1
|
Tobi A, Haugas M, Rabi K, Sethi J, Põšnograjeva K, Paiste P, Jagomäe T, Pleiko K, Lingasamy P, Teesalu T. Protease-activated CendR peptides targeting tenascin-C: mitigating off-target tissue accumulation. Drug Deliv Transl Res 2024; 14:2945-2961. [PMID: 39012578 PMCID: PMC11384632 DOI: 10.1007/s13346-024-01670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
To achieve precision and selectivity, anticancer compounds and nanoparticles (NPs) can be targeted with affinity ligands that engage with malignancy-associated molecules in the blood vessels. While tumor-penetrating C-end Rule (CendR) peptides hold promise for precision tumor delivery, C-terminally exposed CendR peptides can accumulate undesirably in non-malignant tissues expressing neuropilin-1 (NRP-1), such as the lungs. One example of such promiscuous peptides is PL3 (sequence: AGRGRLVR), a peptide that engages with NRP-1 through its C-terminal CendR element, RLVR.Here, we report the development of PL3 derivatives that bind to NRP-1 only after proteolytic processing by urokinase-type plasminogen activator (uPA), while maintaining binding to the other receptor of the peptide, the C-domain of tenascin-C (TNC-C). Through a rational design approach and screening of a uPA-treated peptide-phage library (PL3 peptide followed by four random amino acids) on the recombinant NRP-1, derivatives of the PL3 peptide capable of binding to NRP-1 only post-uPA processing were successfully identified. In vitro cleavage, binding, and internalization assays, along with in vivo biodistribution studies in orthotopic glioblastoma-bearing mice, confirmed the efficacy of two novel peptides, PL3uCendR (AGRGRLVR↓SAGGSVA) and SKLG (AGRGRLVR↓SKLG), which exhibit uPA-dependent binding to NRP-1, reducing off-target binding to healthy NRP-1-expressing tissues. Our study not only unveils novel uPA-dependent TNC-C targeting CendR peptides but also introduces a broader paradigm and establishes a technology for screening proteolytically activated tumor-penetrating peptides.
Collapse
Affiliation(s)
- Allan Tobi
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Maarja Haugas
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Kristina Rabi
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Jhalak Sethi
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Kristina Põšnograjeva
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Päärn Paiste
- Department of Geology, Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Toomas Jagomäe
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Karlis Pleiko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Prakash Lingasamy
- Competence Centre on Health Technologies, Teaduspargi 13, 50411, Tartu, Estonia
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia.
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
2
|
Gendron LN, Sheveland CG, Gunn JR, Pogue BW, Shell TA, Shell JR. Radiation-Activated Cobalamin-Kinase Inhibitors for Treatment of Pancreatic Ductal Adenocarcinoma. Mol Pharm 2024; 21:137-142. [PMID: 37989273 PMCID: PMC11228961 DOI: 10.1021/acs.molpharmaceut.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most dismal diagnoses that a patient can receive. PDAC is extremely difficult to treat, as drug delivery is challenging in part due to the lack of vascularization, high stromal content, and high collagen content of these tumors. We have previously demonstrated that attaching drugs to the cobalamin scaffold provides selectivity for tumors over benign cells due to a high vitamin demand in these rapidly growing cells and an overexpression of transcobalamin receptors in a variety of cancer types. Importantly, we have shown the ability to deliver cobalamin derivatives to orthotopic pancreas tumors. Tyrosine kinase inhibitors have shown promise in treating PDAC as well as other cancer types. However, some of these inhibitors suffer from drug resistance, and as such, their success has been diminished. With this in mind, we synthesized the tyrosine kinase inhibitors erlotinib (EGFR) and dasatinib (Src) that are attached to this cobalamin platform. Both of these cobalamin-drug conjugates cause visible light-induced apoptosis, and the cobalamin-erlotinib conjugate (2) causes X-ray-induced apoptosis in MIA PaCa-2 cells. Both visible light and X-rays provide spatial control of drug release; however, utilizing X-ray irradiation offers the advantage of deeper tissue penetration. Therefore, we explored the utilization of 2 as a synergistic therapy with radiation in athymic nude mice implanted with MIA PaCa-2 tumors. We discovered that the addition of 2 caused an enhanced reduction in tumor margins in comparison with radiation therapy alone. In addition, treatment with 2 in the absence of radiation caused no significant reduction in tumor size in comparison with the controls. The cobalamin technology presented here allows for the spatial release of drugs in conjunction with external beam radiation therapy, potentially allowing for more effective treatment of deep-seated tumors with less systemic side effects.
Collapse
Affiliation(s)
- Liberty N Gendron
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Colter G Sheveland
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont 05663, United States
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Thomas A Shell
- Department of Chemistry and Physics, Lincoln Memorial University, Harrogate, Tennessee 37752, United States
| | - Jennifer R Shell
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
- Eos Pharmaceuticals LLC, Tazewell, Tennessee 37879, United States
| |
Collapse
|
3
|
Ding YD, Shu LZ, He RS, Chen KY, Deng YJ, Zhou ZB, Xiong Y, Deng H. Listeria monocytogenes: a promising vector for tumor immunotherapy. Front Immunol 2023; 14:1278011. [PMID: 37868979 PMCID: PMC10587691 DOI: 10.3389/fimmu.2023.1278011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer receives enduring international attention due to its extremely high morbidity and mortality. Immunotherapy, which is generally expected to overcome the limits of traditional treatments, serves as a promising direction for patients with recurrent or metastatic malignancies. Bacteria-based vectors such as Listeria monocytogenes take advantage of their unique characteristics, including preferential infection of host antigen presenting cells, intracellular growth within immune cells, and intercellular dissemination, to further improve the efficacy and minimize off-target effects of tailed immune treatments. Listeria monocytogenes can reshape the tumor microenvironment to bolster the anti-tumor effects both through the enhancement of T cells activity and a decrease in the frequency and population of immunosuppressive cells. Modified Listeria monocytogenes has been employed as a tool to elicit immune responses against different tumor cells. Currently, Listeria monocytogenes vaccine alone is insufficient to treat all patients effectively, which can be addressed if combined with other treatments, such as immune checkpoint inhibitors, reactivated adoptive cell therapy, and radiotherapy. This review summarizes the recent advances in the molecular mechanisms underlying the involvement of Listeria monocytogenes vaccine in anti-tumor immunity, and discusses the most concerned issues for future research.
