAP of sedentary and trained SHR. Losartan 5 mg/kg combined with physical exercise also lowered SAP. Combined with exercise, captopril 50 mg/kg lowered 13.6% of QT interval, 14.2% of QTc interval, and 22.8% of Tpeak-Tend compared to sedentary SHR. Losartan 5 and 10mg/kg lowered QT interval of sedentary and trained SHR. Losartan 2.5, 5 and 10mg/kg combined with physical exercise lowered respectively 25.4%, 24.8%, and 31.8% of MMP-2 activity. Losartan (10mg/kg) combined with exercise reduced cardiomyocyte diameter.Conclusion: These data support the hypothesis of physical exercise combined with RAAS blockers could improve the benefits on hypertensive LVH treatment.
Collapse
Affiliation(s)
| | - Carolina Morais Araujo
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Patrícia Yoshie Watai
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | | | | | | | - Jamille Locatelli
- Sports Center (CEDUFOP), Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Homero Nogueira Guimarães
- Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte,Minas Gerais, Brazil
| | - Andrea Grabe-Guimarães
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
5
|
Souza RAD, Nakamura PM, Teixeira IP, Souza MTD, Higino WP. A Probable Relationship between Physical Exercise and COVID-19 Mediated by the Renin-Angiotensin-Aldosterone System. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Jabbar AS, Neamah NF, Al-Darraji AH. Comparative effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on pulmonary function in hypertensive patients. J Basic Clin Physiol Pharmacol 2021; 33:207-212. [PMID: 33711215 DOI: 10.1515/jbcpp-2020-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/21/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Hypertension is a very common cardiovascular disease. Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARBs) are widely used to treat hypertension. Many patients with hypertension are vulnerable to the antihypertensive adverse effects, which potentially reduces the adherence rate. Therefore, we conducted this study in order to evaluate the safety profile of both classes (ACEi and ARBs) on respiratory functions. METHODS Two main groups of subjects were studied: first group is healthy control subjects and the second group is hypertensive patients, which was subdivided into subgroups in order to investigate the effect of all tested medications (captopril, enalapril, lisinopril, losartan, and valsartan). Respiratory efficiency was evaluated by measuring pulmonary function tests: FEV1, FVC, and FEV1%. Measurements were done using micromedical spirometer. RESULTS We found that ARBs do not impair normal respiratory functions as measured by FEV1, FEV1%, and FVC in hypertensive patients. While ACEi treatments significantly reduced FEV1, FEV1%, and FVC compared to the other groups. CONCLUSIONS ARBs are not associated with any harmful effects on respiratory functions in hypertensive patients, unlike ACEi. As such, they could represent a first-choice treatment for hypertensive patients who are at high risk to the respiratory adverse effects.
Collapse
Affiliation(s)
- Azza S Jabbar
- Department of Pharmacology and Toxicology, University of Barsah, Basrah, Iraq
| | - Nadheera F Neamah
- Department of Pharmacology and Toxicology, University of Barsah, Basrah, Iraq
| | - Ahmed H Al-Darraji
- Department of Pharmacology and Toxicology, University of Barsah, Basrah, Iraq
| |
Collapse
|
7
|
Bian J, Li Z. Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharm Sin B 2021; 11:1-12. [PMID: 33072500 PMCID: PMC7553008 DOI: 10.1016/j.apsb.2020.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) outbreak is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2) was rapidly identified as the critical functional receptor for SARS-CoV-2. ACE2 is well-known as a counter-regulator of the renin-angiotensin system (RAS) and plays a key role in the cardiovascular system. Given that ACE2 functions as both a SARS-CoV-2 receptor and a RAS modulator, the treatment for COVID-19 presents a dilemma of how to limit virus entry but protect ACE2 physiological functions. Thus, an in-depth summary of the recent progress of ACE2 research and its relationship to the virus is urgently needed to provide possible solution to the dilemma. Here, we summarize the complexity and interplay between the coronavirus, ACE2 and RAS (including anti-RAS drugs). We propose five novel working modes for functional receptor for SARS-CoV-2 infection and the routes of ACE2-mediated virus entering host cells, as well as its regulatory mechanism. For the controversy of anti-RAS drugs application, we also give theoretical analysis and discussed for drug application. These will contribute to a deeper understanding of the complex mechanisms of underlying the relationship between the virus and ACE2, and provide guidance for virus intervention strategies.
