1
|
Li Y, Jin-Si-Han EEMBK, Feng C, Zhang W, Wang H, Lian S, Peng J, Pan Z, Li B, Fang Y, Lu Z. An evaluation model of hepatic steatosis based on CT value and serum uric acid/HDL cholesterol ratio can predict intrahepatic recurrence of colorectal cancer liver metastasis. Int J Clin Oncol 2024; 29:1263-1273. [PMID: 38839664 DOI: 10.1007/s10147-024-02550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Intrahepatic recurrence is one of the main causes of treatment failure in patients with colorectal cancer liver metastasis (CRLM). Hepatic steatosis was reported to provide fertile soil for metastasis. The effect of irinotecan-inducted hepatic steatosis on the progression of liver metastasis remains to be verified. Therefore, we aim to clarify the effect of hepatic steatosis on postoperative intrahepatic recurrence in CRLM and whether it is relevant to irinotecan-based chemotherapy. METHODS Data for a total of 284 patients undergoing curative surgical treatment for CRLMs were retrospectively reviewed between March 2007 and June 2018. Hepatic steatosis score (HSS) was established by combining Liver to Spleen CT ratio (LSR) and Uric acid to HDL-cholesterol ratio (UHR) to detect the presence of hepatic steatosis. RESULTS The evaluation model is consistent with pathological results and has high prediction ability and clinical application value. Patients with HSS high risk (HSS-HR) had significantly worse prognosis than those with HSS low risk (HSS-LR) (3-year intrahepatic RFS: 42.7% vs. 29.4%, P = 0.003; 5-year OS: 45.7% vs. 26.5%, P = 0.002). Univariate and multivariate analysis confirmed its essential role in the prediction of intrahepatic RFS. Besides, patients treated with preoperative irinotecan chemotherapy were more likely to end up with HSS-HR than those with non-irinotecan chemotherapy (63.3% vs. 21.8%, P < 0.001). Furthermore, irinotecan chemotherapy is relevant to worse prognosis in baseline HSS-HR patients. CONCLUSION In summary, patients with HSS-HR had significantly worse 5-year OS and 3-year intrahepatic RFS. Irinotecan chemotherapy is more likely to lead to HSS-HR and pre-existing hepatic steatosis may be a worse prognostic factor limiting patients underwent IRI-based chemotherapy.
Collapse
Affiliation(s)
- Yuan Li
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - E-Er-Man-Bie-Ke Jin-Si-Han
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Cheng Feng
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Weili Zhang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Hao Wang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Shaopu Lian
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Binkui Li
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, China
| | - Yujing Fang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Zhenhai Lu
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| |
Collapse
|
2
|
Raza F, Evans L, Motallebi M, Zafar H, Pereira-Silva M, Saleem K, Peixoto D, Rahdar A, Sharifi E, Veiga F, Hoskins C, Paiva-Santos AC. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater 2023; 157:1-23. [PMID: 36521673 DOI: 10.1016/j.actbio.2022.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is one of the harshest and most challenging cancers to treat, often labeled as incurable. Chemotherapy continues to be the most popular treatment yet yields a very poor prognosis. The main barriers such as inefficient drug penetration and drug resistance, have led to the development of drug carrier systems. The benefits, ease of fabrication and modification of liposomes render them as ideal future drug delivery systems. This review delves into the versatility of liposomes to achieve various mechanisms of treatment for pancreatic cancer. Not only are there benefits of loading chemotherapy drugs and targeting agents onto liposomes, as well as mRNA combined therapy, but liposomes have also been exploited for immunotherapy and can be programmed to respond to photothermal therapy. Multifunctional liposomal formulations have demonstrated significant pre-clinical success. Functionalising drug-encapsulated liposomes has resulted in triggered drug release, specific targeting, and remodeling of the tumor environment. Suppressing tumor progression has been achieved, due to their ability to more efficiently and precisely deliver chemotherapy. Currently, no multifunctional surface-modified liposomes are clinically approved for pancreatic cancer thus we aim to shed light on the trials and tribulations and progress so far, with the hope for liposomal therapy in the future and improved patient outcomes. STATEMENT OF SIGNIFICANCE: Considering that conventional treatments for pancreatic cancer are highly associated with sub-optimal performance and systemic toxicity, the development of novel therapeutic strategies holds outmost relevance for pancreatic cancer management. Liposomes are being increasingly considered as promising nanocarriers for providing not only an early diagnosis but also effective, highly specific, and safer treatment, improving overall patient outcome. This manuscript is the first in the last 10 years that revises the advances in the application of liposome-based formulations in bioimaging, chemotherapy, phototherapy, immunotherapy, combination therapies, and emergent therapies for pancreatic cancer management. Prospective insights are provided regarding several advantages resulting from the use of liposome technology in precision strategies, fostering new ideas for next-generation diagnosis and targeted therapies of pancreatic cancer.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lauren Evans
- Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Mahzad Motallebi
- Immunology Board for Transplantation And Cell-based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Kalsoom Saleem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Clare Hoskins
- Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
3
|
Yang J, Wang X, Wang B, Park K, Wooley K, Zhang S. Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers. Adv Drug Deliv Rev 2022; 190:114525. [PMID: 36100142 DOI: 10.1016/j.addr.2022.114525] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines for cancer treatment have been studied extensively over the last few decades. Yet, only five anticancer nanomedicines have received approvals from the United States Food and Drug Administration (FDA) for treating solid tumors. This drastic mismatch between effort and return calls into question the basic understanding of this field. Various viewpoints on nanomedicines have been presented regarding their potentials and inefficiencies. However, the underlying logics of nanomedicine research and its inadequate translation to the successful use in the clinic have not been thoroughly examined. Tumor-targeted drug delivery was used to understand the shortfalls of the nanomedicine field in general. The concept of tumor-targeted drug delivery by nanomedicine has been based on two conjectures: (i) increased drug delivery to tumors provides better efficacy, and (ii) decreased drug delivery to healthy organs results in fewer side effects. The clinical evidence gathered from the literature indicates that nanomedicines bearing classic chemotherapeutic drugs, such as Dox, cis-Pt, CPT and PTX, have already reached the maximum drug delivery limit to solid tumors in humans. Still, the anticancer efficacy and safety remain unchanged despite the increased tumor accumulation. Thus, it is understandable to see few nanomedicine-based formulations approved by the FDA. The examination of FDA-approved nanomedicine formulations indicates that their approvals were not based on the improved delivery to tumors but mostly on changes in dose-limiting toxicity unique to each drug. This comprehensive analysis of the fundamentals of anticancer nanomedicines is designed to provide an accurate picture of the field's underlying false conjectures, hopefully, thereby accelerating the future clinical translations of many formulations under research.
Collapse
Affiliation(s)
- Juanjuan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaojin Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, PR China
| | - Bingshun Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, PR China
| | - Kinam Park
- Weldon School of Biomedical Engineering, and Department of Pharmaceutics, Purdue University, West Lafayette, IN 47907, USA
| | - Karen Wooley
- Departments of Chemistry, Materials Science & Engineering and Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
4
|
Reizine N, O’Donnell PH. Modern developments in germline pharmacogenomics for oncology prescribing. CA Cancer J Clin 2022; 72:315-332. [PMID: 35302652 PMCID: PMC9262778 DOI: 10.3322/caac.21722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The integration of genomic data into personalized treatment planning has revolutionized oncology care. Despite this, patients with cancer remain vulnerable to high rates of adverse drug events and medication inefficacy, affecting prognosis and quality of life. Pharmacogenomics is a field seeking to identify germline genetic variants that contribute to an individual's unique drug response. Although there is widespread integration of genomic information in oncology, somatic platforms, rather than germline biomarkers, have dominated the attention of cancer providers. Patients with cancer potentially stand to benefit from improved integration of both somatic and germline genomic information, especially because the latter may complement treatment planning by informing toxicity risk for drugs with treatment-limiting tolerabilities and narrow therapeutic indices. Although certain germline pharmacogenes, such as TPMT, UGT1A1, and DPYD, have been recognized for decades, recent attention has illuminated modern potential dosing implications for a whole new set of anticancer agents, including targeted therapies and antibody-drug conjugates, as well as the discovery of additional genetic variants and newly relevant pharmacogenes. Some of this information has risen to the level of directing clinical action, with US Food and Drug Administration label guidance and recommendations by international societies and governing bodies. This review is focused on key new pharmacogenomic evidence and oncology-specific dosing recommendations. Personalized oncology care through integrated pharmacogenomics represents a unique multidisciplinary collaboration between oncologists, laboratory science, bioinformatics, pharmacists, clinical pharmacologists, and genetic counselors, among others. The authors posit that expanded consideration of germline genetic information can further transform the safe and effective practice of oncology in 2022 and beyond.
