1
|
Karabacak M, Jazayeri SB, Jagtiani P, Mavridis O, Carrasquilla A, Yong RL, Margetis K. Geriatric grade 2 and 3 gliomas: A national cancer database analysis of demographics, treatment utilization, and survival. J Clin Neurosci 2024; 127:110763. [PMID: 39059334 DOI: 10.1016/j.jocn.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
With increasing life expectancies and population aging, the incidence of elderly patients with grade 2 and 3 gliomas is increasing. However, there is a paucity of knowledge on factors affecting their treatment selection and overall survival (OS). Geriatric patients aged between 60 and 89 years with histologically proven grade 2 and 3 intracranial gliomas were identified from the National Cancer Database between 2010 and 2017. We analyzed patients' demographic data, tumor characteristics, treatment modality, and outcomes. The Kaplan-Meier method was used to analyze OS. Univariate and multivariate analyses were performed to assess the predictive factors of mortality and treatment selection. A total of 6257 patients were identified: 3533 (56.3 %) hexagenerians, 2063 (32.9 %) septuagenarians, and 679 (10.8 %) octogenarians. We identified predictors of lower OS in patients, including demographic factors (older age, non-zero Charlson-Deyo score, non-Hispanic ethnicity), socioeconomic factors (low income, treatment at non-academic centers, government insurance), and tumor-specific factors (higher grade, astrocytoma histology, multifocality). Receiving surgery and chemotherapy were associated with a lower risk of mortality, whereas receiving radiotherapy was not associated with better OS. Our findings provide valuable insights into the complex interplay of demographic, socioeconomic, and tumor-specific factors that influence treatment selection and OS in geriatric grade 2 and 3 gliomas. We found that advancing age correlates with a decrease in OS and a reduced likelihood of undergoing surgery, chemotherapy, or radiotherapy. While receiving surgery and chemotherapy were associated with improved OS, radiotherapy did not exhibit a similar association.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, United States of America
| | - Seyed Behnam Jazayeri
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pemla Jagtiani
- School of Medicine, SUNY Downstate Health Sciences University, New York, NY, United States of America
| | - Olga Mavridis
- Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Alejandro Carrasquilla
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, United States of America
| | - Raymund L Yong
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, United States of America
| | - Konstantinos Margetis
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, United States of America.
| |
Collapse
|
2
|
Brooks AM, Vornoli A, Kovi RC, Ton TVT, Xu M, Mashal A, Tibaldi E, Gnudi F, Li JL, Sills RC, Bucher JR, Mandrioli D, Belpoggi F, Pandiri AR. Genetic profiling of rat gliomas and cardiac schwannomas from life-time radiofrequency radiation exposure study using a targeted next-generation sequencing gene panel. PLoS One 2024; 19:e0296699. [PMID: 38232086 PMCID: PMC10793937 DOI: 10.1371/journal.pone.0296699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
The cancer hazard associated with lifetime exposure to radiofrequency radiation (RFR) was examined in Sprague Dawley (SD) rats at the Ramazzini Institute (RI), Italy. There were increased incidences of gliomas and cardiac schwannomas. The translational relevance of these rare rat tumors for human disease is poorly understood. We examined the genetic alterations in RFR-derived rat tumors through molecular characterization of important cancer genes relevant for human gliomagenesis. A targeted next-generation sequencing (NGS) panel was designed for rats based on the top 23 orthologous human glioma-related genes. Single-nucleotide variants (SNVs) and small insertion and deletions (indels) were characterized in the rat gliomas and cardiac schwannomas. Translational relevance of these genetic alterations in rat tumors to human disease was determined through comparison with the Catalogue of Somatic Mutations in Cancer (COSMIC) database. These data suggest that rat gliomas resulting from life-time exposure to RFR histologically resemble low grade human gliomas but surprisingly no mutations were detected in rat gliomas that had homology to the human IDH1 p.R132 or IDH2 p.R172 suggesting that rat gliomas are primarily wild-type for IDH hotspot mutations implicated in human gliomas. The rat gliomas appear to share some genetic alterations with IDH1 wildtype human gliomas and rat cardiac schwannomas also harbor mutations in some of the queried cancer genes. These data demonstrate that targeted NGS panels based on tumor specific orthologous human cancer driver genes are an important tool to examine the translational relevance of rodent tumors resulting from chronic/life-time rodent bioassays.
Collapse
Affiliation(s)
- Ashley M. Brooks
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Andrea Vornoli
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Ramesh C. Kovi
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, United States of America
| | - Thai Vu T. Ton
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Miaofei Xu
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Ahmed Mashal
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Eva Tibaldi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Federica Gnudi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Robert C. Sills
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - John R. Bucher
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Arun R. Pandiri
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
3
|
Zhong WJ, Zhang LZ, Yue F, Yuan L, Zhang Q, Li X, Lin L. Identification of DNA methylation-regulated WEE1 with potential implications in prognosis and immunotherapy for low-grade glioma. Cancer Biomark 2024; 40:297-317. [PMID: 39213054 PMCID: PMC11380252 DOI: 10.3233/cbm-230517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND WEE1 is a critical kinase in the DNA damage response pathway and has been shown to be effective in treating serous uterine cancer. However, its role in gliomas, specifically low-grade glioma (LGG), remains unclear. The impact of DNA methylation on WEE1 expression and its correlation with the immune landscape in gliomas also need further investigation. METHODS This study used data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) and utilized various bioinformatics tools to analyze gene expression, survival, gene correlation, immune score, immune infiltration, genomic alterations, tumor mutation burden, microsatellite instability, clinical characteristics of glioma patients, WEE1 DNA methylation, prognostic analysis, single-cell gene expression distribution in glioma tissue samples, and immunotherapy response prediction based on WEE1 expression. RESULTS WEE1 was upregulated in LGG and glioblastoma (GBM), but it had a more significant prognostic impact in LGG compared to other cancers. High WEE1 expression was associated with poorer prognosis in LGG, particularly when combined with wild-type IDH. The WEE1 inhibitor MK-1775 effectively inhibited the proliferation and migration of LGG cell lines, which were more sensitive to WEE1 inhibition. DNA methylation negatively regulated WEE1, and high DNA hypermethylation of WEE1 was associated with better prognosis in LGG than in GBM. Combining WEE1 inhibition and DNA methyltransferase inhibition showed a synergistic effect. Additionally, downregulation of WEE1 had favorable predictive value in immunotherapy response. Co-expression network analysis identified key genes involved in WEE1-mediated regulation of immune landscape, differentiation, and metastasis in LGG. CONCLUSION Our study shows that WEE1 is a promising indicator for targeted therapy and prognosis evaluation. Notably, significant differences were observed in the role of WEE1 between LGG and GBM. Further investigation into WEE1 inhibition, either in combination with DNA methyltransferase inhibition or immunotherapy, is warranted in the context of LGG.
