1
|
Dalla Costa G, Leocani L, Rodegher M, Chiveri L, Gradassi A, Comi G. An overview on disease modifying and symptomatic drug treatments for multiple sclerosis. Expert Rev Clin Pharmacol 2024:1-21. [PMID: 39376160 DOI: 10.1080/17512433.2024.2410393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an inflammatory and degenerative autoimmune condition, resulting frequently in a disabling condition. Significant improvements of long-term prognosis have been recently achieved with an early and more aggressive use of disease modifying therapies (DMTs). Addressing the complexity of managing its progressive forms remains a significant challenge. AREAS COVERED This review provides an update on DMTs for relapsing-remitting MS (RRMS) and progressive MS and their efficacy, safety, and mechanism of action, emphasizing the critical role of biomarkers in optimizing treatment decisions. Moreover, some key information on drugs used to manage symptoms such as pain, fatigue, spasticity and urinary problems will be provided. The literature search was conducted using PubMed, Embase, and Cochrane Library databases covering the period from January 2000 to January 2024. EXPERT OPINION Major advances have been achieved in the treatment of RRMS. Treatment should start immediately as soon as the neurologist is confident with the diagnosis and its choice should be based on the prognostic profile and on the patient's propensity to accept drug-related risks. The therapeutic landscape for progressive MS is quite disappointing and necessitates further innovation. Personalized medicine, leveraging biomarker insights, holds promise for refining treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
| | - Letizia Leocani
- Vita Salute San Raffaele University, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Mariaemma Rodegher
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Luca Chiveri
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | | | - Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
2
|
Cohan SL, Hendin BA, Reder AT, Smoot K, Avila R, Mendoza JP, Weinstock-Guttman B. Interferons and Multiple Sclerosis: Lessons from 25 Years of Clinical and Real-World Experience with Intramuscular Interferon Beta-1a (Avonex). CNS Drugs 2021; 35:743-767. [PMID: 34228301 PMCID: PMC8258741 DOI: 10.1007/s40263-021-00822-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
Recombinant interferon (IFN) β-1b was approved by the US Food and Drug Administration as the first disease-modifying therapy (DMT) for multiple sclerosis (MS) in 1993. Since that time, clinical trials and real-world observational studies have demonstrated the effectiveness of IFN therapies. The pivotal intramuscular IFN β-1a phase III trial published in 1996 was the first to demonstrate that a DMT could reduce accumulation of sustained disability in MS. Patient adherence to treatment is higher with intramuscular IFN β-1a, given once weekly, than with subcutaneous formulations requiring multiple injections per week. Moreover, subcutaneous IFN β-1a is associated with an increased incidence of injection-site reactions and neutralizing antibodies compared with intramuscular administration. In recent years, revisions to MS diagnostic criteria have improved clinicians' ability to identify patients with MS and have promoted the use of magnetic resonance imaging (MRI) for diagnosis and disease monitoring. MRI studies show that treatment with IFN β-1a, relative to placebo, reduces T2 and gadolinium-enhancing lesions and gray matter atrophy. Since the approval of intramuscular IFN β-1a, a number of high-efficacy therapies have been approved for MS, though the benefit of these high-efficacy therapies should be balanced against the increased risk of serious adverse events associated with their long-term use. For some subpopulations of patients, including pregnant women, the safety profile of IFN β formulations may provide a particular benefit. In addition, the antiviral properties of IFNs may indicate potential therapeutic opportunities for IFN β in reducing the risk of viral infections such as COVID-19.
Collapse
Affiliation(s)
- Stanley L. Cohan
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR USA
| | | | | | - Kyle Smoot
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR USA
| | | | | | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1010 Main St., 2nd floor, Buffalo, NY, 14202, USA.
