1
|
Erdmann K, Distler F, Gräfe S, Kwe J, Erb HHH, Fuessel S, Pahernik S, Thomas C, Borkowetz A. Transcript Markers from Urinary Extracellular Vesicles for Predicting Risk Reclassification of Prostate Cancer Patients on Active Surveillance. Cancers (Basel) 2024; 16:2453. [PMID: 39001515 PMCID: PMC11240337 DOI: 10.3390/cancers16132453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Serum prostate-specific antigen (PSA), its derivatives, and magnetic resonance tomography (MRI) lack sufficient specificity and sensitivity for the prediction of risk reclassification of prostate cancer (PCa) patients on active surveillance (AS). We investigated selected transcripts in urinary extracellular vesicles (uEV) from PCa patients on AS to predict PCa risk reclassification (defined by ISUP 1 with PSA > 10 ng/mL or ISUP 2-5 with any PSA level) in control biopsy. Before the control biopsy, urine samples were prospectively collected from 72 patients, of whom 43% were reclassified during AS. Following RNA isolation from uEV, multiplexed reverse transcription, and pre-amplification, 29 PCa-associated transcripts were quantified by quantitative PCR. The predictive ability of the transcripts to indicate PCa risk reclassification was assessed by receiver operating characteristic (ROC) curve analyses via calculation of the area under the curve (AUC) and was then compared to clinical parameters followed by multivariate regression analysis. ROC curve analyses revealed a predictive potential for AMACR, HPN, MALAT1, PCA3, and PCAT29 (AUC = 0.614-0.655, p < 0.1). PSA, PSA density, PSA velocity, and MRI maxPI-RADS showed AUC values of 0.681-0.747 (p < 0.05), with accuracies for indicating a PCa risk reclassification of 64-68%. A model including AMACR, MALAT1, PCAT29, PSA density, and MRI maxPI-RADS resulted in an AUC of 0.867 (p < 0.001) with a sensitivity, specificity, and accuracy of 87%, 83%, and 85%, respectively, thus surpassing the predictive power of the individual markers. These findings highlight the potential of uEV transcripts in combination with clinical parameters as monitoring markers during the AS of PCa.
Collapse
Affiliation(s)
- Kati Erdmann
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Florian Distler
- Department of Urology, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany; (F.D.); (S.P.)
| | - Sebastian Gräfe
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Jeremy Kwe
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
| | - Holger H. H. Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Fuessel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sascha Pahernik
- Department of Urology, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany; (F.D.); (S.P.)
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Angelika Borkowetz
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
van Harten MJ, Roobol MJ, van Leeuwen PJ, Willemse PPM, van den Bergh RCN. Evolution of European prostate cancer screening protocols and summary of ongoing trials. BJU Int 2024; 134:31-42. [PMID: 38469728 DOI: 10.1111/bju.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Population-based organised repeated screening for prostate cancer has been found to reduce disease-specific mortality, but with substantial overdiagnosis leading to overtreatment. Although only very few countries have implemented a screening programme on a national level, individual prostate-specific antigen (PSA) testing is common. This opportunistic testing may have little favourable impact, while stressing the side-effects. The classic early detection protocols as were state-of-the-art in the 1990s applied a PSA and digital rectal examination threshold for sextant systematic prostate biopsy, with a fixed interval for re-testing, and limited indication for expectant management. In the three decades since these trials were started, different important improvements have become available in the cascade of screening, indication for biopsy, and treatment. The main developed aspects include: better identification of individuals at risk (using early/baseline PSA, family history, and/or genetic profile), individualised re-testing interval, optimised and individualised starting and stopping age, with gradual invitation at a fixed age rather than invitation of a wider range of age groups, risk stratification for biopsy (using PSA density, risk calculator, magnetic resonance imaging, serum and urine biomarkers, or combinations/sequences), targeted biopsy, transperineal biopsy approach, active surveillance for low-risk prostate cancer, and improved staging of disease. All these developments are suggested to decrease the side-effects of screening, while at least maintaining the advantages, but Level 1 evidence is lacking. The knowledge gained and new developments on early detection are being tested in different prospective screening trials throughout Europe. In addition, the European Union-funded PRostate cancer Awareness and Initiative for Screening in the European Union (PRAISE-U) project will compare and evaluate different screening pilots throughout Europe. Implementation and sustainability will also be addressed. Modern screening approaches may reduce the burden of the second most frequent cause of cancer-related death in European males, while minimising side-effects. Also, less efficacious opportunistic early detection may be indirectly reduced.