Collapse
Affiliation(s)
- Natalie Reizine
- Division of Hematology and Oncology, Department of Medicine, The University of Illinois at Chicago
| | - Peter H. O’Donnell
- Section of Hematology/Oncology, Department of Medicine, Center for Personalized Therapeutics, and Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago
- Correspondence to: Dr. Peter H. O’Donnell, Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL 60637, USA. ()
| |
Collapse
|
5
|
Lu J, Xiao Z, Xu M, Li L. New Insights into LINC00346 and its Role in Disease. Front Cell Dev Biol 2022; 9:819785. [PMID: 35096842 PMCID: PMC8794746 DOI: 10.3389/fcell.2021.819785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has shown that long intergenic non-protein-coding RNA 346 (LINC00346) functions as an oncogene in the tumorigenesis of several cancers. The expression level of LINC00346 has been shown to be obviously correlated with prognosis, lymphoma metastasis, histological grade, TNM stage, tumor size and pathologic stage. LINC00346 has been found to regulate specific cellular functions by interacting with several molecules and signaling pathways. In this review, we summarize recent evidence concerning the role of LINC00346 in the occurrence and development of diseases. We also discuss the potential clinical utility of LINC00346, thereby providing new insight into the diagnosis and treatment of diseases. In addition, we further discuss the potential clinical utility of LINC00346 in the diagnosis, prognostication, and treatment of diseases.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoying Xiao
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Mengqiu Xu
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Tam NM, Pham MQ, Ha NX, Nam PC, Phung HTT. Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2. RSC Adv 2021; 11:17478-17486. [PMID: 35479689 PMCID: PMC9032918 DOI: 10.1039/d1ra02529e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide recently, leading to global social and economic disruption. Although the emergently approved vaccine programs against SARS-CoV-2 have been rolled out globally, the number of COVID-19 daily cases and deaths has remained significantly high. Here, we attempt to computationally screen for possible medications for COVID-19 via rapidly estimating the highly potential inhibitors from an FDA-approved drug database against the main protease (Mpro) of SARS-CoV-2. The approach combined molecular docking and fast pulling of ligand (FPL) simulations that were demonstrated to be accurate and suitable for quick prediction of SARS-CoV-2 Mpro inhibitors. The results suggested that twenty-seven compounds were capable of strongly associating with SARS-CoV-2 Mpro. Among them, the seven top leads are daclatasvir, teniposide, etoposide, levoleucovorin, naldemedine, cabozantinib, and irinotecan. The potential application of these drugs in COVID-19 therapy has thus been discussed.
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Nguyen Xuan Ha
- Faculty of Chemistry and Environment, Thuyloi University, Ministry of Agriculture and Rural Development Hanoi Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering, The University of Da Nang, University of Science and Technology Da Nang City Vietnam
| | | |
Collapse
|
7
|
Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe-Zanutto F, Mishra D, Peng K, Raj Singh Thakur R, Donnelly RF. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm 2021; 159:44-76. [DOI: 10.1016/j.ejpb.2020.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
|
8
|
Wang J, Chin D, Poon C, Mancino V, Pham J, Li H, Ho PY, Hallows KR, Chung EJ. Oral delivery of metformin by chitosan nanoparticles for polycystic kidney disease. J Control Release 2021; 329:1198-1209. [PMID: 33127449 PMCID: PMC7904655 DOI: 10.1016/j.jconrel.2020.10.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
Nanoparticle drug delivery has many advantages over small molecule therapeutics, including reducing off-target side effects and increasing drug potency. However, many nanoparticles are administered parenterally, which is challenging for chronic diseases such as polycystic kidney disease (PKD), the most common hereditary disease worldwide in which patients need continuous treatment over decades. To address this clinical need, we present the development of nanoparticles synthesized from chitosan, a widely available polymer chosen for its ability to improve oral bioavailability. Specifically, we optimized the synthesis parameters of chitosan nanoparticles and demonstrate mucoadhesion and permeation across an intestinal barrier model in vitro. Furthermore, when administered orally to mice, ex vivo imaging of rhodamine-loaded chitosan nanoparticles showed significantly higher accumulation in the intestines compared to the free model drug, as well as 1.3 times higher serum area under the curve (AUC), demonstrating controlled release and improved serum delivery over 24 h. To test its utility for chronic diseases such as PKD, we loaded the candidate PKD drug, metformin, into chitosan nanoparticles, and upon oral administration to a PKD murine model (Pkd1fl/fl;Pax8-rtTA;Tet-O cre), a lower cyst burden was observed compared to free metformin, and was well tolerated upon repeated dosages. Blood urea nitrogen (BUN) and creatinine levels were similar to untreated mice, demonstrating kidney and biocompatibility health. Our study builds upon previous chitosan-based drug delivery approaches, and demonstrates a novel, oral nanoformulation for PKD.