| |
Collapse
|
3
|
Dobrovolskaia MA, Bathe M. Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1657. [PMID: 32672007 PMCID: PMC7736207 DOI: 10.1002/wnan.1657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Gene therapeutics including siRNAs, anti-sense oligos, messenger RNAs, and CRISPR ribonucleoprotein complexes offer unmet potential to treat over 7,000 known genetic diseases, as well as cancer, through targeted in vivo modulation of aberrant gene expression and immune cell activation. Compared with viral vectors, nonviral delivery vectors offer controlled immunogenicity and low manufacturing cost, yet suffer from limitations in toxicity, targeting, and transduction efficiency. Structured DNA assemblies fabricated using the principle of scaffolded DNA origami offer a new nonviral delivery vector with intrinsic, yet controllable immunostimulatory properties and virus-like spatial presentation of ligands and immunogens for cell-specific targeting, activation, and control over intracellular trafficking, in addition to low manufacturing cost. However, the relative utilities and limitations of these vectors must clearly be demonstrated in preclinical studies for their clinical potential to be realized. Here, we review the major capabilities, opportunities, and challenges we foresee in translating these next-generation delivery and vaccine vectors to the clinic. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by National Cancer InstituteFrederickMaryland
| | - Mark Bathe
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
4
|
Findling O, Sellner J. Second-generation immunotherapeutics in multiple sclerosis: can we discard their precursors? Drug Discov Today 2020; 26:416-428. [PMID: 33248250 DOI: 10.1016/j.drudis.2020.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/18/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022]
Abstract
Options for disease-modifying therapies in multiple sclerosis have increased over the past two decades. Among these innovations are interferon-β, glatiramer acetate, fumaric acid and dihydroorotate dehydrogenase inhibitors, an antibody targeting the migration of immune cells, a compound that traps immune cells in lymphoid organs by sphingosine 1-phosphate receptor (S1PR) modulation and immune-reconstitution therapies. Second-generation drugs such as pegylated interferon-β, advanced CD20 depleting antibodies, more-specific S1PR modulators and new formulations have been developed to achieve higher efficacy while exhibiting fewer side effects. In this review, we address the shortcomings of the parent drugs, present the pros and cons of the second-generation therapies and summarize upcoming developments in the field of immunotherapy for multiple sclerosis.
Collapse
Affiliation(s)
- Oliver Findling
- Department of Neurology, Kantonsspital Aarau, Aarau, Switzerland; Department of Neurology, University Hospital Tulln, Karl-Landsteiner-University, Tulln, Austria
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, München, Germany.
| |
Collapse
|
5
|
Elsadek NE, Emam SE, Abu Lila AS, Shimizu T, Ando H, Ishima Y, Ishida T. Pegfilgrastim (PEG-G-CSF) Induces Anti-polyethylene Glycol (PEG) IgM via a T Cell-Dependent Mechanism. Biol Pharm Bull 2020; 43:1393-1397. [DOI: 10.1248/bpb.b20-00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nehal E. Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Sherif E. Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Amr S. Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
- Department of Pharmaceutics, College of Pharmacy, Hail University
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
6
|
Pegfilgrastim (PEG-G-CSF) induces anti-PEG IgM in a dose dependent manner and causes the accelerated blood clearance (ABC) phenomenon upon repeated administration in mice. Eur J Pharm Biopharm 2020; 152:56-62. [DOI: 10.1016/j.ejpb.2020.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 11/21/2022]
|
7
|
Shimizu T, Ishima Y, Ishida T. [Induction of Anti-PEG Immune Responses by PEGylation of Proteins]. YAKUGAKU ZASSHI 2020; 140:163-169. [PMID: 32009039 DOI: 10.1248/yakushi.19-00187-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modification of proteins with polyethylene glycol (PEG) (PEGylation) is a gold standard technique that improves the solubility, pharmacokinetics, and immunogenicity of modified proteins. To date more than 10 PEGylated protein formulations have been approved, and more than 20 PEGylated drugs are entering clinical trials. PEG has been considered non-immunogenic and non-toxic, but several studies have shown that PEG acquires immunogenicity following attachment to nanoparticles. The administration of PEGylated liposomes, micelles and proteins induces the production of antibodies against PEG (anti-PEG antibodies) in animals and human subjects. Indeed, approximately 20% of healthy human subjects possess pre-existing anti-PEG antibodies prior to treatment with PEGylated therapeutics. The induced and pre-existing anti-PEG antibodies cause not only the elimination of PEGylated proteins from blood circulation, but also allergic responses via the release of anaphylatoxins. Consequently, therapeutic outcomes for PEGylated proteins are impaired. The utility of PEGylated proteins could be improved by attenuating the PEG-related immune response. On the other hand, anti-PEG immune responses might be exploited for vaccine applications. Our recent studies demonstrated that anti-PEG antibodies mediate the delivery of antigens encapsulated in PEGylated liposomes, and enhance antigen-specific immune responses. In this review, we summarize anti-PEG antibody induction by PEGylated proteins and alterations in anti-PEG IgM-mediated pharmacokinetics and pharmacodynamics. These findings extend our knowledge of PEG-related immune responses.