Collapse
Affiliation(s)
- Wang-Jing Zhong
- Laboratory Center, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
- Laboratory Center, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| | - Li-Zhen Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Laboratory Center, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| | - Feng Yue
- Department of Urology, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| | - Lezhong Yuan
- Department of Oncology, Huizhou Central People's Hospital, Huizhou, China
| | - Qikeng Zhang
- Department of Neurosurgery, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| | - Xuesong Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| | - Li Lin
- Laboratory Center, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| |
Collapse
|
4
|
Sheikh SF, Akhuj A, Raghuveer R, Saklecha A. Neurophysiotherapy in Grade II Diffuse Astrocytoma: A Case Report. Cureus 2024; 16:e53082. [PMID: 38414688 PMCID: PMC10897357 DOI: 10.7759/cureus.53082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/27/2024] [Indexed: 02/29/2024] Open
Abstract
Diffuse astrocytoma is a slow, progressive, and invasive tumor that develops from astrocytes and there is no discernible boundary between tumor and brain cells. We present a case of a 48-year-old woman with diffuse astrocytoma who experienced sudden left-sided weakness, multiple convulsive episodes, and vomiting. The patient underwent surgery for a left occipital mini craniotomy with complete tumor removal through a titanium burr hole. Postoperatively, the patient complained of bilateral upper and lower extremities weakness, and decreased muscular tone was found; hence, she was referred to undergo neurophysiotherapy. A four-week rehabilitative protocol was started. Physiotherapy is critical in these patients for ensuring early and rapid recovery and treating the condition's clinical manifestations. The outcome measures employed were the tone grading scale, the Brunnstrom recovery stage, and the Functional Independence Measure (FIM). This case study concludes that physiotherapy rehabilitation for an operated case of grade 2 diffuse astrocytoma led to improved lower limb strength, normal tone, and improved functional independence, which helped the patient achieve better functional activities and a greater quality of life.
Collapse
Affiliation(s)
- Simran F Sheikh
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aditi Akhuj
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Raghumahanti Raghuveer
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akshaya Saklecha
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Wang L, Zhang J, Wang J, Xue H, Deng L, Che F, Heng X, Zheng X, Lu Z, Yang L, Tan Q, Xu Y, Zhang Y, Ji X, Li G, Yang F, Xue F. Postoperative prognostic nomogram for adult grade II/III astrocytoma in the Chinese Han population. Health Inf Sci Syst 2023; 11:23. [PMID: 37151917 PMCID: PMC10160268 DOI: 10.1007/s13755-023-00223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Background Prognostic models of glioma have been the focus of many studies. However, most of them are based on Western populations. Additionally, because of the complexity of healthcare data in China, it is important to select a suitable model based on existing clinical data. This study aimed to develop and independently validate a nomogram for predicting the overall survival (OS) with newly diagnosed grade II/III astrocytoma after surgery. Methods Data of 472 patients with astrocytoma (grades II-III) were collected from Qilu Hospital as training cohort while data of 250 participants from Linyi People's Hospital were collected as validation cohort. Cox proportional hazards model was used to construct the nomogram and individually predicted 1-, 3-, and 5-year survival probabilities. Calibration ability, and discrimination ability were analyzed in both training and validation cohort. Results Overall survival was negatively associated with histopathology, age, subtotal resection, multiple tumors, lower KPS and midline tumors. Internal validation and external validation showed good discrimination (The C-index for 1-, 3-, and 5-year survival were 0.791, 0.748, 0.733 in internal validation and 0.754, 0.735, 0.730 in external validation, respectively). The calibration curves showed good agreement between the predicted and actual 1-, 3-, and 5-year OS rates. Conclusion This is the first nomogram study that integrates common clinicopathological factors to provide an individual probabilistic prognosis prediction for Chinese Han patients with astrocytoma (grades II-III). This model can serve as an easy-to-use tool to advise patients and establish optimized surveillance approaches after surgery. Supplementary Information The online version contains supplementary material available at 10.1007/s13755-023-00223-0.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Jinling Zhang
- Cancer Center & the Research Center of Function Image on Brain Tumor, Linyi People’s Hospital, Shandong University, Linyi, China
| | - Jingtao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - Fengyuan Che
- Neurology Department & the Research Center of Function Image on Brain Tumor, Linyi People’s Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Neurosurgery Department & the Research Center of Function Image on Brain Tumor, Linyi People’s Hospital, Shandong University, Linyi, China
| | - Xuejun Zheng
- Department of Radiology, Linyi People’s Hospital, Shandong University, Linyi, China
| | - Zilong Lu
- The Department for Chronic and Non-Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Liuqing Yang
- The Department for Chronic and Non-Communicable Disease and Endemic Disease Control and Prevention, Linyi Center for Disease Control and Prevention, Linyi, China
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Yeping Xu
- Synthesis Electronic Technology Co., Ltd., Jinan, China
| | - Yanchun Zhang
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC Australia