Collapse
Affiliation(s)
- Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Deborah Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Li
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pei-Yin Ho
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth R Hallows
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Bridge Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Yu J, Liu Y, Zhou S, Wang Y, Wang Y. Stimuli-responsive phospholipid-drug conjugates (PDCs)-based nanovesicles for drug delivery and theranostics. Int J Pharm 2020; 590:119920. [PMID: 33002539 DOI: 10.1016/j.ijpharm.2020.119920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023]
Abstract
Liposomes represent one of the most successful nano-drug delivery systems among enormous nano-carriers. Although great progress has been made in conventional liposomes, the emerging shortcomings still impair the therapeutic index. The proposal of stimuli-responsive phospholipid-drug conjugates (PDCs)-based nanovesicles solves the challenges that conventional liposomes are faced with, showing great potential for cancer diagnosis and therapy. Herein, we intend to overview the current progress and unique advantages of stimuli-responsive PDCs-based nanovesicles. First, the challenges of conventional liposomes and the development of PDCs-based nanovesicles are summarized. Next, the stimuli-responsive elements used in current stimuli-responsive PDCs-based nanovesicles are outlined. Then, the unique superiorities of stimuli-responsive PDCs-based nanovesicles for drug delivery and theranostics are highlighted in detail. Finally, the future opportunities and challenges of stimuli-responsive PDCs-based nanovesicles for clinical translation are put forward.
Collapse
Affiliation(s)
- Jiang Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ying Liu
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Shuang Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yingli Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
10
|
Yu S, Zhang C, Xie KP. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim Biophys Acta Rev Cancer 2020; 1875:188461. [PMID: 33157162 DOI: 10.1016/j.bbcan.2020.188461] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a lethal disease with limited opportunity for resectable surgery as the first choice for cure due to its late diagnosis and early metastasis. The desmoplastic stroma and cellular genetic or epigenetic alterations of pancreatic cancer impose physical and biological barriers to effective therapies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Here, we review the current therapeutic options for pancreatic cancer, and underlying mechanisms and potential reversal of therapeutic resistance, a hallmark of this deadly disease.
Collapse
Affiliation(s)
- Sen Yu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chunyu Zhang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ke-Ping Xie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Pancreatic adenocarcinoma preferentially takes up and is suppressed by synthetic nanoparticles carrying apolipoprotein A-II and a lipid gemcitabine prodrug in mice. Cancer Lett 2020; 495:112-122. [PMID: 32949679 DOI: 10.1016/j.canlet.2020.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022]
Abstract
We hypothesised that synthetic HDL nanoparticles carrying a gemcitabine prodrug and apolipoprotein A-II (sHDLGemA2) would target scavenger receptor-B1 (SR-B1) to preferentially and safely deliver gemcitabine into pancreatic ductal adenocarcinoma (PDAC). We designed, manufactured and characterised sHDLGemA2 nanoparticles sized ~130 nm, incorporating 20 mol% of a gemcitabine prodrug within the lipid bilayer, which strengthens on adding ApoA-II. We measured their ability to inhibit growth in cell lines and cell-derived and patient-derived murine PDAC xenografts. Fluorescent-labelled sHDLGemA2 delivered gemcitabine inside xenografts. Xenograft levels of active gemcitabine after sHDLGemA2 were similar to levels after high-dose free gemcitabine. Growth inhibition in mice receiving 4.5 mg gemcitabine/kg/d, carried in sHDLGemA2, was equivalent to inhibition after high-dose (75 mg/kg/d) free gemcitabine, and greater than inhibition after low-dose (4.5 mg/kg/d) free gemcitabine. sHDLGemA2 slowed growth in semi-resistant cells and a resistant human xenograft. sHDLGemA2 targeted xenografts more effectively than sHDLGemA1. SR-B1 was over-expressed in PDAC cells and xenografts. Targeting by ApoA-II was suppressed by anti-SR-B1. Because sHDLGemA2 provided only ~6% of the free gemcitabine dose for an equivalent response, patient side effects can be greatly reduced, and the sHDLGemA2 concept should be developed through clinical trials.