Collapse
Affiliation(s)
- Taro Shimizu
- Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Institute of Biomedical Sciences, Tokushima University
| | | |
Collapse
|
8
|
Mora JR, White JT, DeWall SL. Immunogenicity Risk Assessment for PEGylated Therapeutics. AAPS JOURNAL 2020; 22:35. [PMID: 31993858 DOI: 10.1208/s12248-020-0420-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
Abstract
The objective of this manuscript is to provide the reader with two examples on how to present an immunogenicity risk assessment for a PEGylated therapeutic as part of Investigational New Drug (IND) application or during other stages of the drug development process. In order to provide context to the bioanalytical strategies used to support the PEGylated therapeutics presented here, a brief summary of information available for marketed PEGylated biologics is provided. Two case studies are presented, a PEGylated enzyme and a PEGylated growth factor. For the former, the risk assessment covers how to deal with a narrow therapeutic window and suggestions to utilize a PD marker as surrogate for neutralizing antibody assessments in Phase I. The latter has recommendations on additional analytes that should be monitored to mitigate risk of immunogenicity to endogenous counterparts.
Collapse
Affiliation(s)
- Johanna R Mora
- BioAnalytical Sciences, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA.
| | - Joleen T White
- Drug Metabolism and Pharmacokinetics, EMD Serono, Billerica, Massachusetts, USA
| | - Stephen L DeWall
- Immunogenicity, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| |
Collapse
|
9
|
Filipi M, Jack S. Interferons in the Treatment of Multiple Sclerosis: A Clinical Efficacy, Safety, and Tolerability Update. Int J MS Care 2019; 22:165-172. [PMID: 32863784 DOI: 10.7224/1537-2073.2018-063] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interferon beta (IFNβ) was the first disease-modifying therapy available to treat multiple sclerosis (MS), providing patients with a treatment that resulted in reduced relapse rates and delays in the onset of disability. Four IFNβ drugs are currently approved to treat relapsing forms of MS: subcutaneous (SC) IFNβ-1b, SC IFNβ-1a, intramuscular IFNβ-1a, and, most recently, SC peginterferon beta-1a. Peginterferon beta-1a has an extended half-life and requires less frequent administration than other available treatments (once every 2 weeks vs every other day, 3 times per week, or weekly). Large randomized controlled clinical trials have confirmed the efficacy of interferons for the treatment of relapsing MS. The most frequent adverse events in patients receiving IFNs include injection site reactions and flu-like symptoms. Patient education and mitigation strategies are key to managing these adverse events and supporting therapy adherence. With fewer injections needed, peginterferon beta-1a is associated with less frequent discomfort, which may translate to improved adherence, a major factor in treatment efficacy. Because the available interferon therapies differ in administration route and frequency of injection, switching among these therapies may be a viable option for patients who experience issues with tolerability. Although a variety of disease-modifying therapies are now available to treat relapsing MS, the efficacy and long-term safety profile of interferons make them an important first-line option for treatment.
Collapse
|
10
|
Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, Illes Z, Warnke C, Laurent S, Weber MS, Zhang Y, Stuve O. Immunological Aspects of Approved MS Therapeutics. Front Immunol 2019; 10:1564. [PMID: 31354720 PMCID: PMC6637731 DOI: 10.3389/fimmu.2019.01564] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is the most common neurological immune-mediated disease leading to disability in young adults. The outcome of the disease is unpredictable, and over time, neurological disabilities accumulate. Interferon beta-1b was the first drug to be approved in the 1990s for relapsing-remitting MS to modulate the course of the disease. Over the past two decades, the treatment landscape has changed tremendously. Currently, more than a dozen drugs representing 1 substances with different mechanisms of action have been approved (interferon beta preparations, glatiramer acetate, fingolimod, siponimod, mitoxantrone, teriflunomide, dimethyl fumarate, cladribine, alemtuzumab, ocrelizumab, and natalizumab). Ocrelizumab was the first medication to be approved for primary progressive MS. The objective of this review is to present the modes of action of these drugs and their effects on the immunopathogenesis of MS. Each agent's clinical development and potential side effects are discussed.