Collapse
Affiliation(s)
- Yi-Dan Ding
- Medical College, Nanchang University, Nanchang, China
| | - Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang, China
| | - Rui-Shan He
- Medical College, Nanchang University, Nanchang, China
| | - Kai-Yun Chen
- Office of Clinical Trials Administration, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Juan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Zhi-Bin Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Agbaria M, Jbara-Agbaria D, Grad E, Ben-David-Naim M, Aizik G, Golomb G. Nanoparticles of VAV1 siRNA combined with LL37 peptide for the treatment of pancreatic cancer. J Control Release 2023; 355:312-326. [PMID: 36736910 DOI: 10.1016/j.jconrel.2023.01.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related death, and it is highly resistant to therapy owing to its unique extracellular matrix. VAV1 protein, overexpressed in several cancer diseases including pancreatic cancer (PC), increases tumor proliferation and enhances metastases formation, which are associated with decreased survival. We hypothesized that an additive anti-tumor effect could be obtained by co-encapsulating in PLGA nanoparticles (NPs), the negatively charged siRNA against VAV1 (siVAV1) with the positively charged anti-tumor LL37 peptide, as a counter-ion. Several types of NPs were formulated and were characterized for their physicochemical properties, cellular internalization, and bioactivity in vitro. NPs' biodistribution, toxicity, and bioactivity were examined in a mice PDAC model. An optimal siVAV1 formulation (siVAV1-LL37 NPs) was characterized with desirable physicochemical properties in terms of nano-size, low polydispersity index (PDI), neutral surface charge, high siVAV1 encapsulation efficiency, spherical shape, and long-term shelf-life stability. Cell assays demonstrated rapid engulfment by PC cells, a specific and significant dose-dependent proliferation inhibition, as well as knockdown of VAV1 mRNA levels and migration inhibition in VAV1+ cells. Treatment with siVAV1-LL37 NPs in the mice PDAC model revealed marked accumulation of NPs in the liver and in the tumor, resulting in an increased survival rate following suppression of tumor growth and metastases, mediated via the knockdown of both VAV1 mRNA and protein levels. This proof-of-concept study validates our hypothesis of an additive effect in the treatment of PC facilitated by co-encapsulating siVAV1 in NPs with LL37 serving a dual role as a counter ion as well as an anti-tumor agent.
Collapse
Affiliation(s)
- Majd Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Doaa Jbara-Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Etty Grad
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Meital Ben-David-Naim
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gil Aizik
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gershon Golomb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
5
|
Borges R, Pelosine AM, de Souza ACS, Machado J, Justo GZ, Gamarra LF, Marchi J. Bioactive Glasses as Carriers of Cancer-Targeted Drugs: Challenges and Opportunities in Bone Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9082. [PMID: 36556893 PMCID: PMC9781635 DOI: 10.3390/ma15249082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 05/20/2023]
Abstract
The treatment of bone cancer involves tumor resection followed by bone reconstruction of the defect caused by the tumor using biomaterials. Additionally, post-surgery protocols cover chemotherapy, radiotherapy, or drug administration, which are employed as adjuvant treatments to prevent tumor recurrence. In this work, we reviewed new strategies for bone cancer treatment based on bioactive glasses as carriers of cancer-targeted and other drugs that are intended for bone regeneration in conjunction with adjuvant treatments. Drugs used in combination with bioactive glasses can be classified into cancer-target, osteoclast-target, and new therapies (such as gene delivery and bioinorganic). Microparticulated, nanoparticulated, or mesoporous bioactive glasses have been used as drug-delivery systems. Additionally, surface modification through functionalization or the production of composites based on polymers and hydrogels has been employed to improve drug-release kinetics. Overall, although different drugs and drug delivery systems have been developed, there is still room for new studies involving kinase inhibitors or antibody-conjugated drugs, as these drugs have been poorly explored in combination with bioactive glasses.
Collapse
Affiliation(s)
- Roger Borges
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Agatha Maria Pelosine
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | | | - Joel Machado
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema 05508-070, Brazil
| | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 05508-070, Brazil
| | | | - Juliana Marchi
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| |
Collapse
|
6
|
Huang Z, Chen Y, Chen R, Zhou B, Wang Y, Hong L, Wang Y, Wang J, Xu X, Huang Z, Chen W. HPV Enhances HNSCC Chemosensitization by Inhibiting SERPINB3 Expression to Disrupt the Fanconi Anemia Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202437. [PMID: 36382555 PMCID: PMC9811475 DOI: 10.1002/advs.202202437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck, and the prognosis of patients is poor due to chemotherapeutic resistance. Interestingly, patients with HNSCC induced by human papillomavirus (HPV) infection are more sensitive to chemotherapy and display a better prognosis than HPV-negative patients. The biological relevance of HPV infection and the mechanism underlying chemosensitivity to cisplatin remain unknown. Herein, SERPINB3 is identified as an important target for regulation of cisplatin sensitivity by HPV-E6/E7 in HNSCC. Downregulation of SERPINB3 inhibits cisplatin-induced DNA damage repair and enhances the cytotoxicity of cisplatin. In detail, decreasing SERPINB3 expression reduces the USP1-mediated deubiquitination of FANCD2-FANCI in the Fanconi anemia pathway, thereby interfering with cisplatin-induced DNA interstrand crosslinks repair and further contributing to HNSCC cell apoptosis. To translate this finding, pH-responsive nanoparticles are used to deliver SERPINB3 small interfering RNA in combination with cisplatin, and this treatment successfully reverses cisplatin chemotherapeutic resistance in a patient-derived xenograft model from HPV-negative HNSCC. Taken together, these findings suggest that targeting SERPINB3 based on HPV-positive HNSCC is a potential strategy to overcome cisplatin resistance in HPV-negative HNSCC and improves the prognosis of this disease.
Collapse
Affiliation(s)
- Zixian Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Yongju Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Rui Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Bin Zhou
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Yongqiang Wang
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Lei Hong
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Yuepeng Wang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Jianguang Wang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Xiaoding Xu
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Zhiquan Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| | - Weiliang Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120P. R. China
| |
Collapse
|
7
|
Iyengar D, Tatiparti K, Gavande NS, Sau S, Iyer AK. Nanomedicine for overcoming therapeutic and diagnostic challenges associated with pancreatic cancer. Drug Discov Today 2022; 27:1554-1559. [PMID: 35247592 DOI: 10.1016/j.drudis.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
Pancreatic cancer is the second leading cause of cancer-related death in the USA. The 5-year survival rate for pancreatic cancer is as low as 10%, making it one of the most deadly cancers. This dismal prognosis is caused, in part, by the lack of early detection and screening options, leading to late-stage detection of the disease, at a point at which chemotherapy is no longer effective. However, nanoparticle (NP) drug delivery systems have increased the efficacy of chemotherapeutics by improving the targeting ability of drugs to the tumor site, while also decreasing the risk of local and systemic toxicity. Such efforts can contribute to the development of early diagnosis and routine screening tests, which will drastically improve the survival rates and prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Disha Iyengar
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Katyayani Tatiparti
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
8
|
Xiao W, Pahlavanneshan M, Eun CY, Zhang X, DeKalb C, Mahgoub B, Knaneh-Monem H, Shah S, Sohrabi A, Seidlits SK, Hill R. Matrix stiffness mediates pancreatic cancer chemoresistance through induction of exosome hypersecretion in a cancer associated fibroblasts-tumor organoid biomimetic model. Matrix Biol Plus 2022; 14:100111. [PMID: 35619988 PMCID: PMC9126837 DOI: 10.1016/j.mbplus.2022.100111] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer organoid-stromal fibroblasts co-culture displayed significant chemoresistance in 3D culture system. Cancer associated fibroblasts in the physiologically relevant matrix system tended to be more phenotypically activated. Increased extracellular matrix stiffness induces hypersecretion of chemoresistance-promoting exosomes in a cancer associated fibroblasts-tumor organoid biomimetic model system.