Collapse
|
12
|
Desai P, Thumma NJ, Wagh PR, Zhan S, Ann D, Wang J, Prabhu S. Cancer Chemoprevention Using Nanotechnology-Based Approaches. Front Pharmacol 2020; 11:323. [PMID: 32317961 PMCID: PMC7146461 DOI: 10.3389/fphar.2020.00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer research in pursuit of better diagnostic and treatment modalities has seen great advances in recent years. However, the incidence rate of cancer is still very high. Almost 40% of women and men are diagnosed with cancer during their lifetime. Such high incidence has not only resulted in high mortality but also severely compromised patient lifestyles, and added a great socioeconomic burden. In view of this, chemoprevention has gained wide attention as a method to reduce cancer incidence and its relapse after treatment. Among various stems of chemoprevention research, nanotechnology-based chemoprevention approaches have established their potential to offer better efficacy and safety. This review summarizes recent advances in nanotechnology-based chemoprevention strategies for various cancers with emphasis on lung and bronchial cancer, colorectal, pancreatic, and breast cancer and highlights the unmet needs in this developing field towards successful clinical translation.
Collapse
Affiliation(s)
- Preshita Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Naga Jyothi Thumma
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Pushkaraj Rajendra Wagh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Shuyu Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - David Ann
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
13
|
Crommelin DJ, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release 2020; 318:256-263. [DOI: 10.1016/j.jconrel.2019.12.023] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022]
|
14
|
Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy. Biomaterials 2020; 232:119701. [DOI: 10.1016/j.biomaterials.2019.119701] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
|
15
|
Lee JE, Lee HS, Chung MJ, Park JY, Park SW, Song SY, Bang S. Analysis of Clinical Predictive Factors Affecting the Outcome of Second-Line Chemotherapy for Gemcitabine-Refractory Advanced Pancreatic Cancer. Gut Liver 2020; 14:135-143. [PMID: 30974927 PMCID: PMC6974334 DOI: 10.5009/gnl18419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
Background/Aims: The benefit of second-line chemotherapy (SL) after failed first-line chemotherapy (FL) in patients with advanced pancreatic cancer has not yet been established. We evaluated the clinical characteristics affecting the benefits of SL compared to best supportive care (BSC), identified the prognostic factors, and ultimately devised a model of clinical parameters to assist in making decision between SL and BSC after the failure of gemcitabine-based FL. Methods: The records of patients who received gemcitabinebased FL for advanced pancreatic cancer at Yonsei University Hospital between January 2010 and December 2015 were retrospectively reviewed. Significant clinical parameters were assessed for their potential as predictive factors. Results: SL patients received a longer duration of FL compared with BSC patients with median duration being 16.0 weeks (range, 8.0 to 26.0 weeks) and 8.0 weeks (range, 4.0 to 16.0 weeks), respectively (p<0.001). When the SL group was stratified by their modified overall survival (mOS) (longer and shorter than 6 months), we found significant differences for several clinical factors, namely, metastasis to the peritoneum (p<0.001), number of metastases (p<0.001), thrombotic events (p=0.003), and level of carbohydrate antigen 19-9 (CA19- 9; p=0.011). In multivariate analysis, more than one site of metastasis, occurrence of thrombotic event during FL, and a CA19-9 level above 90 U/mL were significant independent prognostic factors for mOS in the SL group (p<0.05). When an attempt was made to devise a prognostic nomogram, Harrell's C-index of the final prognosis prediction model was 0.62. Conclusions: SL may be beneficial for patients without peritoneal metastasis or thrombotic events who have a single metastasis and a level of CA19-9 less than 90 U/mL. This prognostic nomogram can be used to predict mOS before the administration of SL after the failure of gemcitabinebased FL.