| | - Xiaokang Ji
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, China
| | - Fan Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province China
- Institute for Medical Dataology, Shandong University, Jinan, China
| | - Fuzhong Xue
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province China
- Institute for Medical Dataology, Shandong University, Jinan, China
| |
Collapse
|
6
|
Ye L, Tong S, Wang Y, Wang Y, Ma W. Grade scoring system reveals distinct molecular subtypes and identifies KIF20A as a novel biomarker for predicting temozolomide treatment efficiency in gliomas. J Cancer Res Clin Oncol 2023; 149:9857-9876. [PMID: 37248320 DOI: 10.1007/s00432-023-04898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND The importance of molecular diagnostics is increasingly emphasized in the 2021 WHO guidelines for gliomas. There is considerable variability in molecular features and prognosis among glioma patients with the same pathological WHO grade. METHODS mRNA data and clinical information of human glioma patients were obtained from TCGA and CGGA databases, while expression profiles and TMZ resistance phenotypes of human glioma stem cells were acquired from the GEO database. Differentially expressed genes were identified across distinct WHO grades. Unsupervised clustering was performed on glioma patients based on DEG expression profiles. The Boruta algorithm was employed to identify feature genes for distinct molecular subtypes, and PCA was used to reduce the dimensionality of the feature gene expression data. Grade scores for each sample were calculated and correlated with patients' clinical molecular pathological features and immune microenvironment. Gene set enrichment analysis identified grade score-related functional pathways. Weighted gene co-expression network analysis identified grade score-associated biomarkers. The impact of the hub gene on malignant glioma behavior was validated through in vitro experiments, including CCK-8, EdU, colony formation, Transwell, wound healing, and immunofluorescence assays. RESULTS A total of 672 and 687 samples were screened from TCGA and CGGA databases, respectively, along with 6 control, 24 low-grade, and 40 glioblastoma samples from our hospital. Two robust gene clusters were identified based on the expression profiles of 4,476 DEGs among grades 2, 3, and 4 tissues, revealing distinct prognoses. The grade scores exhibited significant heterogeneity across different WHO grade samples, representing diverse immune microenvironments. Grade scores served as independent risk factors for predicting patient prognosis, with higher sensitivity than traditional biomarkers. KIF20A, identified as a grade score-related biomarker, was independently associated with glioma prognosis. Exclusively expressed in tumor cells, KIF20A knockdown significantly inhibited tumor growth, invasion, and EMT biological behavior in glioma cells. Furthermore, KIF20A could serve as a biological marker for predicting patient response to TMZ treatment. CONCLUSION The grade scoring system enhances our understanding of the glioma tumor microenvironment. KIF20A, a novel biomarker for predicting TMZ treatment efficiency, influences malignant tumor behavior by affecting the EMT biological behavior of glioma cells.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Shi'ao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
| |
Collapse
|
7
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
8
|
Zhang L, Zhou Y, Wu B, Zhang S, Zhu K, Liu CH, Yu X, Alfano RR. A Handheld Visible Resonance Raman Analyzer Used in Intraoperative Detection of Human Glioma. Cancers (Basel) 2023; 15:cancers15061752. [PMID: 36980638 PMCID: PMC10046110 DOI: 10.3390/cancers15061752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
There is still a lack of reliable intraoperative tools for glioma diagnosis and to guide the maximal safe resection of glioma. We report continuing work on the optical biopsy method to detect glioma grades and assess glioma boundaries intraoperatively using the VRR-LRRTM Raman analyzer, which is based on the visible resonance Raman spectroscopy (VRR) technique. A total of 2220 VRR spectra were collected during surgeries from 63 unprocessed fresh glioma tissues using the VRR-LRRTM Raman analyzer. After the VRR spectral analysis, we found differences in the native molecules in the fingerprint region and in the high-wavenumber region, and differences between normal (control) and different grades of glioma tissues. A principal component analysis–support vector machine (PCA-SVM) machine learning method was used to distinguish glioma tissues from normal tissues and different glioma grades. The accuracy in identifying glioma from normal tissue was over 80%, compared with the gold standard of histopathology reports of glioma. The VRR-LRRTM Raman analyzer may be a new label-free, real-time optical molecular pathology tool aiding in the intraoperative detection of glioma and identification of tumor boundaries, thus helping to guide maximal safe glioma removal and adjacent healthy tissue preservation.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery, Medical School of Nankai University, Tianjin 300071, China
- Department of Neurosurgery, PLA General Hospital, Beijing 100853, China
| | - Yan Zhou
- Department of Neurosurgery, Air Force Medical Center, Beijing 100142, China
- Correspondence: (Y.Z.); (X.Y.)
| | - Binlin Wu
- Physics Department and CSCU Center for Nanotechnology, Southern Connecticut State University, New Haven, CT 06515, USA
| | | | - Ke Zhu
- Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Cheng-Hui Liu
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, The City College of the City University of New York, New York, NY 10031, USA
| | - Xinguang Yu
- Department of Neurosurgery, Medical School of Nankai University, Tianjin 300071, China
- Department of Neurosurgery, PLA General Hospital, Beijing 100853, China
- Correspondence: (Y.Z.); (X.Y.)