Collapse
Affiliation(s)
- Meike J van Harten
- Cancer Center, Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique J Roobol
- Cancer Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Peter-Paul M Willemse
- Cancer Center, Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roderick C N van den Bergh
- Cancer Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
- St Antonius Hospital, Utrecht, The Netherlands
| |
Collapse
|
3
|
Hamza GM, Raghunathan R, Ashenden S, Zhang B, Miele E, Jarnuczak AF. Proteomics of prostate cancer serum and plasma using low and high throughput approaches. Clin Proteomics 2024; 21:21. [PMID: 38475692 DOI: 10.1186/s12014-024-09461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Despite progress, MS-based proteomics in biofluids, especially blood, faces challenges such as dynamic range and throughput limitations in biomarker and disease studies. In this work, we used cutting-edge proteomics technologies to construct label-based and label-free workflows, capable of quantifying approximately 2,000 proteins in biofluids. With 70µL of blood and a single depletion strategy, we conducted an analysis of a homogenous cohort (n = 32), comparing medium-grade prostate cancer patients (Gleason score: 7(3 + 4); TNM stage: T2cN0M0, stage IIB) to healthy donors. The results revealed dozens of differentially expressed proteins in both plasma and serum. We identified the upregulation of Prostate Specific Antigen (PSA), a well-known biomarker for prostate cancer, in the serum of cancer cohort. Further bioinformatics analysis highlighted noteworthy proteins which appear to be differentially secreted into the bloodstream, making them good candidates for further exploration.
Collapse
Affiliation(s)
| | - Rekha Raghunathan
- Bioanalytical and Biomarker, Prevail Therapeutics, Wholly Owned Subsidiary of Eli Lilly and Company, New York, NY, 10016, USA
| | | | - Bairu Zhang
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Eric Miele
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
| | | |
Collapse
|
4
|
Baston C, Preda A, Iordache A, Olaru V, Surcel C, Sinescu I, Gingu C. How to Integrate Prostate Cancer Biomarkers in Urology Clinical Practice: An Update. Cancers (Basel) 2024; 16:316. [PMID: 38254807 PMCID: PMC10813985 DOI: 10.3390/cancers16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, the management of prostate cancer has become more and more challenging due to the increasing number of available treatment options, therapeutic agents, and our understanding of its carcinogenesis and disease progression. Moreover, currently available risk stratification systems used to facilitate clinical decision-making have limitations, particularly in providing a personalized and patient-centered management strategy. Although prognosis and prostate cancer-specific survival have improved in recent years, the heterogenous behavior of the disease among patients included in the same risk prognostic group negatively impacts not only our clinical decision-making but also oncological outcomes, irrespective of the treatment strategy. Several biomarkers, along with available tests, have been developed to help clinicians in difficult decision-making scenarios and guide management strategies. In this review article, we focus on the scientific evidence that supports the clinical use of several biomarkers considered by professional urological societies (and included in uro-oncological guidelines) in the diagnosis process and specific difficult management strategies for clinically localized or advanced prostate cancer.
Collapse
Affiliation(s)
- Catalin Baston
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Adrian Preda
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Alexandru Iordache
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Vlad Olaru
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Cristian Surcel
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Ioanel Sinescu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Constantin Gingu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| |
Collapse
|
5
|
Agbetuyi-Tayo P, Gbadebo M, Rotimi OA, Rotimi SO. Advancements in Biomarkers of Prostate Cancer: A Review. Technol Cancer Res Treat 2024; 23:15330338241290029. [PMID: 39440372 PMCID: PMC11497500 DOI: 10.1177/15330338241290029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and deadly cancers among men, particularly affecting men of African descent and contributing significantly to cancer-related morbidity and mortality worldwide. The disease varies widely, from slow-developing forms to highly aggressive or potentially fatal variants. Accurate risk stratification is crucial for making therapeutic decisions and designing adequate clinical trials. This review assesses a broad spectrum of diagnostic and prognostic biomarkers, many of which are incorporated into clinical guidelines, including the Prostate Health Index (PHI), 4Kscore, STHLM3, PCA3, SelectMDx, ExoDx Prostate Intelliscore (EPI), and MiPS. It also highlights emerging biomarkers with preclinical support, such as urinary non-coding RNAs and DNA methylation patterns. Additionally, the review explores the role of tumor-associated microbiota in PCa, offering new insights into its potential contributions to disease understanding. By examining the latest advancements in PCa biomarkers, this review enhances understanding their roles in disease management.