Collapse
Affiliation(s)
- Jeung Eun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
| | - Hee Seung Lee
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
| | - Moon Jae Chung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
| | - Jeong Youp Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
| | - Seung Woo Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
| | - Si Young Song
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
| | - Seungmin Bang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
| |
Collapse
|
16
|
Samanta K, Setua S, Kumari S, Jaggi M, Yallapu MM, Chauhan SC. Gemcitabine Combination Nano Therapies for Pancreatic Cancer. Pharmaceutics 2019; 11:E574. [PMID: 31689930 PMCID: PMC6920852 DOI: 10.3390/pharmaceutics11110574] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the deadliest causes of cancer-related death in the United States, with a 5-year overall survival rate of 6 to 8%. These statistics suggest that immediate medical attention is needed. Gemcitabine (GEM) is the gold standard first-line single chemotherapy agent for pancreatic cancer but, after a few months, cells develop chemoresistance. Multiple clinical and experimental investigations have demonstrated that a combination or co-administration of other drugs as chemotherapies with GEM lead to superior therapeutic benefits. However, such combination therapies often induce severe systemic toxicities. Thus, developing strategies to deliver a combination of chemotherapeutic agents more securely to patients is needed. Nanoparticle-mediated delivery can offer to load a cocktail of drugs, increase stability and availability, on-demand and tumor-specific delivery while minimizing chemotherapy-associated adverse effects. This review discusses the available drugs being co-administered with GEM and the limitations associated during the process of co-administration. This review also helps in providing knowledge of the significant number of delivery platforms being used to overcome problems related to gemcitabine-based co-delivery of other chemotherapeutic drugs, thereby focusing on how nanocarriers have been fabricated, considering the modes of action, targeting receptors, pharmacology of chemo drugs incorporated with GEM, and the differences in the physiological environment where the targeting is to be done. This review also documents the focus on novel mucin-targeted nanotechnology which is under development for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Kamalika Samanta
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Saini Setua
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sonam Kumari
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Immunology and Microbiology, Institute for Cancer Immunotherapy, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, Institute for Cancer Immunotherapy, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA.
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, Institute for Cancer Immunotherapy, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA.
| |
Collapse
|
17
|
Lei F, Xi X, Batra SK, Bronich TK. Combination Therapies and Drug Delivery Platforms in Combating Pancreatic Cancer. J Pharmacol Exp Ther 2019; 370:682-694. [PMID: 30796131 PMCID: PMC6806650 DOI: 10.1124/jpet.118.255786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer-related death in the United States, is highly aggressive and resistant to both chemo- and radiotherapy. It remains one of the most difficult-to-treat cancers, not only due to its unique pathobiological features such as stroma-rich desmoplastic tumors surrounded by hypovascular and hypoperfused vessels limiting the transport of therapeutic agents, but also due to problematic early detection, which renders most treatment options largely ineffective, resulting in extensive metastasis. To elevate therapeutic effectiveness of treatments and overt their toxicity, significant enthusiasm was generated to exploit new strategies for combating PDAC. Combination therapy targeting different barriers to mitigate delivery issues and reduce tumor recurrence and metastasis has demonstrated optimal outcomes in patients' survival and quality of life, providing possible approaches to overcome therapeutic challenges. This paper aims to provide an overview of currently explored multimodal therapies using either conventional therapy or nanomedicines along with rationale, up-to-date progress, as well as the key challenges that must be overcome. Understanding the future directions of the field may assist in the successful development of novel treatment strategies for enhancing therapeutic efficacy in PDAC.