| | - Robert R. Alfano
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, The City College of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
9
|
Zhang Y, Yu B, Tian Y, Ren P, Lyu B, Fu L, Chen H, Li J, Gong S. A novel risk score model based on fourteen chromatin regulators-based genes for predicting overall survival of patients with lower-grade gliomas. Front Genet 2022; 13:957059. [PMID: 36246611 PMCID: PMC9554745 DOI: 10.3389/fgene.2022.957059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Low grade gliomas(LGGs) present vexatious management issues for neurosurgeons. Chromatin regulators (CRs) are emerging as a focus of tumor research due to their pivotal role in tumorigenesis and progression. Hence, the goal of the current work was to unveil the function and value of CRs in patients with LGGs. Methods: RNA-Sequencing and corresponding clinical data were extracted from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) database. A single-cell RNA-seq dataset was sourced from the Gene Expression Omnibus (GEO) database. Altogether 870 CRs were retrieved from the published articles in top academic journals. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression analysis were applied to construct the prognostic risk model. Patients were then assigned into high- and low-risk groups based on the median risk score. The Kaplan–Meier (K-M) survival curve and receiver operating characteristic curve (ROC) were performed to assess the prognostic value. Sequentially, functional enrichment, tumor immune microenvironment, tumor mutation burden, drug prediction, single cell analysis and so on were analyzed to further explore the value of CR-based signature. Finally, the expression of signature genes were validated by immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR). Results: We successfully constructed and validated a 14 CRs-based model for predicting the prognosis of patients with LGGs. Moreover, we also found 14 CRs-based model was an independent prognostic factor. Functional analysis revealed that the differentially expressed genes were mainly enriched in tumor and immune related pathways. Subsequently, our research uncovered that LGGs patients with higher risk scores exhibited a higher TMB and were less likely to be responsive to immunotherapy. Meanwhile, the results of drug analysis offered several potential drug candidates. Furthermore, tSNE plots highlighting the magnitude of expression of the genes of interest in the cells from the scRNA-seq assay. Ultimately, transcription expression of six representative signature genes at the mRNA level was consistent with their protein expression changes. Conclusion: Our findings provided a reliable biomarker for predicting the prognosis, which is expected to offer new insight into LGGs management and would hopefully become a promising target for future research.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Beibei Yu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yunze Tian
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Pengyu Ren
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Boqiang Lyu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Longhui Fu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Huangtao Chen
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- *Correspondence: Jianzhong Li, ; Shouping Gong,
| | - Shouping Gong
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- *Correspondence: Jianzhong Li, ; Shouping Gong,
| |
Collapse
|
10
|
Internò V, Triggiano G, De Santis P, Stucci LS, Tucci M, Porta C. Molecular Aberrations Stratify Grade 2 Astrocytomas Into Several Rare Entities: Prognostic and Therapeutic Implications. Front Oncol 2022; 12:866623. [PMID: 35756624 PMCID: PMC9226400 DOI: 10.3389/fonc.2022.866623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The identification of specific molecular aberrations guides the prognostic stratification and management of grade 2 astrocytomas. Mutations in isocitrate dehydrogenase (IDH) 1 and 2, found in the majority of adult diffuse low-grade glioma (DLGG), seem to relate to a favorable prognosis compared to IDH wild-type (IDH-wt) counterparts. Moreover, the IDH-wt group can develop additional molecular alterations worsening the prognosis, such as epidermal growth factor receptor amplification (EGFR-amp) and mutation of the promoter of telomerase reverse transcriptase (pTERT-mut). This review analyzes the prognostic impact and therapeutic implications of genetic alterations in adult LGG.
Collapse
Affiliation(s)
- Valeria Internò
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | - Giacomo Triggiano
- Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | | | | | - Marco Tucci
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| |
Collapse
|
11
|
Zhang J, Xiao X, Guo Q, Wei Z, Hua W. Identification of Four Metabolic Subtypes of Glioma Based on Glycolysis-Cholesterol Synthesis Genes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9448144. [PMID: 35242216 PMCID: PMC8886743 DOI: 10.1155/2022/9448144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022]
Abstract
Based on alterations in gene expression associated with the production of glycolysis and cholesterol, this research classified glioma into prognostic metabolic subgroups. In this study, data from the CGGA325 and The Cancer Genome Atlas (TCGA) datasets were utilized to extract single nucleotide variants (SNVs), RNA-seq expression data, copy number variation data, short insertions and deletions (InDel) mutation data, and clinical follow-up information from glioma patients. Glioma metabolic subtypes were classified using the ConsensusClusterPlus algorithm. This study determined four metabolic subgroups (glycolytic, cholesterogenic, quiescent, and mixed). Cholesterogenic patients had a higher survival chance. Genome-wide investigation revealed that inappropriate amplification of MYC and TERT was associated with improper cholesterol anabolic metabolism. In glioma metabolic subtypes, the mRNA levels of mitochondrial pyruvate carriers 1 and 2 (MPC1/2) presented deletion and amplification, respectively. Differentially upregulated genes in the glycolysis group were related to pathways, including IL-17, HIF-1, and TNF signaling pathways and carbon metabolism. Downregulated genes in the glycolysis group were enriched in terpenoid backbone biosynthesis, nitrogen metabolism, butanoate metabolism, and fatty acid metabolism pathway. Cox analysis of univariate and multivariate survival showed that risks of glycolysis subtypes were significantly higher than other subtypes. Those results were validated in the CGGA325 dataset. The current findings greatly contribute to a comprehensive understanding of glioma and personalized treatment.
Collapse
Affiliation(s)
- Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Xing Xiao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Qinglong Guo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Zixuan Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| |
Collapse
|
12
|
Kong BY, Sim HW, Nowak AK, Yip S, Barnes EH, Day BW, Buckland ME, Verhaak R, Johns T, Robinson C, Thomas MA, Giardina T, Lwin Z, Scott AM, Parkinson J, Jeffree R, Lourenco RDA, Hovey EJ, Cher LM, Kichendasse G, Khasraw M, Hall M, Tu E, Amanuel B, Koh ES, Gan HK. LUMOS - Low and Intermediate Grade Glioma Umbrella Study of Molecular Guided TherapieS at relapse: Protocol for a pilot study. BMJ Open 2021; 11:e054075. [PMID: 37185327 PMCID: PMC8719186 DOI: 10.1136/bmjopen-2021-054075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction Grades 2 and 3 gliomas (G2/3 gliomas), when combined, are the second largest group of malignant brain tumours in adults. The outcomes for G2/3 gliomas at progression approach the dismal outcomes for glioblastoma (GBM), yet there is a paucity of trials for Australian patients with relapsed G2/3 gliomas compared with patients with GBM. LUMOS will be a pilot umbrella study for patients with relapsed G2/3 gliomas that aims to match patients to targeted therapies based on molecular screening with contemporaneous tumour tissue. Participants in whom no actionable or no druggable mutation is found, or in whom the matching drug is not available, will form a comparator arm and receive standard of care chemotherapy. The objective of the LUMOS trial is to assess the feasibility of this approach in a multicentre study across five sites in Australia, with a view to establishing a national molecular screening platform for patient treatment guided by the mutational analysis of contemporaneous tissue biopsies Methods and analysis This study will be a multicentre pilot study enrolling patients with recurrent grade 2/3 gliomas that have previously been treated with radiotherapy and chemotherapy at diagnosis or at first relapse. Contemporaneous tumour tissue at the time of first relapse, defined as tissue obtained within 6 months of relapse and without subsequent intervening therapy, will be obtained from patients. Molecular screening will be performed by targeted next-generation sequencing at the reference laboratory (PathWest, Perth, Australia). RNA and DNA will be extracted from representative formalin-fixed paraffin embedded tissue scrolls or microdissected from sections on glass slides tissue sections following a review of the histology by pathologists. Extracted nucleic acid will be quantified by Qubit Fluorometric Quantitation (Thermo Fisher Scientific). Library preparation and targeted capture will be performed using the TruSight Tumor 170 (TST170) kit and samples sequenced on NextSeq 550 (Illumina) using NextSeq V.2.5 hi output reagents, according to the manufacturer’s instructions. Data analysis will be performed using the Illumina BaseSpace TST170 app v1.02 and a custom tertiary pipeline, implemented within the Clinical Genomics Workspace software platform from PierianDx (also refer to section 3.2). Primary outcomes for the study will be the number of patients enrolled and the number of patients who complete molecular screening. Secondary outcomes will include the proportion of screened patients enrolled; proportion of patients who complete molecular screening; the turn-around time of molecular screening; and the value of a brain tumour specific multi-disciplinary tumour board, called the molecular tumour advisory panel as measured by the proportion of patients in whom the treatment recommendation was refined compared with the recommendations from the automated bioinformatics platform of the reference laboratory testing. Ethics and dissemination The study was approved by the lead Human Research Ethics Committee of the Sydney Local Health District: Protocol No. X19-0383. The study will be conducted in accordance with the principles of the Declaration of Helsinki 2013, guidelines for Good Clinical Practice and the National Health and Medical Research Council National Statement on Ethical Conduct in Human Research (2007, updated 2018 and as amended periodically). Results will be disseminated using a range of media channels including newsletters, social media, scientific conferences and peer-reviewed publications. Trial registration number ACTRN12620000087954; Pre-results.