Collapse
Affiliation(s)
- Praise Agbetuyi-Tayo
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Mary Gbadebo
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Oluwakemi A. Rotimi
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Solomon O. Rotimi
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| |
Collapse
|
6
|
Thomas J, Atluri S, Zucker I, Reis I, Kwon D, Kim E, Tewari A, Patel V, Wagaskar V, Konety B, Kasraeian A, Czarniecki S, Thoreson G, Soodana-Prakash N, Ritch C, Nahar B, Gonzalgo M, Kava B, Parekh D, Punnen S. A multi-institutional study of 1,111 men with 4K score, multiparametric magnetic resonance imaging, and prostate biopsy. Urol Oncol 2023; 41:430.e9-430.e16. [PMID: 37544833 DOI: 10.1016/j.urolonc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/13/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE Prostate magnetic resonance imaging (MRI) and biomarkers are often used in conjunction to enhance the selection process for prostate biopsy. However, the optimal sequence of ordering these tests has not been established. A comprehensive evaluation was conducted on a large multi-institutional cohort of patients who underwent MRI, 4K score, and biopsy of the prostate to examine the impact of utilizing both tests vs. either test alone and to determine if the order in which these tests are administered affects the ability to detect clinically significant prostate cancer (csCaP). METHODS AND MATERIALS We evaluated men from 8 different institutions who were referred for prostate cancer evaluation and underwent MRI, 4K score test, and prostate biopsy. The primary outcome was the presence of csCaP, defined as grade group 2 or higher cancer on a biopsy of the prostate. We used logistic regression, calibration plots, and decision curve analysis to evaluate using a 4K score or MRI alone vs. both tests together for detecting csCaP. In addition, we evaluated several strategies using one or both tests for selecting men for biopsy and compared them based on the proportion of biopsies avoided and the csCaP's missed. RESULTS Among the 1,111 men who formed the final cohort, 553 (49.8%) had prostate cancer, and 353 (31.8%) had csCaP. We found that using MRI and 4K score together had better discrimination, calibration, and a higher clinical utility on decision curve analysis compared to using either test individually. Using both tests together resulted in fewer biopsies avoided and missed cancers compared to using either test alone. Strategies that sequence MRI and 4K score tests resulted in the largest biopsy reduction, with no appreciable difference between starting with an MRI vs. a biomarker. CONCLUSIONS We found that using both an MRI and 4K score together was superior to using either test alone but found no appreciable difference between starting with an MRI vs. starting with a 4K score. Prospective studies are needed to identify the best strategy to sequence MRI and biomarkers in the evaluation of csCaP.
Collapse
Affiliation(s)
- Jamie Thomas
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine and Sylvester Cancer Center, Miami, FL
| | - Shrikanth Atluri
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine and Sylvester Cancer Center, Miami, FL
| | - Isaac Zucker
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine and Sylvester Cancer Center, Miami, FL
| | - Isildinha Reis
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Deukwoo Kwon
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Eric Kim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Ashutosh Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vipul Patel
- Global Robotics Institute, Florida Hospital-Celebration Health, University of Central Florida College of Medicine, Orlando, FL
| | - Vinayak Wagaskar
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Stefan Czarniecki
- HIFU Clinic, Department of Urology, St. Elizabeth Hospital, Warsaw, Poland
| | | | - Nachiketh Soodana-Prakash
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine and Sylvester Cancer Center, Miami, FL
| | - Chad Ritch
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine and Sylvester Cancer Center, Miami, FL
| | - Bruno Nahar
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine and Sylvester Cancer Center, Miami, FL
| | - Mark Gonzalgo
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine and Sylvester Cancer Center, Miami, FL
| | - Bruce Kava
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine and Sylvester Cancer Center, Miami, FL
| | - Dipen Parekh
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine and Sylvester Cancer Center, Miami, FL
| | - Sanoj Punnen
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine and Sylvester Cancer Center, Miami, FL.