Collapse
Affiliation(s)
- Fan Lei
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Xinyuan Xi
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
18
|
Cavanna L, Stroppa EM, Citterio C, Mordenti P, Di Nunzio C, Peveri S, Orlandi E, Vecchia S. Modified FOLFIRINOX for unresectable locally advanced/metastatic pancreatic cancer. A real-world comparison of an attenuated with a full dose in a single center experience. Onco Targets Ther 2019; 12:3077-3085. [PMID: 31118666 PMCID: PMC6498392 DOI: 10.2147/ott.s200754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Metastatic pancreatic adenocarcinoma has a very poor prognosis. Although irinotecan, oxaliplatin and leucovorin-modulated fluorouracil (FOLFIRINOX) significantly increases survival in advanced pancreatic cancer, compared to employing only gemcitabine (GEM), toxicities have tempered enthusiasm for its use. Methods: This study retrospectively analyses the real-world clinical practice with full and attenuated doses of FOLFIRINOX in unselected patients with locally advanced unresectable or metastatic pancreatic cancer, treated at an Italian general hospital. Efficacy, tolerability, and toxicity were evaluated, and overall survival (OS) and progression-free survival (PFS) were estimated by Kaplan-Meier method. Results: Fifty consecutive patients with advanced (13) or metastatic (37) pancreatic adenocarcinomas were treated with FOLFIRINOX at the Medical Oncology Unit, Piacenza General Hospital, North Italy. The first enrolled consecutive 18 patients (36%) of this series started the treatment with a full dose of the regimen, while the subsequent 32 (64%) consecutive patients received dose attenuation (-20% bolus fluorouracil and -25% irinotecan). In the entire group, the response rate, median OS, and median PFS were 30%, 10.1 months, and 5.6 months, respectively, with no differences in objective response in the 32 patients that received an attenuated dose compared with the 18 patients receiving a full dose of chemotherapy. However, neutropenia, anemia, fatigue, and vomiting were statistically increased in the 18 patients receiving a full dose compared with the 32 patients receiving an attenuated dose of FOLFIRINOX (p<0.05). Conclusion: This study demonstrates the efficacy and tolerability of modified FOLFIRINOX in advanced and metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Luigi Cavanna
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital, Piacenza, Italy
| | - Elisa Maria Stroppa
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital, Piacenza, Italy
| | - Chiara Citterio
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital, Piacenza, Italy
| | - Patrizia Mordenti
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital, Piacenza, Italy
| | - Camilla Di Nunzio
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital, Piacenza, Italy
| | - Silvia Peveri
- Allergology and Statistics Unit, Piacenza General Hospital, Piacenza, Italy
| | - Elena Orlandi
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital, Piacenza, Italy
| | | |
Collapse
|
19
|
Kim AY, Frantz S, Brower J, Akhter N. Radioembolization with Yttrium-90 Microspheres for the Treatment of Liver Metastases of Pancreatic Adenocarcinoma: A Multicenter Analysis. J Vasc Interv Radiol 2019; 30:298-304.e2. [DOI: 10.1016/j.jvir.2018.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 12/18/2022] Open
|
20
|
Desai P, Ann D, Wang J, Prabhu S. Pancreatic Cancer: Recent Advances in Nanoformulation-Based Therapies. Crit Rev Ther Drug Carrier Syst 2019; 36:59-91. [PMID: 30806206 PMCID: PMC11058066 DOI: 10.1615/critrevtherdrugcarriersyst.2018025459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreatic cancer is the fourth leading cause of death in the United States and has a 5-year life expectancy of ~8%. Currently, only a few drugs have been approved by the United States Food and Drug Administration for pancreatic cancer treatment. Despite available drug therapy and ongoing clinical investigations, the high prevalence and mortality associated with pancreatic cancer mean that there is an unmet chemopreventive and therapeutic need. From ongoing studies with various novel formulations, it is evident that the development of smart drug delivery systems will improve delivery of drug cargo to the pancreatic target site to ensure and enhance the therapeutic/chemoprevention efficacy of existing drugs and newly designed drugs in the future. With this in view, nanotechnology is emerging as a promising avenue to enhance drug delivery to the pancreas via both passive and active targeting mechanisms. Research in this field has grown extensively over the past decade, as is evident from available scientific literature. This review summarizes the recent advances that have brought nanotechnology-based formulations to the forefront of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Preshita Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - David Ann
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, California, USA
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
21
|
Zemanek T, Melichar B, Lovecek M, Soucek P, Mohelnikova-Duchonova B. Biomarkers and pathways of chemoresistance and chemosensitivity for personalized treatment of pancreatic adenocarcinoma. Pharmacogenomics 2018; 20:113-127. [PMID: 30539680 DOI: 10.2217/pgs-2018-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic carcinoma is usually diagnosed late when treatment options are limited and is considered a chemo-resistant malignancy. However, early stage, good performance status and specific patient subgroup are thought to have a more favorable prognosis. Search for novel molecular biomarkers, which could predict treatment resistance, represents a major opportunity, but also a challenge in further research. This review summarizes most aspects of individualized therapy of pancreatic cancer including promising biomarkers, BRCA-deficient pancreatic cancer and its etiology. It may be estimated that nearly a third of metastatic pancreatic ductal adenocarcinoma patients could benefit from treatment other than gold standard chemotherapy. Thus, other aspects of an individualized approach concerning the main factors for the choice of the best therapy for individual pancreatic cancer patient (surgery and chemotherapy), as well as the future directions (target therapy and immunotherapy), are also addressed.