In pancreatic ductal adenocarcinoma (PDAC), the abundant stromal cells which comprise the tumor microenvironment constitute more than 90% of the primary tumor bulk. Moreover, this desmoplastic environment has been found to be three times stiffer than normal pancreas tissue. Despite the importance of studying the desmoplastic environment of PDAC, there is still a lack of models designed to adequately recapitulate this complex stiff microenvironment, a critical hallmark of the disease that has been shown to induce chemoresistance. Here, we present a bio-mimetic, 3-dimensional co-culture system that integrates tumor organoids and host-matching stromal cancer associated-fibroblasts (CAFs) that recapitulates the complex, fibrotic matrix of PDAC using advanced biomaterials. With this model, we show that matrix-activated CAFs are able to “re-engineer” the fibrotic environment into a significantly stiffer environment through lysyl-oxidase dependent crosslinking. Moreover, we show that culture of CAFs in this model leads to an increase of exosomes; extracellular vesicles known to promote chemoresistance. Finally, using previously identified exosome inhibitors, climbazole and imipramine, we demonstrate how abrogation of exosome hypersecretion can reduce matrix stiffness-induced chemoresistance. These data highlight the importance of the development of new models that recapitulate not only the cellular composition found in PDAC tumors, but also the biophysical stresses, like stiffness, that the cells are exposed to in order to identify therapies that can overcome this critical feature which can contribute to the chemoresistance observed in patients. We believe that the 3D bio-mimetic model we have developed will be a valuable tool for the development, testing, and optimization of “mechano-medicines” designed to target the biophysical forces that lead to tumor growth and chemoresistance.
Collapse
Affiliation(s)
- Weikun Xiao
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Mahsa Pahlavanneshan
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, United States
| | - Chae-Young Eun
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Xinyu Zhang
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Charlene DeKalb
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Bayan Mahgoub
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Hanaa Knaneh-Monem
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Sana Shah
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Health Promotion and Disease Prevention Studies, University of Southern California, Los Angeles, CA 90033, United States
| | - Alireza Sohrabi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Reginald Hill
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
- Corresponding author at: Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States.
| |
Collapse
|
9
|
DMPC/Chol liposomal copper CX5461 is therapeutically superior to a DSPC/Chol formulation. J Control Release 2022; 345:75-90. [DOI: 10.1016/j.jconrel.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022]
|
10
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
11
|
Ali N, Srivastava N. Recent Advancements for the Management of Pancreatic Cancer: Current Insights. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210625153256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the most fatal forms of cancer includes cancer of the pancreas And the most
rapid malignancy is observed in PDAC (pancreatic ductal adenocarcinoma). The high lethality rate
is generally due to very late diagnosis and resistance to traditional chemotherapeutic agents. Desmoplastic
stromal barrier results in resistance to immunotherapy. Other reasons for the high lethality
rate include the absence of effective treatment and standard screening tests. Hence, there is a
need for effective novel carrier systems. “A formulation, method, or device that allows the desired
therapeutic substance to reach its site of action in such a manner that nontarget cells experience
minimum effect is referred to as a drug delivery system”. The delivery system is responsible for introducing
the active component into the body. They are also liable for boosting the efficacy and desirable
targeted action on the tumorous tissues. Several studies, researches, and developments have
yielded various advanced drug delivery systems, which include liposomes, nanoparticles, carbon
nanotubules, renovoCath, etc. These systems control rate and location of the release. They are designed
while taking into consideration characteristic properties of the tumor and tumor stroma. These
delivery systems overcome the barriers in drug deliverance in pancreatic cancer. Alongside providing
palliative benefits, these delivery systems also aim to correct the underlying reason for the
defect. The following review article aims and focuses to bring out a brief idea about systems, methods,
and technologies for futuristic drug deliverance in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Naureen Ali
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow,India
| | - Nimisha Srivastava
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow,India
| |
Collapse
|
12
|
Development of a KRAS-Associated Metabolic Risk Model for Prognostic Prediction in Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9949272. [PMID: 34660806 PMCID: PMC8516536 DOI: 10.1155/2021/9949272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023]
Abstract
Background KRAS was reported to affect some metabolic genes and promote metabolic reprogramming in solid tumors. However, there was no comprehensive analysis to explore KRAS-associated metabolic signature or risk model for pancreatic cancer (PC). Methods In the current study, multiple bioinformatics analyses were used to identify differentially expressed metabolic genes based on KRAS mutation status in PC. Then, we developed and validated a prognostic risk model based on the selected KRAS-associated metabolic genes. Besides, we explored the association between the risk model and the metabolic characteristics as well as gemcitabine-associated chemoresistance in PC. Results 6 KRAS-associated metabolic genes (i.e., CYP2S1, GPX3, FTCD, ENPP2, UGT1A10, and XDH) were selected and enrolled to establish a prognostic risk model. The prognostic model had a high C-index of 0.733 for overall survival (OS) in TCGA pancreatic cancer database. The area under the curve (AUC) values of 1- and 3-year survival were both greater than 0.70. Then, the risk model was validated in two GEO datasets and also presented a satisfactory discrimination and calibration performance. Further, we found that the expression of some KRAS-driven glycolysis-associated genes (PKM, GLUT1, HK2, and LDHA) and gemcitabine-associated chemoresistance genes (i.e., CDA and RMM2) was significantly upregulated in high-risk PC patients evaluated by the risk model. Conclusions We constructed a risk model based on 6 KRAS-associated metabolic genes, which predicted patients' survival with high accuracy and reflected tumor metabolic characteristics and gemcitabine-associated chemoresistance in PC.