Collapse
Affiliation(s)
- Jingwei Bian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
8
|
Zhang J, Cai Z, Yang M, Tong L, Zhang Y. Inhibition of tanshinone IIA on renin activity protected against osteoporosis in diabetic mice. PHARMACEUTICAL BIOLOGY 2020; 58:219-224. [PMID: 32202179 PMCID: PMC7144291 DOI: 10.1080/13880209.2020.1738502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/09/2020] [Accepted: 02/28/2020] [Indexed: 06/09/2023]
Abstract
Context: Salvia miltiorrhiza Bge. (Labiatae) (SMB) is applied clinically for management of diabetic osteoporosis in China, and research results has suggested its potential action on renin-angiotensin system (RAS).Objective: This study screens and explores naturally occurring bioactive constituents from the root of SMB acting on renin activity and evaluates its osteoprotective efficacy in diabetic mice.Materials and methods: Human embryonic kidney (HEK) 293 cells, engineered to express human renin, were used as an in vitro model to identify bioactive compound, tanshinone IIA, inhibiting renin activity. The C57BL/6 mice (n = 10 in each group) with diabetes induced by streptozotocin (STZ) were intraperitoneally injected with tanshinone IIA (10 and 30 mg/kg). The mice without STZ treatment and the diabetic mice treated with aliskiren were used as non-diabetic control and positive control, respectively.Results: Tanshinone IIA was found to display inhibitory effects on renin activity of HEK-293 cells; moreover, it down-regulated protein expression of ANG II in human renin-expressed HEK-293 cells. Treatment of diabetic mice with tanshinone IIA with both doses could significantly decrease ANG II level in serum (from 16.56 ± 1.70 to 10.86 ± 0.68 and 9.14 ± 1.31 pg/mL) and reduce ANG II expression in bone, consequently improving trabecular bone mineral density and micro-structure of proximal tibial end and increasing trabecular bone area of distal femoral end in diabetic mice.Conclusions: This study revealed beneficial effects of tanshinone IIA on bone of diabetic mice, and potentially suggested the application of Salvia miltiorrhiza in the treatment of osteoporosis and drug development of tanshinone IIA as a renin inhibitor.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, PR China
| | - Zixuan Cai
- School of Pharmacy, Nantong University, Nantong, Jiangsu, PR China
| | - Min Yang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, PR China
| | - Lijuan Tong
- School of Pharmacy, Nantong University, Nantong, Jiangsu, PR China
| | - Yan Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, PR China
| |
Collapse
|
9
|
Pucci F, Bogaerts P, Rooman M. Modeling the Molecular Impact of SARS-CoV-2 Infection on the Renin-Angiotensin System. Viruses 2020; 12:E1367. [PMID: 33265982 PMCID: PMC7760740 DOI: 10.3390/v12121367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection is mediated by the binding of its spike protein to the angiotensin-converting enzyme 2 (ACE2), which plays a pivotal role in the renin-angiotensin system (RAS). The study of RAS dysregulation due to SARS-CoV-2 infection is fundamentally important for a better understanding of the pathogenic mechanisms and risk factors associated with COVID-19 coronavirus disease and to design effective therapeutic strategies. In this context, we developed a mathematical model of RAS based on data regarding protein and peptide concentrations; the model was tested on clinical data from healthy normotensive and hypertensive individuals. We used our model to analyze the impact of SARS-CoV-2 infection on RAS, which we modeled through a downregulation of ACE2 as a function of viral load. We also used it to predict the effect of RAS-targeting drugs, such as RAS-blockers, human recombinant ACE2, and angiotensin 1-7 peptide, on COVID-19 patients; the model predicted an improvement of the clinical outcome for some drugs and a worsening for others. Our model and its predictions constitute a valuable framework for in silico testing of hypotheses about the COVID-19 pathogenic mechanisms and the effect of drugs aiming to restore RAS functionality.