Collapse
Affiliation(s)
- Tomas Zemanek
- Department of Oncology, Faculty of Medicine & Dentistry, Palacky University Olomouc, University Hospital Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine & Dentistry, Palacky University Olomouc, University Hospital Olomouc, Czech Republic.,Institute of Molecular & Translational Medicine, Faculty of Medicine & Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Lovecek
- Department of Surgery I, Faculty of Medicine & Dentistry, Palacky University, Olomouc, University Hospital Olomouc, Czech Republic
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology, Faculty of Medicine & Dentistry, Palacky University Olomouc, University Hospital Olomouc, Czech Republic.,Institute of Molecular & Translational Medicine, Faculty of Medicine & Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
22
|
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS NANO 2018; 12:10636-10664. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microenvironment characteristics of solid tumors, renowned as barriers that harshly impeded many drug-delivery approaches, were precisely studied, investigated, categorized, divided, and subdivided into a complex diverse of barriers. These categories were further studied with a particular perspective, which makes all barriers found in solid-tumor micromilieu turn into different types of stimuli, and were considered triggers that can increase and hasten drug-release targeting efficacy. This review gathers data concerning the nature of solid-tumor micromilieu. Past research focused on the treatment of such tumors, the recent efforts employed for engineering smart nanoarchitectures with the utilization of the specified stimuli categories, the possibility of combining more than one stimuli for much-greater targeting enhancement, examples of the approved nanoarchitectures that already translated clinically as well as the obstacles faced by the use of these nanostructures, and, finally, an overview of the possible future implementations of smart-chemical engineering for the design of more-efficient drug delivery and theranostic systems and for making nanosystems with a much-higher level of specificity and penetrability features.
Collapse
Affiliation(s)
- Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy , Egyptian Russian University , Badr City , Cairo 63514 , Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy , Gulf Medical University , Ajman , United Arab Emirates
- Pharmacology Department, Medical Division , National Research Centre , Giza 12622 , Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences Center for Pharmaceutical Biotechnology and Nanomedicine , Northeastern University , 140 The Fenway, Room 211/214, 360 Huntington Aveue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
23
|
Liposomal therapies in oncology: does one size fit all? Cancer Chemother Pharmacol 2018; 82:741-755. [DOI: 10.1007/s00280-018-3668-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
|
24
|
Mohammad AA. Advanced pancreatic cancer: The standard of care and new opportunities. Oncol Rev 2018; 12:370. [PMID: 30344961 PMCID: PMC6176548 DOI: 10.4081/oncol.2018.370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
Presentation of pancreatic cancer is localized, locally advanced or metastatic. With the later represented the main bulk (more than 80%). Despite the significant innovation in molecular analysis and therapeutic approach in many types of cancer in the last two decades, still the outcome of advanced pancreatic cancer is disappointing and the mortality rate approximately unchanged. In this mandated review we intended to highlight the standard of care and emerging agents for advanced pancreatic cancer treatment.
Collapse
|
25
|
Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. Biomaterials 2018. [DOI: 10.1016/j.biomaterials.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|