Collapse
Affiliation(s)
- Paulus S. Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ron Milo
- Department of Neurology, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - May H. Han
- Neuroimmunology Division, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Sammita Satyanarayan
- Neuroimmunology Division, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität, Munich, Germany
| | - Larissa Hauer
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Clemens Warnke
- Department of Neurology, Medical Faculty, University of Köln, Cologne, Germany
| | - Sarah Laurent
- Department of Neurology, Medical Faculty, University of Köln, Cologne, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Yinan Zhang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität, Munich, Germany
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Medical Service Dallas, VA Medical Center, Dallas, TX, United States
| |
Collapse
|
11
|
Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev 2019; 144:112-132. [PMID: 31295521 PMCID: PMC6745262 DOI: 10.1016/j.addr.2019.07.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022]
Abstract
Inorganic nanoparticles provide the opportunity to localize bioactive agents to the target sites and protect them from degradation. In many cases, acute toxicities of inorganic nanoparticles used for delivery applications have been investigated. However, little information is available regarding the long-term toxicity of such materials. This review focuses on the importance of subchronic and chronic toxicity assessment of inorganic nanoparticles investigated for delivery applications. We have attempted to provide a comprehensive review of the available literature for chronic toxicity assessment of inorganic nanoparticles. Where possible correlations are made between particle composition, physiochemical properties, duration, frequency and route of administration, as well as the sex of animals, with tissue and blood toxicity, immunotoxicity and genotoxicity. A critical gap analysis is provided and important factors that need to be considered for long-term toxicology of inorganic nanoparticles are discussed.
Collapse
Affiliation(s)
- Raziye Mohammadpour
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Darwin L Cheney
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA
| | - Khaled F Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; Nanomedicine Research Unit, Princess Al-Jawhara Centre for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama 329, Bahrain
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
12
|
Gilli F, De La Torre AL, Royce DB, Pachner AR. Interaction of PEGylated interferon-beta with antibodies to recombinant interferon-beta. Int Immunopharmacol 2018; 62:1-6. [DOI: 10.1016/j.intimp.2018.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/18/2018] [Accepted: 06/19/2018] [Indexed: 01/27/2023]
|
13
|
Newsome SD, Scott TF, Arnold DL, Nelles G, Hung S, Cui Y, Shang S, Naylor ML, Kremenchutzky M. Long-term outcomes of peginterferon beta-1a in multiple sclerosis: results from the ADVANCE extension study, ATTAIN. Ther Adv Neurol Disord 2018; 11:1756286418791143. [PMID: 30181778 PMCID: PMC6113734 DOI: 10.1177/1756286418791143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Background ADVANCE was a phase III trial of the efficacy and safety of subcutaneous peginterferon beta-1a 125 µg every 2 or 4 weeks in patients with relapsing-remitting multiple sclerosis (RRMS). ATTAIN was a 2-year extension study of ADVANCE. The aim was to evaluate the long-term safety, tolerability, and efficacy of peginterferon beta-1a 125 µg every 2 or 4 weeks in ATTAIN. Methods ADVANCE dosing schedules were maintained in ATTAIN, except that every-4-weeks dosing patients were switched to every-2-weeks dosing after conversion of the study to an open-label protocol. ATTAIN was considered complete when the last patient completed the 96-week extension study. Primary endpoints included adverse event (AE) and serious AE (SAE) incidence. Secondary endpoints included relapse, magnetic resonance imaging, and disability outcomes. Results Of the 1512 patients randomized in ADVANCE, 1076 (71%) continued treatment in ATTAIN; of these, 842 (78%) completed the open-label extension study. During ATTAIN, 478 patients (87%) in the every-2-weeks group and 471 patients (89%) in the every-4-weeks group experienced an AE; SAEs were reported in 90 patients (16%) in the every-2-weeks group and 113 patients (21%) in the every-4-weeks group. The most frequent AEs reported were injection site reactions and flu-like symptoms, both of which numerically decreased over time. Peginterferon beta-1a every 2 weeks versus every 4 weeks significantly reduced the adjusted annualized relapse rate over 6 years (0.188 versus 0.263, p = 0.0052) and the risk of relapse over 5 years (36% versus 49%, p = 0.0018). Fewer new T1, new/newly enlarging T2, and gadolinium-enhancing magnetic resonance imaging lesions were observed with every-2-weeks dosing than every-4-weeks dosing over 4 years. Conclusions Results from the ADVANCE extension study, ATTAIN, confirm the favorable long-term safety and tolerability profile of peginterferon beta-1a in patients with RRMS and provide additional evidence for the clinical and radiological benefits associated with this therapy.