Collapse
Affiliation(s)
- Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium;
| | - Philippe Bogaerts
- Biosystems Modeling and Control, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium;
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium;
| |
Collapse
|
10
|
A Modern History RAAS Inhibition and Beta Blockade for Heart Failure to Underscore the Non-equivalency of ACEIs and ARBs. Cardiovasc Drugs Ther 2020; 34:215-221. [PMID: 32219664 DOI: 10.1007/s10557-020-06950-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Beta blockers and renin-angiotensin-aldosterone-inhibitors (RAAS-i) including angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) have been a mainstay of guideline-based medical therapy for heart failure with reduced ejection fraction (HFrEF) for decades. However, initial evidence supporting each of the aforenoted class of drug for heart failure indications was largely found independently of the other two classes with the exception of the addition of BBs to ACEIs. In the initial ACEI trials for HFrEF, few participants were on BBs as BBs were seen as contraindicated in HFrEF at the time. The seminal BB in HFrEF trials had high prevalence of ACEIs use as ACEIs for HF were standard of care by then, but ARBs as a class were still in their infancy. We closely examine the evidence for combinations of BB and ACEIs versus ARBs in HFrEF. In doing so, we demonstrate the lack of evidence for consideration of ARBs to be interchangeable with ACEIs when used in combination with BB and provide evidence that calls in to question the validity of assuming benefits from each drug class are independently cumulative, widening the gap between ACEIs and ARBs when used with BBs. Modern guidelines should emphasize this lack of evidence for the combination use of ARB and BB in HFrEF, except for candesartan. Even as practice moves towards the widespread uptake of angiotensin receptor-neprilysin inhibitors (which contain the ARB valsartan) in heart failure, the distinction has important implications for the ongoing role of combination therapy with BB, which thus far has been assumed, but not proven.
Collapse
|
11
|
Alfaro S, Navarro-Retamal C, Caballero J. Transforming Non-Selective Angiotensin-Converting Enzyme Inhibitors in C- and N-domain Selective Inhibitors by Using Computational Tools. Mini Rev Med Chem 2020; 20:1436-1446. [DOI: 10.2174/1389557520666191224113830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
The two-domain dipeptidylcarboxypeptidase Angiotensin-I-converting enzyme (EC
3.4.15.1; ACE) plays an important physiological role in blood pressure regulation via the reninangiotensin
and kallikrein-kinin systems by converting angiotensin I to the potent vasoconstrictor angiotensin
II, and by cleaving a number of other substrates including the vasodilator bradykinin and the
anti-inflammatory peptide N-acetyl-SDKP. Therefore, the design of ACE inhibitors is within the priorities
of modern medical sciences for treating hypertension, heart failures, myocardial infarction, and
other related diseases. Despite the success of ACE inhibitors for the treatment of hypertension and
congestive heart failure, they have some adverse effects, which could be attenuated by selective domain
inhibition. Crystal structures of both ACE domains (nACE and cACE) reported over the last decades
could facilitate the rational drug design of selective inhibitors. In this review, we refer to the history
of the discovery of ACE inhibitors, which has been strongly related to the development of molecular
modeling methods. We stated that the design of novel selective ACE inhibitors is a challenge
for current researchers which requires a thorough understanding of the structure of both ACE domains
and the help of molecular modeling methodologies. Finally, we performed a theoretical design of potential
selective derivatives of trandolaprilat, a drug approved to treat critical conditions of hypertension,
to illustrate how to use molecular modeling methods such as de novo design, docking, Molecular
Dynamics (MD) simulations, and free energy calculations for creating novel potential drugs with specific
interactions inside nACE and cACE binding sites.