Collapse
Affiliation(s)
- Benjamin Y Kong
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Hao-Wen Sim
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- Kinghorn Cancer Centre, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Anna K Nowak
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Sonia Yip
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | | | - Bryan W Day
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Sid Faithfull Brain Cancer Laboratory, Cell and Molecular Biology Department, QIMR Berghofer, Herston, Queensland, Australia
| | - Michael E Buckland
- Department of Neuropathology, Brain and Mind Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Terrance Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Cleo Robinson
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Marc A Thomas
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Tindaro Giardina
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Zarnie Lwin
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Jonathon Parkinson
- Department of Neurosurgery, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Rosalind Jeffree
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- University of Queensland School of Medicine, Herston, Queensland, Australia
| | - Richard de Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology, Ultimo, New South Wales, Australia
| | - Elizabeth J Hovey
- Department of Medical Oncology, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Lawrence M Cher
- Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Ganessan Kichendasse
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
- Department of Medical Oncology, Flinders Centre for Innovation in Cancer, Bedford Park, South Australia, Australia
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Merryn Hall
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Emily Tu
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Benhur Amanuel
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Eng-Siew Koh
- Faculty of Medicine, University of New South Wales, Randwick, New South Wales, Australia
- Department of Radiation Oncology, Liverpool Cancer Therapy Centre, Liverpool, New South Wales, Australia
- Collaboration for Cancer Outcomes, Research and Evaluation, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Hui K Gan
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medical Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
13
|
Zhao J, Liu Z, Zheng X, Gao H, Li L. Prognostic Model and Nomogram Construction Based on a Novel Ferroptosis-Related Gene Signature in Lower-Grade Glioma. Front Genet 2021; 12:753680. [PMID: 34819946 PMCID: PMC8606636 DOI: 10.3389/fgene.2021.753680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Low-grade glioma (LGG) is considered a fatal disease for young adults, with overall survival widely ranging from 1 to 15 years depending on histopathologic and molecular subtypes. As a novel type of programmed cell death, ferroptosis was reported to be involved in tumorigenesis and development, which has been intensively studied in recent years. Methods: For the discovery cohort, data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were used to identify the differentially expressed and prognostic ferroptosis-related genes (FRGs). The least absolute shrinkage and selection operator (LASSO) and multivariate Cox were used to establish a prognostic signature with the above-selected FRGs. Then, the signature was developed and validated in TCGA and Chinese Glioma Genome Atlas (CGGA) databases. By combining clinicopathological features and the FRG signature, a nomogram was established to predict individuals’ one-, three-, and five-year survival probability, and its predictive performance was evaluated by Harrell’s concordance index (C-index) and calibration curves. Enrichment analysis was performed to explore the signaling pathways regulated by the signature. Results: A novel risk signature contains seven FRGs that were constructed and were used to divide patients into two groups. Kaplan–Meier (K−M) survival curve and receiver-operating characteristic (ROC) curve analyses confirmed the prognostic performance of the risk model, followed by external validation based on data from the CGGA. The nomogram based on the risk signature and clinical traits was validated to perform well for predicting the survival rate of LGG. Finally, functional analysis revealed that the immune statuses were different between the two risk groups, which might help explain the underlying mechanisms of ferroptosis in LGG. Conclusion: In conclusion, this study constructed a novel and robust seven-FRG signature and established a prognostic nomogram for LGG survival prediction.
Collapse
Affiliation(s)
- Junsheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengtao Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Zheng
- Department of Pathology, Hangzhou Tongchuang Medical Laboratory, Hangzhou, China
| | - Hainv Gao
- Department of Infectious Diseases, ShuLan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
The advanced development of Cx43 and GAP-43 mediated intercellular networking in IDH1 wildtype diffuse and anaplastic gliomas with lower mitotic rate. J Cancer Res Clin Oncol 2021; 147:3003-3009. [PMID: 34173871 DOI: 10.1007/s00432-021-03711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The biologic behavior and the therapeutic resistance of diffuse and anaplastic gliomas varies greatly. This may be explained by differences in cell-to-cell communication, determined by the Cx43-associated junctional activity and the microtubules-defined network, in which GAP-43 is the dominant structural component. We assessed the expression of these crucial communication proteins in samples of patients harboring WHO°II and III gliomas, graded according to the current 4th revised WHO classification. METHODS Tissue of adult patients with WHO°II and III gliomas, who underwent surgery between 2014 and 2018, were selected from our institutional biobank. GAP-43 and Cx43 expression was analyzed using IHC. Routine clinical and neuropathological findings were additionally retrieved from our institutional prospective database. RESULTS 43 (57%) males and 33 (43%) females with a median age of 47 (IqR: 35-61) years were selected. IDH1 wildtype tumors showed a significantly higher expression of Cx43 (p = 0.014) and a tendency for increased GAP-43 production. Advanced Cx43 expression significantly correlated with lower mitosis rate (p = 0.014): more in IDH1 wildtype (r = - 0.57, p = 0.003) than in mutated gliomas (r = - 0.37, p = 0.019). There was no difference in Cx43 or GAP-43 expression in relation to anaplastic phenotype, Gadolinum-contrasted enhancement (CE) on MRI and advanced EGFR or p53 expression. CONCLUSIONS Intercellular communication tends to be more relevant in slower proliferating, e.g. lower malignant tumors. They could have more time to establish this network, providing longitudinally acquired resistance against specific oncological therapy. This feature matches the unfavorable IDH1 wildtype status of glioma and supports the noted malignant behavior of these tumors in the upcoming 5th WHO classification of gliomas.