Collapse
Affiliation(s)
- Scott D Newsome
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas F Scott
- Department of Neurology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Douglas L Arnold
- Montreal Neurological Institute, McGill University, and NeuroRx Research, Montreal, QC, Canada
| | - Gereon Nelles
- Neurology, NeuroMed Campus Hohenlind, Cologne, Germany
| | - Serena Hung
- Biogen, Cambridge, MA, USA (during completion of work)
| | - Yue Cui
- Biogen, Cambridge, MA, USA (during completion of work)
| | - Shulian Shang
- Biogen, Cambridge, MA, USA (during completion of work)
| | | | - Marcelo Kremenchutzky
- Department of Clinical Neurological Sciences, University of Western Ontario, and London Health Science Centre, London, ON, Canada
| |
Collapse
|
14
|
Kuribayashi T. Elimination half-lives of interleukin-6 and cytokine-induced neutrophil chemoattractant-1 synthesized in response to inflammatory stimulation in rats. Lab Anim Res 2018; 34:80-83. [PMID: 29937915 PMCID: PMC6010403 DOI: 10.5625/lar.2018.34.2.80] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022] Open
Abstract
The elimination half-lives of in Interleukin-6 (IL-6) and cytokine-induced neutrophil chemoattractant-1 (CINC-1) in rats after inflammatory stimulation were investigated. Five male Sprague-Dawley rats were used (age, 9 weeks; body weight, 235-375 g). Turpentine oil was intramuscularly injected at a dose of 2 mL/kg body weight to induce acute inflammation. Blood was collected pre-injection and 6, 12, 24, 36, 48, 60, 72, 84, and 96 h after the turpentine oil injection. Serum concentrations of IL-6, CINC-1, and α2-macroglobulin (α2M) were measured by enzyme-linked immunosorbent assay. Half-lives were calculated as 0.693/elimination rate constant. The serum concentration of α2M peaked at 48 h after turpentine oil injection. Serum concentrations of IL-6 and CINC-1 increased and peaked at 12 and 24 h, respectively. The terminal elimination half-lives of IL-6 and CINC-1 were 15.5 and 29.9 h, respectively. The half-life of CINC-1 was significantly longer than that of IL-6 (P=0.006). These results suggested that these cytokines synthesized in response to inflammatory stimulation were rapidly eliminated in rats. The serum concentrations of these cytokines should be measured at an early stage if these cytokines will be used as surrogate inflammatory markers instead of acute-phase proteins.
Collapse
Affiliation(s)
- Takashi Kuribayashi
- Laboratory of Immunology, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| |
Collapse
|
15
|
Aruna, Li L. Anti-Interferon Alpha Antibodies in Patients with High-Risk BCR/ABL-Negative Myeloproliferative Neoplasms Treated with Recombinant Human Interferon-α. Med Sci Monit 2018; 24:2302-2309. [PMID: 29693647 PMCID: PMC5928850 DOI: 10.12659/msm.907876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background The objective of this study was to characterize the incidence and impact of immunogenicity to interferon-α (IFN-α-2a, IFN-α-2b, and Peg-IFN-α-2a) over a period of 12 months in patients with BCR/ABL-negative myeloproliferative neoplasms (MPNs). Material/Methods A total of 131 patients from an observational prospective cohort were selected. Antidrug antibodies, in serial serum samples obtained monthly after initiation of therapy, were measured by ELISA and WISH/VSV CPE assays. The association between antidrug antibodies and treatment response and adverse effects was evaluated. Results Among patients who completed 12 months of follow-up, binding antibodies (BAbs) were detected in 53% of those receiving IFN-α (69 of 131) and neutralizing antibodies (NAbs) were detected in 19% (25 of 131). NAbs-positivity was correlated with poorer clinical response, and Bab-positivity was associated with more adverse events. Almost all BAbs and NAbs appeared within 8 months after treatment began (≥95%). Complete remission (CR) rate was 62% for patients who were BAbs-positive and 69% for patients who were BAbs-negative; however, the CR rate of patients with NAbs(+) (24%) was obviously lower than in patients with NAbs(−) (75%). Patients with BAbs(+) had more immune adverse effects (including fever, myalgia, skin reaction, and stomatitis) than BAbs(−) patients, and NAbs to IFN-α had no obvious influence on the adverse effects rate. Conclusions The development of BAbs and NAbs can adversely affect IFN-α treatment in patients with MPN.