| |
Collapse
|
7
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14:1265751. [PMID: 37795091 PMCID: PMC10545965 DOI: 10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
Affiliation(s)
- Mingze He
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Changliang Chi
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Jiang Zhao
- Department of Urology, Xi’an First Hospital, Xi’an, China
| | - Eunice Chong
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ke Xin Casey Chin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nicole Zian Vi Tan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Korolev Dmitry
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Guodong Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Kebang Hu
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
8
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
|
9
|
Sánchez Iglesias Á, Morillo Macías V, Picó Peris A, Fuster-Matanzo A, Nogué Infante A, Muelas Soria R, Bellvís Bataller F, Domingo Pomar M, Casillas Meléndez C, Yébana Huertas R, Ferrer Albiach C. Prostate Region-Wise Imaging Biomarker Profiles for Risk Stratification and Biochemical Recurrence Prediction. Cancers (Basel) 2023; 15:4163. [PMID: 37627191 PMCID: PMC10453281 DOI: 10.3390/cancers15164163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Identifying prostate cancer (PCa) patients with a worse prognosis and a higher risk of biochemical recurrence (BCR) is essential to guide treatment choices. Here, we aimed to identify possible imaging biomarker (perfusion/diffusion + radiomic features) profiles extracted from MRIs that were able to discriminate patients according to their risk or the occurrence of BCR 10 years after diagnosis, as well as to evaluate their predictive value with or without clinical data. METHODS Patients with localized PCa receiving neoadjuvant androgen deprivation therapy and radiotherapy were retrospectively evaluated. Imaging features were extracted from MRIs for each prostate region or for the whole gland. Univariate and multivariate analyses were conducted. RESULTS 128 patients (mean [range] age, 71 [50-83] years) were included. Prostate region-wise imaging biomarker profiles mainly composed of radiomic features allowed discriminating risk groups and patients experiencing BCR. Heterogeneity-related radiomic features were increased in patients with worse prognosis and with BCR. Overall, imaging biomarkers profiles retained good predictive ability (AUC values superior to 0.725 in most cases), which generally improved when clinical data were included (particularly evident for the prediction of the BCR, with AUC values ranging from 0.841 to 0.877 for combined models and sensitivity values above 0.960) and when models were built per prostate region vs. the whole gland. CONCLUSIONS Prostate region-aware imaging profiles enable identification of patients with worse prognosis and with a higher risk of BCR, retaining higher predictive values when combined with clinical variables.
Collapse
Affiliation(s)
- Ángel Sánchez Iglesias
- Radiation Oncology Department, Hospital Provincial de Castellón, 12002 Castellón, Spain; (Á.S.I.); (V.M.M.); (R.M.S.)
| | - Virginia Morillo Macías
- Radiation Oncology Department, Hospital Provincial de Castellón, 12002 Castellón, Spain; (Á.S.I.); (V.M.M.); (R.M.S.)
| | - Alfonso Picó Peris
- Quantitative Imaging Biomarkers in Medicine (Quibim), 46021 Valencia, Spain; (A.P.P.); (A.F.-M.); (A.N.I.); (F.B.B.); (M.D.P.); (R.Y.H.)
| | - Almudena Fuster-Matanzo
- Quantitative Imaging Biomarkers in Medicine (Quibim), 46021 Valencia, Spain; (A.P.P.); (A.F.-M.); (A.N.I.); (F.B.B.); (M.D.P.); (R.Y.H.)
| | - Anna Nogué Infante
- Quantitative Imaging Biomarkers in Medicine (Quibim), 46021 Valencia, Spain; (A.P.P.); (A.F.-M.); (A.N.I.); (F.B.B.); (M.D.P.); (R.Y.H.)
| | - Rodrigo Muelas Soria
- Radiation Oncology Department, Hospital Provincial de Castellón, 12002 Castellón, Spain; (Á.S.I.); (V.M.M.); (R.M.S.)