Collapse
|
13
|
Md S, Alhakamy NA, Aldawsari HM, Ahmad J, Alharbi WS, Asfour HZ. Resveratrol loaded self-nanoemulsifying drug delivery system (SNEDDS) for pancreatic cancer: Formulation design, optimization and in vitro evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Lin Q, Qian Z, Jusko WJ, Mager DE, Ma WW, Straubinger RM. Synergistic Pharmacodynamic Effects of Gemcitabine and Fibroblast Growth Factor Receptor Inhibitors on Pancreatic Cancer Cell Cycle Kinetics and Proliferation. J Pharmacol Exp Ther 2021; 377:370-384. [PMID: 33753538 PMCID: PMC9885358 DOI: 10.1124/jpet.120.000412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Median survival of pancreatic ductal adenocarcinoma cancer (PDAC) is 6 months, with 9% 5-year survival. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and combination therapies integrating novel targeted agents could improve outcomes. Fibroblast growth factor (FGF) receptors (FGFRs) play important roles in PDAC growth and invasion. Therefore, FGFR inhibitors (FGFRi) merit further investigation. Efficacy of Gem combined with NVP-BGJ398, a pan-FGFRi, was investigated in multiple PDAC cell lines exposed to the drugs alone and combined. Cell cycle distribution and cell numbers were quantified over time. Two pharmacodynamic models were developed to investigate Gem/BGJ398 interactions quantitatively: a drug-mediated cell proliferation/death model, and a drug-perturbed cell cycle progression model. The models captured temporal changes in cell numbers, cell cycle progression, and cell death during drug exposure. Simultaneous fitting of all data provided reasonable parameter estimates. Therapeutic efficacy was then evaluated in a PDAC mouse model. Compared with Gem alone, combined Gem + FGFRi significantly downregulated ribonucleotide-diphosphate reductase large subunit 1 (RRM1), a gemcitabine resistance (GemR) biomarker, suggesting the FGFRi inhibited GemR emergence. The cell proliferation/death pharmacodynamic model estimated the drug interaction coefficient ψ death = 0.798, suggesting synergistic effects. The mechanism-based cell cycle progression model estimated drug interaction coefficient ψ cycle = 0.647, also suggesting synergy. Thus, FGFR inhibition appears to synergize with Gem in PDAC cells and tumors by sensitizing cells to Gem-mediated inhibition of proliferation and cell cycle progression. SIGNIFICANCE STATEMENT: An integrated approach of quantitative modeling and experimentation was employed to investigate the nature of fibroblast growth factor receptor inhibitor (FGFRi)/gemcitabine (Gem) interaction, and to identify mechanisms by which FGFRi exposure reverses Gem resistance in pancreatic cancer cells. The results show that FGFRi interacts synergistically with Gem to sensitize pancreatic cancer cells and tumors to Gem-mediated inhibition of proliferation and cell cycle progression. Thus, addition of FGFRi to standard-of-care Gem treatment could be a clinically deployable approach to enhance therapeutic benefit to pancreatic cancer patients.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Zhicheng Qian
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Wen Wee Ma
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| |
Collapse
|
16
|
Jiang Z, Hou Z, Liu W, Yu Z, Liang Z, Chen S. circ-Keratin 6c Promotes Malignant Progression and Immune Evasion of Colorectal Cancer through microRNA-485-3p/Programmed Cell Death Receptor Ligand 1 Axis. J Pharmacol Exp Ther 2021; 377:358-367. [PMID: 33771844 DOI: 10.1124/jpet.121.000518] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, circular RNA was reported to be a significant participant in the development of tumorigenesis, including colorectal cancer. Therefore, we aimed to clarify the precise role of circ-keratin 6C (circ-KRT6C) in colorectal cancer progression. The relative expression levels of circ-KRT6C, microRNA-485-3p (miR-485-3p), and programmed cell death receptor ligand 1 (PDL1) were analyzed by real-time quantitative polymerase chain reaction and Western blot assays. The proliferation was assessed by cell count kit 8 and colony-forming assays. The apoptotic cells were determined by flow cytometry assay. The migration and invasion were analyzed by transwell assay. Colorectal cancer cells were cocultured with peripheral blood mononuclear cells or cytokine-induced killer cells to assess immune response. The interaction relationships among circ-KRT6C, miR-485-3p, and PDL1 were examined by dual-luciferase reporter assay. The effects of circ-KRT6C inhibition in vivo were analyzed by an animal experiment. circ-KRT6C was overexpressed in colorectal cancer tissues and cells, and its level was associated with overall survival time of patients with colorectal cancer. The suppression of circ-KRT6C suppressed growth, migration, invasion, and immune escape while stimulating apoptosis in colorectal cancer cells, which was abolished by shortage of miR-485-3p. In addition, overexpression of miR-485-3p repressed malignant progression and immune evasion of colorectal cancer by targeting PDL1, implying that PDL1 was a functional target of miR-485-3p. A xenograft experiment also suggested that circ-KRT6C inhibition could repress tumor growth in vivo. circ-KRT6C could increase PDL1 expression by functioning as an miR-485-3p sponge, which promoted malignant progression and immune evasion of colorectal cancer cells. SIGNIFICANCE STATEMENT: circ-keratin 6c could increase programmed cell death receptor ligand 1 expression by functioning as a microRNA-16-5p sponge, which promoted malignant progression and immune evasion of colorectal cancer.
Collapse
Affiliation(s)
- Zhipeng Jiang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| | - Zehui Hou
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| | - Wei Liu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| | - Zhuomin Yu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| | - Zhiqiang Liang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| | - Shuang Chen
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| |
Collapse
|
17
|
Solé C, Lawrie CH. MicroRNAs in Metastasis and the Tumour Microenvironment. Int J Mol Sci 2021; 22:4859. [PMID: 34064331 PMCID: PMC8125549 DOI: 10.3390/ijms22094859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the process whereby cancer cells migrate from the primary tumour site to colonise the surrounding or distant tissue or organ. Metastasis is the primary cause of cancer-related mortality and approximately half of all cancer patients present at diagnosis with some form of metastasis. Consequently, there is a clear need to better understand metastasis in order to develop new tools to combat this process. MicroRNAs (miRNAs) regulate gene expression and play an important role in cancer development and progression including in the metastatic process. Particularly important are the roles that miRNAs play in the interaction between tumour cells and non-tumoral cells of the tumour microenvironment (TME), a process mediated largely by circulating miRNAs contained primarily in extracellular vesicles (EVs). In this review, we outline the accumulating evidence for the importance of miRNAs in the communication between tumour cells and the cells of the TME in the context of the pre-metastatic and metastatic niche.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastian, Spain;
| | - Charles Henderson Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX4 3DU, UK
| |
Collapse
|
18
|
Liang C, Zhang X, Wang Z, Wang W, Yang M, Dong X. Organic/inorganic nanohybrids rejuvenate photodynamic cancer therapy. J Mater Chem B 2021; 8:4748-4763. [PMID: 32129418 DOI: 10.1039/d0tb00098a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of nanotechnology has changed the 100-year-old paradigm of photodynamic therapy (PDT), in which organic/inorganic hybrid nanomaterials have made great contributions. In this review, we first describe the mechanisms of PDT and discuss the limitations of conventional PDT. On this basis, we summarize recent progress in organic/inorganic nanohybrids-based photodynamic agents, highlighting how these nanohybrids can be programmed to overcome challenges in photodynamic cancer therapy.