Collapse
|
15
|
Jia T, Zhang R, Kong F, Zhang Q, Xi Z. The Prognostic Role and Nomogram Establishment of a Novel Prognostic Score Combining with Fibrinogen and Albumin Levels in Patients with WHO Grade II/III Gliomas. Int J Gen Med 2021; 14:2137-2145. [PMID: 34093034 PMCID: PMC8169085 DOI: 10.2147/ijgm.s303733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose World Health Organization (WHO) Grades II and III gliomas [also known as low grade gliomas (LGGs)] displayed different malignant behaviors and survival outcomes compared to Grade IV gliomas. This study aimed to identify the prognostic predictive value of a novel cumulative prognostic score [combined with fibrinogen and albumin levels (FA score)], establish and validate a point-based nomogram in LGG patients. Patients and Methods A total of 91 patients who underwent total glioma resection at Shengjing Hospital of China Medical University between 2011 and 2013 were enrolled to establish a prognostic nomogram. All patients were histologically diagnosed as grades II/III, and never received radiotherapy or chemotherapy before surgery. Data collection included patient characteristics, clinicopathological factors, and preoperative hematology results. The performance of the nomogram was subsequently validated by the concordance index (c-index), calibration curve, and receiver operating characteristic (ROC) curve. Results The FA score was negatively associated with the overall survival (OS) of LGG patients (p < 0.001). The results of multivariate analysis showed that FA score [p = 0.006, HR = 1.92, 95% confidence interval (CI): 1.21–3.05], age (p = 0.002, HR = 3.014, 95% CI:1.52–5.97), and white blood count (p < 0.001, HR = 4.24, 95% CI: 2.08–8.67) were independent prognostic factors for overall survival (OS). The study established a nomogram to predict OS with a c-index of 0.783 (95% CI, 0.72–0.84). Conclusion FA score might be a potential prognostic biomarker for LGG patients, and a reliable point-based nomogram will help clinicians to decide on the best treatment plans.
Collapse
Affiliation(s)
- Tianshu Jia
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Rui Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qianjiao Zhang
- Pain Department, The People's Hospital of Liaoning Province, Shenyang, People's Republic of China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
16
|
The role of 11C-methionine PET in patients with negative diffusion-weighted magnetic resonance imaging: correlation with histology and molecular biomarkers in operated gliomas. Nucl Med Commun 2021; 41:696-705. [PMID: 32371671 DOI: 10.1097/mnm.0000000000001202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To compare 11C-methionine (11C-METH) PET with diffusion-weighted MRI (DWI-MRI) diagnostic accuracy and prognostic value in patients with glioma candidate to neurosurgery. METHODS We collected and analyzed data from 124 consecutive patients (n = 124) investigated during preoperative work-up. Both visual and semiquantitative parameters were utilized for image analysis. The reference standard was based on histopathology. The median follow-up was 14.3 months. RESULTS Overall, 47 high-grade gliomas (HGG) and 77 low-grade gliomas (LGG) were diagnosed. On visual assessment, sensitivity and specificity for differentiating HGG from LGG were 80.8 and 59.7% for DWI-MRI, versus 95.7 and 41.5% for 11C-METH PET, respectively. On semiquantitative analysis, the sensitivity, specificity, and area under the curve were 78.7, 71.4, and 80.4% for SUVmax, 78.7, 70.1, and 81.1% for SUVratio, and 74.5, 61, and 76.7% for MTB (metabolic tumor burden), respectively. In patients with negative DWI-MRI and IDH-wild type, SUVmax and SUVratio were higher compared to IDH-mutated (P = 0.025 and P = 0.01, respectively). In LGG, patients with 1p/19q codeletion showed higher SUVmax (P = 0.044). In all patients with negative DWI-MRI, median PFS was longer for SUVmax <3.9 (median not reached vs 34.2 months, P = 0.004), SUVratio <2.3 (median not reached vs 21.5 months, P < 0.001), and MTB <3.1 (median not reached vs 45.7 months, P = 0.05). In LGG patients with negative DWI-MRI, only SUVratio <2.3 and MTB <3.1 were associated with longer PFS (P = 0.016 and P = 0.024, respectively). CONCLUSION C-METH PET was found highly sensitive for glioma differentiation and molecular characterization. In DWI-negative patients, PET parameters correlated with molecular profile were associated with clinical outcome.
Collapse
|
17
|
Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021; 26:1169. [PMID: 33671796 PMCID: PMC7927069 DOI: 10.3390/molecules26041169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Ervin Ashley Lourdes Paul
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| |
Collapse
|
18
|
Branzoli F, Marjańska M. Magnetic resonance spectroscopy of isocitrate dehydrogenase mutated gliomas: current knowledge on the neurochemical profile. Curr Opin Neurol 2020; 33:413-421. [PMID: 32657882 PMCID: PMC7526653 DOI: 10.1097/wco.0000000000000833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Magnetic resonance spectroscopy (MRS) may play a key role for the management of patients with glioma. We highlighted the utility of MRS in the noninvasive diagnosis of gliomas with mutations in isocitrate dehydrogenase (IDH) genes, by providing an overview of the neurochemical alterations observed in different glioma subtypes, as well as during treatment and progression, both in vivo and ex vivo. RECENT FINDINGS D-2-hydroxyglutarate (2HG) decrease during anticancer treatments was recently shown to be associated with altered levels of other metabolites, including lactate, glutamate and glutathione, suggesting that tumour treatment leads to a metabolic reprogramming beyond 2HG depletion. In combination with 2HG quantification, cystathionine and glycine seem to be the most promising candidates for higher specific identification of glioma subtypes and follow-up of disease progression and response to treatment. SUMMARY The implementation of advanced MRS methods in the routine clinical practice will allow the quantification of metabolites that are not detectable with conventional methods and may enable immediate, accurate diagnosis of gliomas, which is crucial for planning optimal therapeutic strategies and follow-up examinations. The role of different metabolites as predictors of patient outcome still needs to be elucidated.