| | - Fuensanta Bellvís Bataller
- Quantitative Imaging Biomarkers in Medicine (Quibim), 46021 Valencia, Spain; (A.P.P.); (A.F.-M.); (A.N.I.); (F.B.B.); (M.D.P.); (R.Y.H.)
| | - Marcos Domingo Pomar
- Quantitative Imaging Biomarkers in Medicine (Quibim), 46021 Valencia, Spain; (A.P.P.); (A.F.-M.); (A.N.I.); (F.B.B.); (M.D.P.); (R.Y.H.)
| | | | - Raúl Yébana Huertas
- Quantitative Imaging Biomarkers in Medicine (Quibim), 46021 Valencia, Spain; (A.P.P.); (A.F.-M.); (A.N.I.); (F.B.B.); (M.D.P.); (R.Y.H.)
| | - Carlos Ferrer Albiach
- Radiation Oncology Department, Hospital Provincial de Castellón, 12002 Castellón, Spain; (Á.S.I.); (V.M.M.); (R.M.S.)
| |
Collapse
|
10
|
Novacescu D, Nesiu A, Bardan R, Latcu SC, Dema VF, Croitor A, Raica M, Cut TG, Walter J, Cumpanas AA. Rats, Neuregulins and Radical Prostatectomy: A Conceptual Overview. J Clin Med 2023; 12:jcm12062208. [PMID: 36983210 PMCID: PMC10051646 DOI: 10.3390/jcm12062208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
In the contemporary era of early detection, with mostly curative initial treatment for prostate cancer (PC), mortality rates have significantly diminished. In addition, mean age at initial PC diagnosis has decreased. Despite technical advancements, the probability of erectile function (EF) recovery post radical prostatectomy (RP) has not significantly changed throughout the last decade. Due to virtually unavoidable intraoperative cavernous nerve (CN) lesions and operations with younger patients, post-RP erectile dysfunction (ED) has now begun affecting these younger patients. To address this pervasive limitation, a plethora of CN lesion animal model investigations have analyzed the use of systemic/local treatments for EF recovery post-RP. Most promisingly, neuregulins (NRGs) have demonstrated neurotrophic effects in both neurodegenerative disease and peripheral nerve injury models. Recently, glial growth factor 2 (GGF2) has demonstrated far superior, dose-dependent, neuroprotective/restorative effects in the CN injury rat model, as compared to previous therapeutic counterparts. Although potentially impactful, these initial findings remain limited and under-investigated. In an effort to aid clinicians, our paper reviews post-RP ED pathogenesis and currently available therapeutic tools. To stimulate further experimentation, a standardized preparation protocol and in-depth analysis of applications for the CN injury rat model is provided. Lastly, we report on NRGs, such as GGF2, and their potentially revolutionary clinical applications, in hopes of identifying relevant future research directions.
Collapse
Affiliation(s)
- Dorin Novacescu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alexandru Nesiu
- Department Medicine, Discipline of Urology, Vasile Goldiş Western University, Liviu Rebreanu Boulevard, Nr. 86, 310414 Arad, Romania
- Correspondence: ; Tel.: +40-753521488
| | - Razvan Bardan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Vlad Filodel Dema
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alexei Croitor
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Marius Raica
- Department II, Discipline of Histology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Talida Georgiana Cut
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - James Walter
- Emeritus, Department of Urology, Loyola Medical Center, Maywood, IL 60153, USA
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|
11
|
Alwadi D, Felty Q, Yoo C, Roy D, Deoraj A. Endocrine Disrupting Chemicals Influence Hub Genes Associated with Aggressive Prostate Cancer. Int J Mol Sci 2023; 24:ijms24043191. [PMID: 36834602 PMCID: PMC9959535 DOI: 10.3390/ijms24043191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers among men in the world. Its prevention has been limited because of an incomplete understanding of how environmental exposures to chemicals contribute to the molecular pathogenesis of aggressive PCa. Environmental exposures to endocrine-disrupting chemicals (EDCs) may mimic hormones involved in PCa development. This research aims to identify EDCs associated with PCa hub genes and/or transcription factors (TF) of these hub genes in addition to their protein-protein