Collapse
Affiliation(s)
- Chen Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China. and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China.
| | - Xinglin Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
| | - Zhichao Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China. and School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
19
|
Liu X, Jiang J, Liao Y, Tang I, Zheng E, Qiu W, Lin M, Wang X, Ji Y, Mei K, Liu Q, Chang CH, Wainberg ZA, Nel AE, Meng H. Combination Chemo-Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Anti-PD-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002147. [PMID: 33747719 PMCID: PMC7967046 DOI: 10.1002/advs.202002147] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/24/2020] [Indexed: 05/07/2023]
Abstract
There is an urgent need to develop new life-prolonging therapy for pancreatic ductal adenocarcinoma (PDAC). It is demonstrated that improved irinotecan delivery by a lipid bilayer coated mesoporous silica nanoparticle, also known as a silicasome, can improve PDAC survival through a chemo-immunotherapy response in an orthotopic Kras-dependent pancreatic cancer model. This discovery is premised on the weak-basic properties of irinotecan, which neutralizes the acidic lysosomal pH in PDAC cells. This effect triggers a linked downstream cascade of events that include autophagy inhibition, endoplasmic reticulum stress, immunogenic cell death (ICD), and programmed death-ligand 1 (PD-L1) expression. ICD is characterized by calreticulin expression and high-mobility group box 1 (HMGB1) release in dying Kras-induced pancreatic cancer (KPC) cells, which is demonstrated in a vaccination experiment to prevent KPC tumor growth on the contralateral site. The improved delivery of irinotecan by the silicasome is accompanied by robust antitumor immunity, which can be synergistically enhanced by anti-PD-1 in the orthotopic model. Immunophenotyping confirms the expression of calreticulin, HMGB1, PD-L1, and an autophagy marker, in addition to perforin and granzyme B deposition. The chemo-immunotherapy response elicited by the silicasome is more robust than free or a liposomal drug, Onivyde. The silicasome plus anti-PD-1 leads to significantly enhanced survival improvement, and is far superior to anti-PD-1 plus either free irinotecan or Onivyde.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
- Present address:
The Cancer Hospital of the University of Chinese Academy of SciencesInstitute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Jinhong Jiang
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Yu‐Pei Liao
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Ivanna Tang
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Emily Zheng
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Waveley Qiu
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Matthew Lin
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Xiang Wang
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Ying Ji
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Kuo‐Ching Mei
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Qi Liu
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Chong Hyun Chang
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Zev A. Wainberg
- Division of Hematology OncologyDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Andre E. Nel
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Huan Meng
- Division of NanomedicineDepartment of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| |
Collapse
|
20
|
Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 2021; 11:55-70. [PMID: 33532180 PMCID: PMC7838023 DOI: 10.1016/j.apsb.2020.09.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with functions similar to those of normal stem cells. Although few in number, they are capable of self-renewal, unlimited proliferation, and multi-directional differentiation potential. In addition, CSCs have the ability to escape immune surveillance. Thus, they play an important role in the occurrence and development of tumors, and they are closely related to tumor invasion, metastasis, drug resistance, and recurrence after treatment. Therefore, specific targeting of CSCs may improve the efficiency of cancer therapy. A series of corresponding promising therapeutic strategies based on CSC targeting, such as the targeting of CSC niche, CSC signaling pathways, and CSC mitochondria, are currently under development. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for CSC targeting are increasingly being developed. In this review, we summarize the advances in CSC-targeted DDSs. Furthermore, we highlight the latest developmental trends through the main line of CSC occurrence and development process; some considerations about the rationale, advantages, and limitations of different DDSs for CSC-targeted therapies were discussed.
Collapse
Key Words
- ABC, ATP binding cassette
- AFN, apoferritin
- ALDH, aldehyde dehydrogenase
- BM-MSCs-derived Exos, bone marrow mesenchymal stem cells-derived exosomes
- Biomarker
- CAFs, cancer-associated fibroblasts
- CL-siSOX2, cationic lipoplex of SOX2 small interfering RNA
- CMP, carbonate-mannose modified PEI
- CQ, chloroquine
- CSCs, cancer stem cells
- Cancer stem cells
- Cancer treatment
- Cellular level
- DCLK1, doublecortin-like kinase 1
- DDSs, drug delivery systems
- DLE, drug loading efficiency
- DOX, doxorubicin
- DQA-PEG2000-DSPE, dequlinium and carboxyl polyethylene glycol-distearoylphosphatidylethanolamine
- Dex, dexamethasone
- Drug delivery systems
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- EPND, nanodiamond-Epirubicin drug complex
- EpCAM, epithelial cell adhesion molecule
- GEMP, gemcitabine monophosphate
- GLUT1, glucose ligand to the glucose transporter 1
- Glu, glucose
- HCC, hepatocellular carcinoma
- HH, Hedgehog
- HIF1α, hypoxia-inducible factor 1-alpha
- HNSCC, head and neck squamous cell carcinoma
- IONP, iron oxide nanoparticle
- LAC, lung adenocarcinoma
- LNCs, lipid nanocapsules
- MAPK, mitogen-activated protein kinase
- MB, methylene blue
- MDR, multidrug resistance
- MNP, micellar nanoparticle
- MSNs, mesoporous silica nanoparticles
- Molecular level
- NF-κB, nuclear factor-kappa B
- Nav, navitoclax
- Niche
- PBAEs, poly(β-aminoester)
- PDT, photodynamic therapy
- PEG-PCD, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol)
- PEG-PLA, poly(ethylene glycol)-b-poly(d,l-lactide)
- PEG-b-PLA, poly(ethylene glycol)-block-poly(d,l-lactide)
- PLGA, poly(ethylene glycol)-poly(d,l-lactide-co-glycolide)
- PTX, paclitaxel
- PU-PEI, polyurethane-short branch-polyethylenimine
- SLNs, solid lipid nanoparticles
- SSCs, somatic stem cells
- Sali-ABA, 4-(aminomethyl) benzaldehyde-modified Sali
- TNBC, triple negative breast cancer
- TPZ, tirapazamine
- Targeting strategies
- cRGD, cyclic Arg-Gly-Asp
- iTEP, immune-tolerant, elastin-like polypeptide
- mAbs, monoclonal antibodies
- mPEG-b-PCC-g-GEM-g-DC-g-CAT, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-cationic ligands)
- ncRNA, non-coding RNAs
- uPAR, urokinase plasminogen activator receptor
Collapse
Affiliation(s)
- Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
21
|
Lai Benjamin FL, Lu Rick X, Hu Y, Davenport HL, Dou W, Wang EY, Radulovich N, Tsao MS, Sun Y, Radisic M. Recapitulating pancreatic tumor microenvironment through synergistic use of patient organoids and organ-on-a-chip vasculature. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000545. [PMID: 33692660 PMCID: PMC7939064 DOI: 10.1002/adfm.202000545] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tumor progression relies heavily on the interaction between the neoplastic epithelial cells and their surrounding stromal partners. This cell cross-talk affects stromal development, and ultimately the heterogeneity impacts drug efflux and efficacy. To mimic this evolving paradigm, we have micro-engineered a three-dimensional (3D) vascularized pancreatic adenocarcinoma tissue in a tri-culture system composed of patient derived pancreatic organoids, primary human fibroblasts and endothelial cells on a perfusable InVADE platform situated in a 96-well plate. Uniquely, through synergistic engineering we combined the benefits of cellular fidelity of patient tumor derived organoids with the addressability of a plastic organ-on-a-chip platform. Validation of this platform included demonstrating the growth of pancreatic tumor organoids by monitoring the change in metabolic activity of the tissue. Investigation of tumor microenvironmental behavior highlighted the role of fibroblasts in symbiosis with patient organoid cells, resulting in a six-fold increase of collagen deposition and a corresponding increase in tissue stiffness in comparison to fibroblast free controls. The value of a perfusable vascular network was evident in drug screening, as perfusion of gemcitabine into a stiffened matrix did not show the dose-dependent effects on tumor viability as those under static conditions. These findings demonstrate the importance of studying the dynamic synergistic relationship between patient cells with stromal fibroblasts, in a 3D perfused vascular network, to accurately understand and recapitulate the tumor microenvironment.