Collapse
Affiliation(s)
- Aruna
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland).,Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China (mainland)
| | - Limei Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland).,Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
16
|
Rau RE, Dreyer Z, Choi MR, Liang W, Skowronski R, Allamneni KP, Devidas M, Raetz EA, Adamson PC, Blaney SM, Loh ML, Hunger SP. Outcome of pediatric patients with acute lymphoblastic leukemia/lymphoblastic lymphoma with hypersensitivity to pegaspargase treated with PEGylated Erwinia asparaginase, pegcrisantaspase: A report from the Children's Oncology Group. Pediatr Blood Cancer 2018; 65:10.1002/pbc.26873. [PMID: 29090524 PMCID: PMC5839116 DOI: 10.1002/pbc.26873] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Erwinia asparaginase is a Food and Drug Administration approved agent for the treatment of acute lymphoblastic leukemia (ALL) for patients who develop hypersensitivity to Escherichia coli derived asparaginases. Erwinia asparaginase is efficacious, but has a short half-life, requiring six doses to replace one dose of the most commonly used first-line asparaginase, pegaspargase, a polyethylene glycol (PEG) conjugated E. coli asparaginase. Pegcristantaspase, a recombinant PEGylated Erwinia asparaginase with improved pharmacokinetics, was developed for patients with hypersensitivity to pegaspargase. Here, we report a series of patients treated on a pediatric phase 2 trial of pegcrisantaspase. PROCEDURE Pediatric patients with ALL or lymphoblastic lymphoma and hypersensitivity to pegaspargase enrolled on Children's Oncology Group trial AALL1421 (Jazz 13-011) and received intravenous pegcrisantaspase. Serum asparaginase activity (SAA) was monitored before and after dosing; immunogenicity assays were performed for antiasparaginase and anti-PEG antibodies and complement activation was evaluated. RESULTS Three of the four treated patients experienced hypersensitivity to pegcrisantaspase manifested as clinical hypersensitivity reactions or rapid clearance of SAA. Immunogenicity assays demonstrated the presence of anti-PEG immunoglobulin G antibodies in all three hypersensitive patients, indicating a PEG-mediated immune response. CONCLUSIONS This small series of patients, nonetheless, provides data, suggesting preexisting immunogenicity against the PEG moiety of pegaspargase and poses the question as to whether PEGylation may be an effective strategy to optimize Erwinia asparaginase administration. Further study of larger cohorts is needed to determine the incidence of preexisting antibodies against PEG-mediated hypersensitivity to pegaspargase.
Collapse
Affiliation(s)
- Rachel E. Rau
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - ZoAnn Dreyer
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | - Wei Liang
- Jazz Pharmaceuticals, Palo Alto, California
| | | | | | - Meenakshi Devidas
- Department of Biostatistics, Colleges of Medicine, Public Health and Health Professions, University of Florida, Gainesville, Florida
| | | | - Peter C. Adamson
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan M. Blaney
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Mignon L Loh
- Department of Pediatrics, University of California School of Medicine, San Francisco, California
| | - Stephen P. Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Popova EV, Novikova KV, Khachanova NV, Konovalova OE, Kozhieva MK, Davydovskaya MV, Boyko AN. [The search for optimal decision in the treatment of multiple sclerosis: to improve adherence not reducing the efficacy]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:48-52. [PMID: 29359733 DOI: 10.17116/jnevro201711710248-52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long-term disease modifying therapy (DMD) therapy is the basis of modern MS treatment, effiecacy of which is modulated by the patient's adherence to therapy. One of the possible solutions of low adherence improvement is the use of innovative drugs and the development of more convenient regimens of injectable medications. This article gives a brief review of peg-interferon β-1a clinical trials.