Collapse
Affiliation(s)
- Sergio Alfaro
- Centro de Bioinformatica y Simulacion Molecular, Facultad de Ingenieria, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Carlos Navarro-Retamal
- Centro de Bioinformatica y Simulacion Molecular, Facultad de Ingenieria, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformatica y Simulacion Molecular, Facultad de Ingenieria, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| |
Collapse
|
12
|
Massaro M, Scoditti E, Carluccio MA, Calabriso N, Santarpino G, Verri T, De Caterina R. Effects of Olive Oil on Blood Pressure: Epidemiological, Clinical, and Mechanistic Evidence. Nutrients 2020; 12:E1548. [PMID: 32466599 PMCID: PMC7352724 DOI: 10.3390/nu12061548] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
The increasing access to antihypertensive medications has improved longevity and quality of life in hypertensive patients. Nevertheless, hypertension still remains a major risk factor for stroke and myocardial infarction, suggesting the need to implement management of pre- and hypertensive patients. In addition to antihypertensive medications, lifestyle changes, including healthier dietary patterns, such as the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet, have been shown to favorably affect blood pressure and are now recommended as integrative tools in hypertension management. An analysis of the effects of nutritional components of the Mediterranean diet(s) on blood pressure has therefore become mandatory. After a literature review of the impact of Mediterranean diet(s) on cardiovascular risk factors, we here analyze the effects of olive oil and its major components on blood pressure in healthy and cardiovascular disease individuals and examine underlying mechanisms of action. Both experimental and human studies agree in showing anti-hypertensive effects of olive oil. We conclude that due to its high oleic acid and antioxidant polyphenol content, the consumption of olive oil may be advised as the optimal fat choice in the management protocols for hypertension in both healthy and cardiovascular disease patients.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, 73100 Lecce, Italy; (E.S.); (M.A.C.); (N.C.)
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, 73100 Lecce, Italy; (E.S.); (M.A.C.); (N.C.)
| | - Maria Annunziata Carluccio
- National Research Council (CNR) Institute of Clinical Physiology, 73100 Lecce, Italy; (E.S.); (M.A.C.); (N.C.)
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology, 73100 Lecce, Italy; (E.S.); (M.A.C.); (N.C.)
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Giuseppe Santarpino
- Cardiovascular Center, Paracelsus Medical University, 90471 Nuremberg, Germany;
- GVM Care & Research, Città di Lecce Hospital, 73100 Lecce, Italy
- Cardiac Surgery Unit, Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | | |
Collapse
|
13
|
Bakhle Y. The Second Gaddum Lecture: its origins and outcomes. Br J Pharmacol 2020; 177:969-977. [PMID: 31722438 PMCID: PMC7042101 DOI: 10.1111/bph.14928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022] Open
Abstract
Fifty years ago, the BJP published the Second Gaddum Lecture, given by John Vane to the British Pharmacological Society. This article assesses the origins of the experiments described in the Lecture, linking them directly to Gaddum's use of bioassay, a defining feature of pharmacology. The outcomes of those experiments are also assessed, tracking those results that have survived the past five decades. Two of the major advances in cardiovascular medicine, the ACE inhibitors, as anti-hypertensives, and low-dose aspirin, to prevent thrombosis were initiated by the work in this Lecture. Physiologically significant outcomes include a new non-respiratory function of the lung, based on the metabolism of endogenous vasoactive substrates in the pulmonary circulation and the recognition of the endothelium as a highly interactive component of blood vessels. The present state of the art in pharmacology, physiology and medicine owes much to the work described in the Second Gaddum Lecture.