interaction (PPI) network. We are expanding upon the scope of our previous work, using six PCa microarray datasets, namely, GSE46602, GSE38241, GSE69223, GSE32571, GSE55945, and GSE26126, from the NCBI/GEO, to select differentially expressed genes based on |log2FC| (fold change) ≥ 1 and an adjusted p-value < 0.05. An integrated bioinformatics analysis was used for enrichment analysis (using DAVID.6.8, GO, KEGG, STRING, MCODE, CytoHubba, and GeneMANIA). Next, we validated the association of these PCa hub genes in RNA-seq PCa cases and controls from TCGA. The influence of environmental chemical exposures, including EDCs, was extrapolated using the chemical toxicogenomic database (CTD). A total of 369 overlapping DEGs were identified associated with biological processes, such as cancer pathways, cell division, response to estradiol, peptide hormone processing, and the p53 signaling pathway. Enrichment analysis revealed five up-regulated (NCAPG, MKI67, TPX2, CCNA2, CCNB1) and seven down-regulated (CDK1, CCNB2, AURKA, UBE2C, BUB1B, CENPF, RRM2) hub gene expressions. Expression levels of these hub genes were significant in PCa tissues with high Gleason scores ≥ 7. These identified hub genes influenced disease-free survival and overall survival of patients 60-80 years of age. The CTD studies showed 17 recognized EDCs that affect TFs (NFY, CETS1P54, OLF1, SRF, COMP1) that are known to bind to our PCa hub genes, namely, NCAPG, MKI67, CCNA2, CDK1, UBE2C, and CENPF. These validated differentially expressed hub genes can be potentially developed as molecular biomarkers with a systems perspective for risk assessment of a wide-ranging list of EDCs that may play overlapping and important role(s) in the prognosis of aggressive PCa.
Collapse
Affiliation(s)
- Diaaidden Alwadi
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Alok Deoraj
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
12
|
Urinary PCA3 a Superior Diagnostic Biomarker for Prostate Cancer among Ghanaian Men. DISEASE MARKERS 2022; 2022:1686991. [PMID: 36246565 PMCID: PMC9568348 DOI: 10.1155/2022/1686991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Introduction. Prostate cancer is one of the most commonly diagnosed cancers in men. Prostate-specific antigen (PSA) has been the biomarker of choice for screening and diagnosis of prostate cancer. However, inefficiencies exist with its diagnostic capabilities. This study thus evaluated the diagnostic and prognostic potential of urinary PCA3 as an alternative biomarker for prostate cancer in the Ghanaian population. Methods. A hospital-based cross-sectional study was conducted at the Urology Department of the 37 Military Hospital, Accra, Ghana. A total of 237 participants aged 40 years and above with any form of suspected prostate disorder were recruited into the study after written informed consent was obtained. Total serum PSA levels was measured using the electrochemiluminescence method and transrectal ultrasound-guided systematic core needle biopsies were obtained from each study participant. Receiver operating characteristic curve (ROC) analysis was used to evaluate the diagnostic accuracies of serum PSA, DRE, and PCA3 as diagnostic tools for prostate cancer. These three diagnostic tools were also evaluated in various combinations to ascertain the combinations with the best diagnostic accuracy. Results. Prostate cancer was diagnosed in 26.6% of the participants. Benign prostate hyperplasia and prostatitis were diagnosed in 48.5% and 24.9% participants, respectively. DRE had a sensitivity of 93.7% and a specificity of 12.1%. PSA had a sensitivity of 92.1% and a specificity of 16.1%. PCA3 had a sensitivity of 57.1% and a specificity of 85.6% and showed a better accuracy (
) compared to PSA (
) and DRE (
) as individual diagnostic tools. The combination of DRE+PCA3 score had the best diagnostic accuracy (
) with a sensitivity and specificity of 60.3% and 80.5%, respectively. Conclusion. The urinary PCA3 assay showed a better diagnostic performance compared to serum PSA and DRE. PCA3 as a stand-alone and in combination with DRE could be a suitable complimentary marker in diagnosis and management of prostate cancer.