Collapse
Affiliation(s)
- E V Popova
- Inter-area Division of Multiple Sclerosis, Citi Clinical Hospitak #24, Moscow, Russia; Department of Neurology, Neurusurgery and Medical Genetics of the Medical Faculte, Pirogov Russian National Research Medical University, Moscow, Russia
| | - K V Novikova
- Department of Neurology, Neurusurgery and Medical Genetics of the Medical Faculte, Pirogov Russian National Research Medical University, Moscow, Russia
| | - N V Khachanova
- Inter-area Division of Multiple Sclerosis, Citi Clinical Hospitak #24, Moscow, Russia; Department of Neurology, Neurusurgery and Medical Genetics of the Medical Faculte, Pirogov Russian National Research Medical University, Moscow, Russia
| | - O E Konovalova
- Inter-area Division of Multiple Sclerosis, Citi Clinical Hospitak #24, Moscow, Russia
| | - M Kh Kozhieva
- Department of Neurology, Neurusurgery and Medical Genetics of the Medical Faculte, Pirogov Russian National Research Medical University, Moscow, Russia
| | - M V Davydovskaya
- Inter-area Division of Multiple Sclerosis, Citi Clinical Hospitak #24, Moscow, Russia; Department of Neurology, Neurusurgery and Medical Genetics of the Medical Faculte, Pirogov Russian National Research Medical University, Moscow, Russia; Center for Clinical Research and Health Technology Moscow, Russia
| | - A N Boyko
- Inter-area Division of Multiple Sclerosis, Citi Clinical Hospitak #24, Moscow, Russia; Department of Neurology, Neurusurgery and Medical Genetics of the Medical Faculte, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
18
|
Zettl UK, Hecker M, Aktas O, Wagner T, Rommer PS. Interferon β-1a and β-1b for patients with multiple sclerosis: updates to current knowledge. Expert Rev Clin Immunol 2018; 14:137-153. [DOI: 10.1080/1744666x.2018.1426462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Uwe Klaus Zettl
- Department of Neurology, Neuroimmunology Section, University of Rostock, Rostock, Germany
| | - Michael Hecker
- Department of Neurology, Neuroimmunology Section, University of Rostock, Rostock, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Torsten Wagner
- Department of Medical Affairs, Merck KGaA, Darmstadt, Germany
| | - Paulus S. Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Gilli F, Royce DB, DiSano KD, Pachner AR. Pegylated interferon beta in the treatment of the Theiler's murine encephalomyelitis virus mouse model of multiple sclerosis. J Neuroimmunol 2017; 313:34-40. [DOI: 10.1016/j.jneuroim.2017.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/19/2023]
|
20
|
Xue L, Clements-Egan A, Amaravadi L, Birchler M, Gorovits B, Liang M, Myler H, Purushothama S, Manning MS, Sung C. Recommendations for the Assessment and Management of Pre-existing Drug-Reactive Antibodies During Biotherapeutic Development. AAPS JOURNAL 2017; 19:1576-1586. [DOI: 10.1208/s12248-017-0153-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022]
|
21
|
Furber KL, Van Agten M, Evans C, Haddadi A, Doucette JR, Nazarali AJ. Advances in the treatment of relapsing-remitting multiple sclerosis: the role of pegylated interferon β-1a. Degener Neurol Neuromuscul Dis 2017; 7:47-60. [PMID: 30050377 PMCID: PMC6053102 DOI: 10.2147/dnnd.s71986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive, neurodegenerative disease with unpredictable phases of relapse and remission. The cause of MS is unknown, but the pathology is characterized by infiltration of auto-reactive immune cells into the central nervous system (CNS) resulting in widespread neuroinflammation and neurodegeneration. Immunomodulatory-based therapies emerged in the 1990s and have been a cornerstone of disease management ever since. Interferon β (IFNβ) was the first biologic approved after demonstrating decreased relapse rates, disease activity and progression of disability in clinical trials. However, frequent dosing schedules have limited patient acceptance for long-term therapy. Pegylation, the process by which molecules of polyethylene glycol are covalently linked to a compound, has been utilized to increase the half-life of IFNβ and decrease the frequency of administration required. To date, there has been one clinical trial evaluating the efficacy of pegylated IFN. The purpose of this article is to provide an overview of the role of IFN in the treatment of MS and evaluate the available evidence for pegylated IFN therapy in MS.