Collapse
Affiliation(s)
- Francesca Branzoli
- Institut du Cerveau - ICM, Centre de Neuroimagerie de Recherche - CENIR
- ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
An Y, Wang Q, Zhang L, Sun F, Zhang G, Dong H, Li Y, Peng Y, Li H, Zhu W, Ji S, Wang Y, Guo X. OSlgg: An Online Prognostic Biomarker Analysis Tool for Low-Grade Glioma. Front Oncol 2020; 10:1097. [PMID: 32775301 PMCID: PMC7381343 DOI: 10.3389/fonc.2020.01097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022] Open
Abstract
Glioma is the most frequent primary brain tumor that causes high mortality and morbidity with poor prognosis. There are four grades of gliomas, I to IV, among which grade II and III are low-grade glioma (LGG). Although less aggressive, LGG almost universally progresses to high-grade glioma and eventual causes death if lacking of intervention. Current LGG treatment mainly depends on surgical resection followed by radiotherapy and chemotherapy, but the survival rates of LGG patients are low. Therefore, it is necessary to use prognostic biomarkers to classify patients into subgroups with different risks and guide clinical managements. Using gene expression profiling and long-term follow-up data, we established an Online consensus Survival analysis tool for LGG named OSlgg. OSlgg is comprised of 720 LGG cases from two independent cohorts. To evaluate the prognostic potency of genes, OSlgg employs the Kaplan-Meier plot with hazard ratio and p value to assess the prognostic significance of genes of interest. The reliability of OSlgg was verified by analyzing 86 previously published prognostic biomarkers of LGG. Using OSlgg, we discovered two novel potential prognostic biomarkers (CD302 and FABP5) of LGG, and patients with the elevated expression of either CD302 or FABP5 present the unfavorable survival outcome. These two genes may be novel risk predictors for LGG patients after further validation. OSlgg is public and free to the users at http://bioinfo.henu.edu.cn/LGG/LGGList.jsp.
Collapse
Affiliation(s)
- Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Lu Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Fengjie Sun
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yingkun Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yanyu Peng
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Haojie Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, CA, United States
| | - Shaoping Ji
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengzhou, China
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| |
Collapse
|
20
|
Branzoli F, Pontoizeau C, Tchara L, Di Stefano AL, Kamoun A, Deelchand DK, Valabrègue R, Lehéricy S, Sanson M, Ottolenghi C, Marjańska M. Cystathionine as a marker for 1p/19q codeleted gliomas by in vivo magnetic resonance spectroscopy. Neuro Oncol 2020; 21:765-774. [PMID: 30726924 DOI: 10.1093/neuonc/noz031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Codeletion of chromosome arms 1p and 19q (1p/19q codeletion) highly benefits diagnosis and prognosis in gliomas. In this study, we investigated the effect of 1p/19q codeletion on cancer cell metabolism and evaluated possible metabolic targets for tailored therapies. METHODS We combined in vivo 1H (proton) magnetic resonance spectroscopy (MRS) measurements in human gliomas with the analysis of a series of standard amino acids by liquid chromatography-mass spectroscopy (LC-MS) in human glioma biopsies. Sixty-five subjects with low-grade glioma were included in the study: 31 underwent the MRI/MRS examination, 47 brain tumor tissue samples were analyzed with LC-MS, and 33 samples were analyzed for gene expression with quantitative PCR. Additionally, we performed metabolic tracer experiments in cell models with 1p deletion. RESULTS We report the first in vivo detection of cystathionine by MRS in 1p/19q codeleted gliomas. Selective accumulation of cystathionine was observed in codeleted gliomas in vivo, in brain tissue samples, as well as in cells harboring heterozygous deletions for serine- and cystathionine-pathway genes located on 1p: phosphoglycerate dehydrogenase (PHGDH) and cystathionine gamma-lyase (CTH). Quantitative PCR analyses showed 40-50% lower expression of both PHGDH and CTH in 1p/19q codeleted gliomas compared with their non-codeleted counterparts. CONCLUSIONS Our results provide strong evidence of a selective vulnerability of codeleted gliomas to serine and glutathione depletion and point to cystathionine as a possible noninvasive marker of treatment response.
Collapse
Affiliation(s)
- Francesca Branzoli
- Brain and Spine Institute, Center for Neuroimaging Research (CENIR), Paris, France.,Sorbonne University, Paris, France
| | - Clément Pontoizeau
- Metabolomics Unit, Department of Biology, Reference Center for Metabolic Diseases, Necker Hospital and University of Paris Descartes, Paris, France
| | - Lucien Tchara
- Metabolomics Unit, Department of Biology, Reference Center for Metabolic Diseases, Necker Hospital and University of Paris Descartes, Paris, France
| | - Anna Luisa Di Stefano
- Department of Neurology, Public Assistance-Hospital of Paris, University Hospital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Foch Hospital, Suresnes, France
| | - Aurélie Kamoun
- Tumor ID Card Program, National League Against Cancer, Paris, France
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Romain Valabrègue
- Brain and Spine Institute, Center for Neuroimaging Research (CENIR), Paris, France.,Sorbonne University, Paris, France
| | - Stéphane Lehéricy
- Brain and Spine Institute, Center for Neuroimaging Research (CENIR), Paris, France.,Sorbonne University, Paris, France
| | - Marc Sanson
- Sorbonne University, Paris, France.,Department of Neurology, Public Assistance-Hospital of Paris, University Hospital Pitié-Salpêtrière, Paris, France.,The Tumorotheque, Brain and Spine Institute, Paris, France
| | - Chris Ottolenghi
- Metabolomics Unit, Department of Biology, Reference Center for Metabolic Diseases, Necker Hospital and University of Paris Descartes, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
Chen L, Xu T, Jia Q, Wang X, Li M, Liang G. RSK4: a new prognostic factor in glioma. Pathol Res Pract 2020; 216:153020. [PMID: 32703488 DOI: 10.1016/j.prp.2020.153020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022]
Abstract
Glioma is the most common and fatal brain tumour and has a poor prognosis. Ribosomal S6 protein kinase 4 (RSK4) has been found to be involved in multiple tumour types; however, the role of RSK4 in gliomas and its clinical relevance remain unclear. In the present study, RSK4 expression was found to be significantly increased in glioma tissues compared with matched adjunct non-noncancerous tissues. Moreover, the expression of RSK4 was significantly higher in high-grade (III and IV) glioma tissues than in low-grade (I and II) glioma tissues. The data showed that the expression of RSK4 was significantly correlated with WHO grade, three-year survival rate and five-year survival rate. Kaplan-Meier analyses showed that patients with high RSK4 expression had poor overall survival. In addition, multivariate Cox regression analysis showed that RSK4 might be an independent prognostic factor in glioma patients. Collectively, these results suggest that RSK4 may be a new prognostic factor in glioma patients, and RSK4 is expected to be a potential biomarker and a potential target for glioma therapy.