Collapse
|
13
|
Sen S, Valindria V, Slator PJ, Pye H, Grey A, Freeman A, Moore C, Whitaker H, Punwani S, Singh S, Panagiotaki E. Differentiating False Positive Lesions from Clinically Significant Cancer and Normal Prostate Tissue Using VERDICT MRI and Other Diffusion Models. Diagnostics (Basel) 2022; 12:1631. [PMID: 35885536 PMCID: PMC9319485 DOI: 10.3390/diagnostics12071631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
False positives on multiparametric MRIs (mp-MRIs) result in many unnecessary invasive biopsies in men with clinically insignificant diseases. This study investigated whether quantitative diffusion MRI could differentiate between false positives, true positives and normal tissue non-invasively. Thirty-eight patients underwent mp-MRI and Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors (VERDICT) MRI, followed by transperineal biopsy. The patients were categorized into two groups following biopsy: (1) significant cancer—true positive, 19 patients; (2) atrophy/inflammation/high-grade prostatic intraepithelial neoplasia (PIN)—false positive, 19 patients. The clinical apparent diffusion coefficient (ADC) values were obtained, and the intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI) and VERDICT models were fitted via deep learning. Significant differences (p < 0.05) between true positive and false positive lesions were found in ADC, IVIM perfusion fraction (f) and diffusivity (D), DKI diffusivity (DK) (p < 0.0001) and kurtosis (K) and VERDICT intracellular volume fraction (fIC), extracellular−extravascular volume fraction (fEES) and diffusivity (dEES) values. Significant differences between false positives and normal tissue were found for the VERDICT fIC (p = 0.004) and IVIM D. These results demonstrate that model-based diffusion MRI could reduce unnecessary biopsies occurring due to false positive prostate lesions and shows promising sensitivity to benign diseases.
Collapse
Affiliation(s)
- Snigdha Sen
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1E 6BT, UK; (S.S.); (V.V.); (P.J.S.)
| | - Vanya Valindria
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1E 6BT, UK; (S.S.); (V.V.); (P.J.S.)
| | - Paddy J. Slator
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1E 6BT, UK; (S.S.); (V.V.); (P.J.S.)
| | - Hayley Pye
- Molecular Diagnostics and Therapeutics Group, University College London, London WC1E 6BT, UK; (H.P.); (H.W.)
| | - Alistair Grey
- Department of Urology, University College London Hospitals NHS Foundations Trust, London NW1 2PG, UK; (A.G.); (C.M.)
| | - Alex Freeman
- Department of Pathology, University College London Hospitals NHS Foundations Trust, London NW1 2PG, UK;
| | - Caroline Moore
- Department of Urology, University College London Hospitals NHS Foundations Trust, London NW1 2PG, UK; (A.G.); (C.M.)
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, University College London, London WC1E 6BT, UK; (H.P.); (H.W.)
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, London WC1E 6BT, UK; (S.P.); (S.S.)
| | - Saurabh Singh
- Centre for Medical Imaging, University College London, London WC1E 6BT, UK; (S.P.); (S.S.)
| | - Eleftheria Panagiotaki
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1E 6BT, UK; (S.S.); (V.V.); (P.J.S.)
| |
Collapse
|
14
|
A Model to Detect Significant Prostate Cancer Integrating Urinary Peptide and Extracellular Vesicle RNA Data. Cancers (Basel) 2022; 14:cancers14081995. [PMID: 35454901 PMCID: PMC9027643 DOI: 10.3390/cancers14081995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
There is a clinical need to improve assessment of biopsy-naïve patients for the presence of clinically significant prostate cancer (PCa). In this study, we investigated whether the robust integration of expression data from urinary extracellular vesicle RNA (EV-RNA) with urine proteomic metabolites can accurately predict PCa biopsy outcome. Urine samples collected within the Movember GAP1 Urine Biomarker study (n = 192) were analysed by both mass spectrometry-based urine-proteomics and NanoString gene-expression analysis (167 gene-probes). Cross-validated LASSO penalised regression and Random Forests identified a combination of clinical and urinary biomarkers for predictive modelling of significant disease (Gleason Score (Gs) ≥ 3 + 4). Four predictive models were developed: ‘MassSpec’ (CE-MS proteomics), ‘EV-RNA’, and ‘SoC’ (standard of care) clinical data models, alongside a fully integrated omics-model, deemed ‘ExoSpec’. ExoSpec (incorporating four gene transcripts, six peptides, and two clinical variables) is the best model for predicting Gs ≥ 3 + 4 at initial biopsy (AUC = 0.83, 95% CI: 0.77−0.88) and is superior to a standard of care (SoC) model utilising clinical data alone (AUC = 0.71, p < 0.001, 1000 resamples). As the ExoSpec Risk Score increases, the likelihood of higher-grade PCa on biopsy is significantly greater (OR = 2.8, 95% CI: 2.1−3.7). The decision curve analyses reveals that ExoSpec provides a net benefit over SoC and could reduce unnecessary biopsies by 30%.