Collapse
Affiliation(s)
- F L Lai Benjamin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - X Lu Rick
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yangshuo Hu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Huyer Locke Davenport
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Wenkun Dou
- Material Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Erika Y Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming S Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yu Sun
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Material Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Pimenova EA, Reunova YA, Menchinskaya ES, Reunov AA, Aminin DL. An Unusual Pathway of Mitoptosis Found in Ehrlich Carcinoma Cells. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2020; 494:240-243. [PMID: 33083881 DOI: 10.1134/s0012496620050063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
An integrated microscopic study of the destruction of mouse Ehrlich ascites carcinoma (EAC) cells under starvation conditions has been carried out. It has been found that, in addition to apoptosis, necrosis, and apoptotic necrosis, already known for EAC, cell destruction can also occur through mitochondrial autolysis, which is proposed to be considered a new kind of mitoptosis. A mitoptosis in EAC is characterized by the appearance of many autolyzing mitochondria, the fusion of which leads to rupture of the cell membrane and the ejection of the nucleus from the cell. It is assumed that the polymorphism of EAC destruction patterns is explained by the different physiological state of the cells, which determines the "choice" of the cell death mechanism. This situation poses a challenge for researchers to develop complex inducers with the ability to stimulate all possible types of cancer cell death.
Collapse
Affiliation(s)
- E A Pimenova
- A.V. Zhirmunsky National Scientific Centre of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia.
| | - Yu A Reunova
- A.V. Zhirmunsky National Scientific Centre of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - E S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690022, Vladivostok, Russia
| | - A A Reunov
- A.V. Zhirmunsky National Scientific Centre of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia.,St. Francis Xavier University, Antigonish NS B2G 2W5, Nova Scotia, Canada
| | - D L Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690022, Vladivostok, Russia.,Kaohsiung Medical University, Kaohsiung, Taiwan, 807
| |
Collapse
|
23
|
Huo D, Jiang X, Hu Y. Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904337. [PMID: 31663198 DOI: 10.1002/adma.201904337] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Engineered nanomaterials have been extensively employed as therapeutics for tumor management. Meanwhile, the complex tumor niche along with multiple barriers at the cellular level collectively hinders the action of nanomedicines. Here, the advanced strategies that hold promise for overcoming the numerous biological barriers facing nanomedicines are summarized. Starting from tumor entry, methods that promote tissue penetration of nanomedicine and address the hypoxia issue are also highlighted. Then, emphasis is given to the significance of overcoming both physical barriers, such as membrane-associated efflux pumps, and biological features, such as resistance to apoptosis. The pros and cons for an individual approach are presented. In addition, the associated technical problems are discussed, along with the importance of balancing the therapeutic merits and the additional cost of sophisticated nanomedicine designs.
Collapse
Affiliation(s)
- Da Huo
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
24
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Dwivedi P, Kiran S, Han S, Dwivedi M, Khatik R, Fan R, Mangrio FA, Du K, Zhu Z, Yang C, Huang F, Ejaz A, Han R, Si T, Xu RX. Magnetic Targeting and Ultrasound Activation of Liposome-Microbubble Conjugate for Enhanced Delivery of Anticancer Therapies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23737-23751. [PMID: 32374147 DOI: 10.1021/acsami.0c05308] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Effective delivery of chemotherapeutics with minimal toxicity and maximal outcome is clinically important but technically challenging. Here, we synthesize a complex of doxorubicin (DOX)-loaded magneto-liposome (DOX-ML) microbubbles (DOX-ML-MBs) for magnetically responsive and ultrasonically sensitive delivery of anticancer therapies with enhanced efficiency. Citrate-stabilized iron oxide nanoparticles (MNs) of 6.8 ± 1.36 nm were synthesized, loaded with DOX in the core of oligolamellar vesicles of 172 ± 9.2 nm, and covalently conjugated with perfluorocarbon (PFC)-gas-loaded microbubbles to form DOX-ML-MBs of ∼4 μm. DOX-ML-MBs exhibited significant magnetism and were able to release chemotherapeutics and DOX-MLs instantly upon exposure to ultrasound (US) pulses. In vitro studies showed that DOX-ML-MBs in the presence of US pulses promoted apoptosis and were highly effective in killing both BxPc-3 and Panc02 pancreatic cancer cells even at a low dose. Significant reduction in the tumor volume was observed after intravenous administration of DOX-ML-MBs in comparison to the control group in a pancreatic cancer xenograft model of nude mice. Deeply penetrated iron oxide nanoparticles throughout the magnetically targeted tumor tissues in the presence of US stimulation were clearly observed. Our study demonstrated the potential of using DOX-ML-MBs for site-specific targeting and controlled drug release. It opens a new avenue for the treatment of pancreatic cancer and other tissue malignancies where precise delivery of therapeutics is necessary.