Collapse
Affiliation(s)
- Ligang Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qingge Jia
- Second Retired Cadres Sanitarium of Xi'an, Shaanxi Province Military Region, Xi'an 710032, China
| | - Xiaokai Wang
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Guobiao Liang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China.
| |
Collapse
|
22
|
Exploring Novel Molecular Targets for the Treatment of High-Grade Astrocytomas Using Peptide Therapeutics: An Overview. Cells 2020; 9:cells9020490. [PMID: 32093304 PMCID: PMC7072800 DOI: 10.3390/cells9020490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Diffuse astrocytomas are the most aggressive and lethal glial tumors of the central nervous system (CNS). Their high cellular heterogeneity and the presence of specific barriers, i.e., blood–brain barrier (BBB) and tumor barrier, make these cancers poorly responsive to all kinds of currently available therapies. Standard therapeutic approaches developed to prevent astrocytoma progression, such as chemotherapy and radiotherapy, do not improve the average survival of patients. However, the recent identification of key genetic alterations and molecular signatures specific for astrocytomas has allowed the advent of novel targeted therapies, potentially more efficient and characterized by fewer side effects. Among others, peptides have emerged as promising therapeutic agents, due to their numerous advantages when compared to standard chemotherapeutics. They can be employed as (i) pharmacologically active agents, which promote the reduction of tumor growth; or (ii) carriers, either to facilitate the translocation of drugs through brain, tumor, and cellular barriers, or to target tumor-specific receptors. Since several pathways are normally altered in malignant gliomas, better outcomes may result from combining multi-target strategies rather than targeting a single effector. In the last years, several preclinical studies with different types of peptides moved in this direction, providing promising results in murine models of disease and opening new perspectives for peptide applications in the treatment of high-grade brain tumors.
Collapse
|
23
|
Conventional Magnetic Resonance Features for Predicting 1p19q Codeletion Status of World Health Organization Grade II and III Diffuse Gliomas. J Comput Assist Tomogr 2019; 43:269-276. [PMID: 30371623 DOI: 10.1097/rct.0000000000000816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The conventional magnetic resonance features of World Health Organization (WHO) grade II and III diffuse gliomas in relation to chromosome 1p and 19q deletions (1p19q codeletion) were analyzed. METHODS We identified 147 cases of WHO grade II and III diffuse gliomas (1p/19q codeletion, 36 cases; no 1p/19q codeletion, 111 cases). χ Test and univariate and multivariate binary logistic regression analyses were conducted to evaluate the association between the imaging features and 1p19q codeletion status of WHO grade II and III diffuse gliomas in the discovery group, including the WHO grade II and III subgroups. RESULTS (1) In the entire population, multivariate regression demonstrated that proportion contrast-enhanced tumor (>5% vs ≤5%; odds ratio [OR], 0.169; P = 0.009), enhancing margin (poorly vs well defined; OR, 12.435; P = 0.002), and hemorrhage (yes vs no; OR, 21.082; P < 0.001) were associated with a higher incidence of 1p19q codeletion status. The nomogram showed good discrimination (area under the curve [AUC], 0.803) and calibration. (2) For grade II tumors, subgroup analysis found that enhancing margin (poorly vs well defined; OR, 0.308; P = 0.007) and subventricular zone (presence vs absence-; OR, 0.137; P < 0.001) were associated with a higher incidence of 1p19q codeletion status (AUC, 0.779). (3) For grade III tumors, subgroup analysis found that age (≥40 years vs <40 years; OR, 5.977; P = 0.03) and hemorrhage (yes vs no; OR, 18.051; P < 0.001) were associated with a higher incidence of 1p19q codeletion status (AUC, 0.816). CONCLUSIONS Conventional magnetic resonance features can be conveniently used to facilitate the preoperative prediction of 1p19q codeletion status of WHO grade II and III diffuse gliomas. Decision curve analysis demonstrated that the nomogram was clinically useful.
Collapse
|
24
|
Romanidou O, Kotoula V, Fountzilas G. Bridging Cancer Biology with the Clinic: Comprehending and Exploiting IDH Gene Mutations in Gliomas. Cancer Genomics Proteomics 2018; 15:421-436. [PMID: 30194083 DOI: 10.21873/cgp.20101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Isocitrate dehydrogenases 1 and 2 (IDH1/2) are enzymes that play a major role in the Krebs cycle. Mutations in these enzymes are found in the majority of lower gliomas and secondary glioblastomas, but also in myeloid malignancies and other cancers. IDH1 and IDH2 mutations are restricted to specific arginine residues in the active site of the enzymes and are gain-of-function, i.e. they confer a neomorphic enzyme activity resulting in the accumulation of D-2-hydroxyglutarate (2-HG). 2-HG is an oncometabolite causing profound metabolic dysregulation which, among others, results in methylator phenotypes and in defects in homologous recombination repair. In this review, we summarize current knowledge regarding the function of normal and mutated IDH, explain the possible mechanisms through which these mutations might drive malignant transformation of progenitor cells in the central nervous system, and provide a comprehensive review of potential treatment strategies for IDH-mutated malignancies, focusing on gliomas.
Collapse
Affiliation(s)
- Ourania Romanidou
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|