Collapse
|
15
|
A Prostate Cancer Proteomics Database for SWATH-MS Based Protein Quantification. Cancers (Basel) 2021; 13:cancers13215580. [PMID: 34771740 PMCID: PMC8582933 DOI: 10.3390/cancers13215580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Prostate cancer is the third most frequent cancer in men worldwide, with a notable increase in prevalence over the past two decades. The PSA is the only well-established protein biomarker for prostate cancer diagnosis, staging, and surveillance. It frequently leads to inaccurate diagnosis and overtreatment since it is an organ-specific biomarker rather than a tumour-specific biomarker. As a result, one of the primary goals of prostate cancer proteome research is to identify novel biomarkers that can be used with or instead of PSA, particularly in non-invasive blood samples. Thousands of peptides or assays were detected in blood samples from patients with low- to high-grade prostate cancer and healthy individuals, allowing data processing of sequential window acquisition of all theoretical mass spectra (SWATH-MS). By assisting in the detection of prostate cancer biomarkers in blood samples, this useful resource will improve our understanding of the role of proteomics in prostate cancer diagnosis and risk assessment. Abstract Prostate cancer is the most frequent form of cancer in men, accounting for more than one-third of all cases. Current screening techniques, such as PSA testing used in conjunction with routine procedures, lead to unnecessary biopsies and the discovery of low-risk tumours, resulting in overdiagnosis. SWATH-MS is a well-established data-independent (DI) method requiring prior knowledge of targeted peptides to obtain valuable information from SWATH maps. In response to the growing need to identify and characterise protein biomarkers for prostate cancer, this study explored a spectrum source for targeted proteome analysis of blood samples. We created a comprehensive prostate cancer serum spectral library by combining data-dependent acquisition (DDA) MS raw files from 504 patients with low, intermediate, or high-grade prostate cancer and healthy controls, as well as 304 prostate cancer-related protein in silico assays. The spectral library contains 114,684 transitions, which equates to 18,479 peptides translated into 1227 proteins. The robustness and accuracy of the spectral library were assessed to boost confidence in the identification and quantification of prostate cancer-related proteins across an independent cohort, resulting in the identification of 404 proteins. This unique database can facilitate researchers to investigate prostate cancer protein biomarkers in blood samples. In the real-world use of the spectrum library for biomarker detection, using a signature of 17 proteins, a clear distinction between the validation cohort’s pre- and post-treatment groups was observed. Data are available via ProteomeXchange with identifier PXD028651.
Collapse
|
16
|
Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci 2021; 22:ijms22189971. [PMID: 34576134 PMCID: PMC8465891 DOI: 10.3390/ijms22189971] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Radiomics and genomics represent two of the most promising fields of cancer research, designed to improve the risk stratification and disease management of patients with prostate cancer (PCa). Radiomics involves a conversion of imaging derivate quantitative features using manual or automated algorithms, enhancing existing data through mathematical analysis. This could increase the clinical value in PCa management. To extract features from imaging methods such as magnetic resonance imaging (MRI), the empiric nature of the analysis using machine learning and artificial intelligence could help make the best clinical decisions. Genomics information can be explained or decoded by radiomics. The development of methodologies can create more-efficient predictive models and can better characterize the molecular features of PCa. Additionally, the identification of new imaging biomarkers can overcome the known heterogeneity of PCa, by non-invasive radiological assessment of the whole specific organ. In the future, the validation of recent findings, in large, randomized cohorts of PCa patients, can establish the role of radiogenomics. Briefly, we aimed to review the current literature of highly quantitative and qualitative results from well-designed studies for the diagnoses, treatment, and follow-up of prostate cancer, based on radiomics, genomics and radiogenomics research.
Collapse
|