Collapse
Affiliation(s)
- Pankaj Dwivedi
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Sonia Kiran
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuya Han
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Monika Dwivedi
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Renuka Khatik
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Rong Fan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Farhana Akbar Mangrio
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Kun Du
- Department of Electronic Science and Technology, University of Science and Technology of China Hefei, Hefei, Anhui 230027, P. R. China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Chaoyu Yang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Fangsheng Huang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Aslam Ejaz
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Renzhi Han
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ting Si
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
26
|
Madamsetty VS, Pal K, Dutta SK, Wang E, Mukhopadhyay D. Targeted Dual Intervention-Oriented Drug-Encapsulated (DIODE) Nanoformulations for Improved Treatment of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12051189. [PMID: 32397114 PMCID: PMC7281578 DOI: 10.3390/cancers12051189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Despite recent advancements, effective treatment for pancreatic ductal adenocarcinoma (PDAC) has remained elusive. The overall survival rate in PDAC patients has been dismally low due to resistance to standard therapies. In fact, the failure of monotherapies to provide long-term survival benefits in patients led to ascension of several combination therapies for PDAC treatment. However, these combination therapies provided modest survival improvements while increasing treatment-related adverse side effects. Hence, recent developments in drug delivery methods hold the potential for enhancing therapeutic benefits by offering cocktail drug loading and minimizing chemotherapy-associated side effects. Nanoformulations-aided deliveries of anticancer agents have been a success in recent years. Yet, improving the tumor-targeted delivery of drugs to PDAC remains a major hurdle. In the present paper, we developed several new tumor-targeted dual intervention-oriented drug-encapsulated (DIODE) liposomes. We successfully formulated liposomes loaded with gemcitabine (G), paclitaxel (P), erlotinib (E), XL-184 (c-Met inhibitor, X), and their combinations (GP, GE, and GX) and evaluated their in vitro and in vivo efficacies. Our novel DIODE liposomal formulations improved median survival in comparison with gemcitabine-loaded liposomes or vehicle. Our findings are suggestive of the importance of the targeted delivery for combination therapies in improving pancreatic cancer treatment.
Collapse
|
27
|
Darrigues E, Nima ZA, Nedosekin DA, Watanabe F, Alghazali KM, Zharov VP, Biris AS. Tracking Gold Nanorods' Interaction with Large 3D Pancreatic-Stromal Tumor Spheroids by Multimodal Imaging: Fluorescence, Photoacoustic, and Photothermal Microscopies. Sci Rep 2020; 10:3362. [PMID: 32099027 PMCID: PMC7042370 DOI: 10.1038/s41598-020-59226-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/24/2020] [Indexed: 01/31/2023] Open
Abstract
Pancreatic cancer is one of the most complex types of cancers to detect, diagnose, and treat. However, the field of nanomedicine has strong potential to address such challenges. When evaluating the diffusion and penetration of theranostic nanoparticles, the extracellular matrix (ECM) is of crucial importance because it acts as a barrier to the tumor microenvironment. In the present study, the penetration of functionalized, fluorescent gold nanorods into large (>500 μm) multicellular 3D tissue spheroids was studied using a multimodal imaging approach. The spheroids were generated by co-culturing pancreatic cancer cells and pancreatic stellate cells in multiple ratios to mimic variable tumor-stromal compositions and to investigate nanoparticle penetration. Fluorescence live imaging, photothermal, and photoacoustic analysis were utilized to examine nanoparticle behavior in the spheroids. Uniquely, the nanorods are intrinsically photoacoustic and photothermal, enabling multi-imaging detection even when fluorescence tracking is not possible or ideal.
Collapse
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA.
| | - Zeid A Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA
| | - Dmitry A Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA
| | - Karrer M Alghazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA
| | - Vladimir P Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA.
| |
Collapse
|
28
|
Etman SM, Abdallah OY, Elnaggar YSR. Novel fucoidan based bioactive targeted nanoparticles from Undaria Pinnatifida for treatment of pancreatic cancer. Int J Biol Macromol 2020; 145:390-401. [PMID: 31881303 DOI: 10.1016/j.ijbiomac.2019.12.177] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Fucoidan is a marine polymer extracted from diverse types of brown algae. This polysaccharide showed great potential towards treatment of different types of cancer. In this study, the activity of fucoidan extracted from Undaria Pinnatifida was investigated against pancreatic cancer (one of the most life-threatening cancers). Then, in an attempt to enhance the polymer's activity against cancer cells, conversion the polymer solution to nanoparticles was suggested to enhance its delivery through pancreatic cancer surrounding stroma. Novel fucoidan based nanoparticles were elaborated by polyelectrolyte interaction with the positively charged, active targeting ligand lactoferrin. The formulation was optimized through the interplay between different factors. Effect of fucoidan solution along with its blank nanoparticles was tested on the viability of pancreatic cancer cells and its migration and invasion abilities. Results confirmed the cytotoxic ability of fucoidan against pancreatic cancer. IC50 value decreased by 2.3 folds when the polymer was converted to nanoparticles. The prepared nanosystems showed an enhanced ability to prevent pancreatic cancer cells' migration and invasion. Results suggested the potential of using these nanoparticles as bioactive dual-targeted system either blank or loaded with different anticancer agents for treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Egypt.
| |
Collapse
|
29
|
Abstract
Rapidly increasing scientific reports of exosomes and their biological effects have improved our understanding of their cellular sources and their cell-to-cell communication. These nano-sized vesicles act as potent carriers of regulatory bio-macromolecules and can induce regulatory functions by delivering them from its source to recipient cells. The details of their communication network are less understood. Recent studies have shown that apart from delivering its cargo to the cells, it can directly act on extracellular matrix (ECM) proteins and growth factors and can induce various remodeling events. More importantly, exosomes carry many surface-bound proteases, which can cleave different ECM proteins and carbohydrates and can shed cell surface receptors. These local extracellular events can modulate signaling cascades, which consequently influences the whole tissue and organ. This review aims to highlight the critical roles of exosomal proteases and their mechanistic insights within the cellular and extracellular environment.
Collapse
|
30
|
Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev 2020; 163-164:98-124. [PMID: 32681862 DOI: 10.1016/j.addr.2020.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hyperthermia has demonstrated clinical success in improving the efficacy of both chemo- and radio-therapy in solid tumors. Pre-clinical and clinical research studies have demonstrated that targeted hyperthermia can increase tumor blood flow and increase the perfused fraction of the tumor in a temperature and time dependent manner. Changes in tumor blood circulation can produce significant physiological changes including enhanced vascular permeability, increased oxygenation, decreased interstitial fluid pressure, and reestablishment of normal physiological pH conditions. These alterations in tumor physiology can positively impact both small molecule and nanomedicine chemotherapy accumulation and distribution within the tumor, as well as the fraction of the tumor susceptible to radiation therapy. Hyperthermia can trigger drug release from thermosensitive formulations and further improve the accumulation, distribution, and efficacy of chemotherapy.