Collapse
|
14
|
Antisense oligonucleotides targeting angiotensinogen: insights from animal studies. Biosci Rep 2019; 39:BSR20180201. [PMID: 30530571 PMCID: PMC6328882 DOI: 10.1042/bsr20180201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023] Open
Abstract
Angiotensinogen (AGT) is the unique substrate of all angiotensin peptides. We review the recent preclinical research of AGT antisense oligonucleotides (ASOs), a rapidly evolving therapeutic approach. The scope of the research findings not only opens doors for potentially new therapeutics of hypertension and many other diseases, but also provides insights into understanding critical physiological and pathophysiological roles mediated by AGT.
Collapse
|
15
|
Hoffmann S, Mullins L, Buckley C, Rider S, Mullins J. Investigating the RAS can be a fishy business: interdisciplinary opportunities using Zebrafish. Clin Sci (Lond) 2018; 132:2469-2481. [PMID: 30518571 PMCID: PMC6279434 DOI: 10.1042/cs20180721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.
Collapse
Affiliation(s)
- Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Linda Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Charlotte Buckley
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Sebastien Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - John Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K.
| |
Collapse
|
16
|
Michaelis M, Sobczak A, Koczan D, Langhammer M, Reinsch N, Schön J, Weitzel JM. Testicular transcriptional signatures associated with high fertility. Reproduction 2018; 155:219-231. [PMID: 29382704 DOI: 10.1530/rep-17-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/02/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022]
Abstract
Factors of high fertility are poorly described. The majority of transgenic or knockout models with a reproductive phenotype are subfertile or infertile phenotypes. Few genotypes have been linked to improved reproductive performance (0.2%) or increased litter size (1%). In this study, we used a unique mouse model, fertility line FL1, selected for 'high fertility' for more than 170 generations. This strain has almost doubled the number of littermates as well as their total birth weight accompanied by an elevated ovulation rate and increased numbers of corpora lutea compared to a randomly mated and unselected control line (Ctrl). Here, we investigate whether the gonadal tissue of FL1 males are affected by 'co-evolution' after more than 40 years of female-focused selection. Using microarrays, we analysed the testicular transcriptome of the FL1 and Ctrl mice. These data were also compared with previously published female gonadal transcriptional alterations. We detected alterations in testicular gene expression, which are partly associated with female reproductive performance. Thus, female-focused selection for litter size has not only affected the female side, but also has been manifested in transcriptional alterations on the male gonadal organ. This suggests consequences for the entire mouse lines in the long run and emphasizes the perspective of inevitably considering both genders about mechanisms of high fertility.
Collapse
Affiliation(s)
- Marten Michaelis
- Institute of Reproductive BiologyLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Alexander Sobczak
- Institute of Reproductive BiologyLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Koczan
- Institute of ImmunologyUniversity of Rostock, Rostock, Germany
| | - Martina Langhammer
- Institute of Genetics and BiometryLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Norbert Reinsch
- Institute of Genetics and BiometryLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jennifer Schön
- Institute of Reproductive BiologyLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Joachim M Weitzel
- Institute of Reproductive BiologyLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
17
|
Sainio A, Järveläinen H. Extracellular Matrix Macromolecules as Potential Targets of Cardiovascular Pharmacotherapy. ADVANCES IN PHARMACOLOGY 2018; 81:209-240. [DOI: 10.1016/bs.apha.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Michaelis M, Sobczak A, Koczan D, Langhammer M, Reinsch N, Schoen J, Weitzel JM. Selection for female traits of high fertility affects male reproductive performance and alters the testicular transcriptional profile. BMC Genomics 2017; 18:889. [PMID: 29157197 PMCID: PMC5697431 DOI: 10.1186/s12864-017-4288-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/08/2017] [Indexed: 02/08/2023] Open
Abstract