Collapse
Affiliation(s)
- Kendra L Furber
- Laboratory of Molecular Cell Biology, .,College of Pharmacy and Nutrition, .,Neuroscience Research Cluster, University of Saskatchewan,
| | - Marina Van Agten
- Laboratory of Molecular Cell Biology, .,College of Pharmacy and Nutrition, .,Neuroscience Research Cluster, University of Saskatchewan,
| | - Charity Evans
- College of Pharmacy and Nutrition, .,Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital,
| | | | - J Ronald Doucette
- Neuroscience Research Cluster, University of Saskatchewan, .,Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, .,Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, .,College of Pharmacy and Nutrition, .,Neuroscience Research Cluster, University of Saskatchewan, .,Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital,
| |
Collapse
|
22
|
Yang Q, Jacobs TM, McCallen JD, Moore DT, Huckaby JT, Edelstein JN, Lai SK. Analysis of Pre-existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population. Anal Chem 2016; 88:11804-11812. [PMID: 27804292 DOI: 10.1021/acs.analchem.6b03437] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Circulating antibodies (Ab) that specifically bind polyethylene glycol (PEG), a biocompatible polymer routinely used in protein and nanoparticle therapeutics, have been associated with reduced efficacy of and/or adverse reactions to therapeutics modified with or containing PEG. Unlike most antidrug antibodies that are induced following initial drug dosing, anti-PEG Ab can be found in treatment-naïve individuals (i.e., individuals who have never undergone treatment with PEGylated drugs but most likely have been exposed to PEG through other means). Unfortunately, the true prevalence, quantitative levels, and Ab isotype of pre-existing anti-PEG Ab remain poorly understood. Here, using rigorously validated competitive ELISAs with engineered chimeric anti-PEG monoclonal Ab standards, we quantified the levels of anti-PEG IgM and different subclasses of anti-PEG IgG (IgG1-4) in both contemporary and historical human samples. We unexpectedly found, with 90% confidence, detectable levels of anti-PEG Ab in ∼72% of the contemporary specimens (18% IgG, 25% IgM, 30% both IgG and IgM). The vast majority of these samples contained low levels of anti-PEG Ab, with only ∼7% and ∼1% of all specimens possessing anti-PEG IgG and IgM in excess of 500 ng/mL, respectively. IgG2 was the predominant anti-PEG IgG subclass. Anti-PEG Ab's were also observed in ∼56% of serum samples collected during 1970-1999 (20% IgG, 19% IgM, and 16% both IgG and IgM), suggesting that the presence of PEG-specific antibodies may be a longstanding phenomenon. Anti-PEG IgG levels demonstrated correlation with patient age, but not with gender or race. The widespread prevalence of pre-existing anti-PEG Ab, coupled with high Ab levels in a subset of the population, underscores the potential importance of screening patients for anti-PEG Ab levels prior to administration of therapeutics containing PEG.
Collapse
Affiliation(s)
- Qi Yang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; ‡Lineberger Cancer Center, Biostatistics Shared Resource; §UNC/NCSU Joint Department of Biomedical Engineering; ∥Department of Microbiology & Immunology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Timothy M Jacobs
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; ‡Lineberger Cancer Center, Biostatistics Shared Resource; §UNC/NCSU Joint Department of Biomedical Engineering; ∥Department of Microbiology & Immunology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Justin D McCallen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; ‡Lineberger Cancer Center, Biostatistics Shared Resource; §UNC/NCSU Joint Department of Biomedical Engineering; ∥Department of Microbiology & Immunology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Dominic T Moore
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; ‡Lineberger Cancer Center, Biostatistics Shared Resource; §UNC/NCSU Joint Department of Biomedical Engineering; ∥Department of Microbiology & Immunology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Justin T Huckaby
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; ‡Lineberger Cancer Center, Biostatistics Shared Resource; §UNC/NCSU Joint Department of Biomedical Engineering; ∥Department of Microbiology & Immunology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Jasmine N Edelstein
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; ‡Lineberger Cancer Center, Biostatistics Shared Resource; §UNC/NCSU Joint Department of Biomedical Engineering; ∥Department of Microbiology & Immunology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Samuel K Lai
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy; ‡Lineberger Cancer Center, Biostatistics Shared Resource; §UNC/NCSU Joint Department of Biomedical Engineering; ∥Department of Microbiology & Immunology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
23
|
Zhang P, Sun F, Liu S, Jiang S. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J Control Release 2016; 244:184-193. [PMID: 27369864 DOI: 10.1016/j.jconrel.2016.06.040] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
Abstract
The technique of attaching the polymer polyethylene glycol (PEG), or PEGylation, has brought more than ten protein drugs into market. The surface conjugation of PEG on proteins prolongs their blood circulation time and reduces immunogenicity by increasing their hydrodynamic size and masking surface epitopes. Despite this success, an emerging body of literature highlights the presence of antibodies produced by the immune system that specifically recognize and bind to PEG (anti-PEG Abs), including both pre-existing and treatment-induced Abs. More importantly, the existence of anti-PEG Abs has been correlated with loss of therapeutic efficacy and increase in adverse effects in several clinical reports examining different PEGylated therapeutics. To better understand the nature of anti-PEG immunity, we summarize a number of clinical reports and some critical animal studies regarding pre-existing and treatment-induced anti-PEG Abs. Various anti-PEG detection methods used in different studies were provided. Several protein modification technologies beyond PEGylation were also highlighted.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Fang Sun
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Sijun Liu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|