Background Many genes important for reproductive performance are shared by both sexes. However, fecundity indices are primarily based on female parameters such as litter size. We examined a fertility mouse line (FL2), which has a considerably increased number of offspring and a total litter weight of 180% compared to a randomly bred control line (Ctrl) after more than 170 generations of breeding. In the present study, we investigated whether there might be a parallel evolution in males after more than 40 years of breeding in this outbred mouse model. Results Males of the fertility mouse line FL2 showed reduced sperm motility performance in a 5 h thermal stress experiment and reduced birth rate in the outbred mouse line. Transcriptional analysis of the FL2 testis showed the differential expression of genes associated with steroid metabolic processes (Cyp1b1, Cyp19a1, Hsd3b6, and Cyp21a1) and female fecundity (Gdf9), accompanied by 150% elevated serum progesterone levels in the FL2 males. Cluster analysis revealed the downregulation of genes of the kallikrein-related peptidases (KLK) cluster located on chromosome 7 in addition to alterations in gene expression with serine peptidase activity, e.g., angiotensinogen (Agt), of the renin-angiotensin system essential for ovulation. Although a majority of functional annotations map to female reproduction and ovulation, these genes are differentially expressed in FL2 testis. Conclusions These data indicate that selection for primary female traits of increased litter size not only affects sperm characteristics but also manifests as transcriptional alterations of the male side likely with direct long-term consequences for the reproductive performance of the mouse line. Electronic supplementary material The online version of this article (10.1186/s12864-017-4288-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marten Michaelis
- Institute of Reproductive Biology, University of Rostock, Rostock, Germany. .,Leibniz Institute for Farm Animal Biology (FBN), Institute of Reproductive Biology, FBN Dummerstorf, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Alexander Sobczak
- Institute of Reproductive Biology, University of Rostock, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Martina Langhammer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Norbert Reinsch
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, University of Rostock, Rostock, Germany
| | - Joachim M Weitzel
- Institute of Reproductive Biology, University of Rostock, Rostock, Germany. .,Leibniz Institute for Farm Animal Biology (FBN), Institute of Reproductive Biology, FBN Dummerstorf, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
19
|
Mullick AE, Yeh ST, Graham MJ, Engelhardt JA, Prakash TP, Crooke RM. Blood Pressure Lowering and Safety Improvements With Liver Angiotensinogen Inhibition in Models of Hypertension and Kidney Injury. Hypertension 2017; 70:566-576. [PMID: 28716988 DOI: 10.1161/hypertensionaha.117.09755] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/04/2017] [Accepted: 06/07/2017] [Indexed: 01/16/2023]
Abstract
Uncontrolled hypertension is an important contributor to cardiovascular disease. Despite the armamentarium of antihypertensive treatments, there remains a need for novel agents effective in individuals who cannot reach acceptable blood pressure levels. Inhibitors targeting the renin-angiotensin-aldosterone system (RAAS) are widely used but may not optimally inhibit RAAS and demonstrate an acceptable safety profile. Experiments were conducted to characterize a series of AGT (angiotensinogen) antisense oligonucleotides (ASOs) and compare their efficacy and tolerability to traditional RAAS blockade. AGT ASOs which target multiple systemic sites of AGT versus an N-acetylgalactosamine-conjugated AGT ASO that targets the liver were compared with captopril and losartan. Spontaneously hypertensive rats fed an 8% NaCl diet, a model of malignant hypertension resistant to standard RAAS inhibitors, demonstrated robust and durable blood pressure reductions with AGT ASO treatments, which was not observed with standard RAAS blockade. Studies in rat models of acute kidney injury produced by salt deprivation revealed kidney injury with ASO treatment that reduced kidney-expressed AGT, but not in animals treated with the N-acetylgalactosamine AGT ASO despite comparable plasma AGT reductions. Administration of either captopril or losartan also produced acute kidney injury during salt deprivation. Thus, intrarenal RAAS derived from kidney AGT, and inhibited by the standard of care, contributes to the maintenance of renal function during severe RAAS challenge. Such improvements in efficacy and tolerability by a liver-selective AGT inhibitor could be desirable in individuals not at their blood pressure goal with existing RAAS blockade.
Collapse
Affiliation(s)
| | - Steve T Yeh
- From the Ionis Pharmaceuticals, Inc, Carlsbad, CA
| | | | | | | | | |
Collapse
|