Collapse
|
31
|
Goos JA, Cho A, Carter LM, Dilling TR, Davydova M, Mandleywala K, Puttick S, Gupta A, Price WS, Quinn JF, Whittaker MR, Lewis JS, Davis TP. Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect. Theranostics 2020; 10:567-584. [PMID: 31903138 PMCID: PMC6929988 DOI: 10.7150/thno.36777] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Expression levels of biomarkers are generally unknown at initial diagnosis. The development of theranostic probes that do not rely on biomarker availability would expand therapy options for cancer patients, improve patient selection for nanomedicine and facilitate treatment of inoperable patients or patients with acquired therapy resistance. Herein, we report the development of star polymers, also known as nanostars, that allow for molecular imaging and/or endoradiotherapy based on passive targeting via the enhanced permeability and retention (EPR) effect. Methods: We synthesised a star copolymer, consisting of 7-8 centre-cross-linked arms that were modified with Gd3+ for magnetic resonance imaging (MRI), and functionalised either with 89Zr for in vivo quantification and positron emission tomography (PET) imaging, or with 177Lu for endoradiotherapy. 1H longitudinal relaxivities were determined over a continuum of magnetic field strengths ranging from 0.24 mT - 0.94 T at 37 °C (nuclear magnetic relaxation dispersion (NMRD) profile) and T 1-weighted MRI contrast enhancement was visualized at 3 T and 7 T. PET imaging and ex vivo biodistribution studies were performed in mice bearing tumours with high EPR (CT26) or low EPR (BxPC3) characteristics. Therapy studies were performed in mice with high EPR tumours and mean absorbed organ doses were estimated for a standard human model. Results: The star copolymer with Gd3+ displayed a significantly superior contrast enhancement ability (T 1 = 0.60 s) compared to the standard clinical contrast agent Gadovist (T 1 = 1.0 s). Quantification of tumour accumulation using the radiolabelled nanostars in tumour-bearing mice demonstrated an exceptionally high uptake in tumours with high EPR characteristics (14.8 - 21.7 %ID/g). Uptake of the star polymers in tumours with low EPR characteristics was significantly lower (P<0.001), suggesting passive tumour accumulation of the nanostars via the EPR effect. Survival of mice treated with high dose 177Lu-labelled star polymers was significantly higher than survival of mice treated with lower therapy doses or control mice (P=0.001), demonstrating the utility of the 177Lu-labelled star polymers as platforms for endoradiotherapy. Conclusion: Our work highlights the potential of star polymers as probes for the molecular imaging of cancer tissue or for the passive delivery of radionuclides for endoradiotherapy. Their high functionalisability and high tumour accumulation emphasises their versatility as powerful tools for nanomedicine.
Collapse
|
32
|
Liu X, Jiang J, Meng H. Transcytosis - An effective targeting strategy that is complementary to "EPR effect" for pancreatic cancer nano drug delivery. Theranostics 2019; 9:8018-8025. [PMID: 31754378 PMCID: PMC6857052 DOI: 10.7150/thno.38587] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/16/2019] [Indexed: 01/10/2023] Open
Abstract
Numerous nano drug delivery systems have been developed for preclinical cancer research in the past 15 years with the hope for a fundamental change in oncology. The robust nanotherapeutic research has yielded early-stage clinical products as exemplified by the FDA-approved nano formulations (Abraxane® for paclitaxel and Onyvide® for irinotecan) for the treatment of solid tumors, including pancreatic ductal adenocarcinoma (PDAC). It is generally believed that enhanced permeability and retention (EPR) plays a key role in nanocarriers' accumulation in preclinical tumor models and is a clinically relevant phenomenon in certain cancer types. However, use of EPR effect as an across-the-board explanation for nanoparticle tumor access is likely over-simplified, particularly in the stroma rich solid tumors such as PDAC. Recently, ample evidences including our own data showed that it is possible to use transcytosis as a major mechanism for PDAC drug delivery. In this mini-review, we summarize the key studies that discuss how transcytosis can be employed to enhance EPR effect in PDAC, and potentially, other cancer malignancies. We also mentioned other vasculature engineering approaches that work beyond the classic EPR effect.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jinhong Jiang
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Huan Meng
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
33
|
Lenggenhager D, Amrutkar M, Sántha P, Aasrum M, Löhr JM, Gladhaug IP, Verbeke CS. Commonly Used Pancreatic Stellate Cell Cultures Differ Phenotypically and in Their Interactions with Pancreatic Cancer Cells. Cells 2019; 8:cells8010023. [PMID: 30621293 PMCID: PMC6356867 DOI: 10.3390/cells8010023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Activated pancreatic stellate cells (PSCs) play a central role in the tumor stroma of pancreatic ductal adenocarcinoma (PDAC). Given the limited availability of patient-derived PSCs from PDAC, immortalized PSC cell lines of murine and human origin have been established; however, it is not elucidated whether differences in species, organ disease status, donor age, and immortalization alter the PSC phenotype and behavior compared to that of patient-derived primary PSC cultures. Therefore, a panel of commonly used PSC cultures was examined for important phenotypical and functional features: three primary cultures from human PDAC, one primary from normal human pancreas, and three immortalized (one from human, two from murine pancreas). Growth rate was considerably lower in primary PSCs from human PDAC. Basal collagen synthesis varied between the PSC cultures, and TGF-β stimulation increased collagen synthesis only in non-immortalized cultures. Differences in secretome composition were observed along with a divergence in the DNA synthesis, migration, and response to gemcitabine of PDAC cell lines that were grown in conditioned medium from the various PSC cultures. The findings reveal considerable differences in features and functions that are key to PSCs and in the interactions with PDAC. These observations may be relevant to researchers when selecting the most appropriate PSC culture for their experiments.
Collapse
Affiliation(s)
- Daniela Lenggenhager
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316 Oslo, Norway.
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316 Oslo, Norway.
- Department of Pathology and Molecular Pathology, University Hospital Zürich, University of Zürich, Schmelzbergstrasse 12, 8091 Zürich, Switzerland.
| | - Manoj Amrutkar
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316 Oslo, Norway.
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway.
| | - Petra Sántha
- Department of Pathology, Oslo University Hospital Rikshospitalet, Nydalen, 0424 Oslo, Norway.
| | - Monica Aasrum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316 Oslo, Norway.
| | - Johannes-Matthias Löhr
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, K 53, 141 86 Stockholm, Sweden.
| | - Ivar P Gladhaug
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway.
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital Rikshospitalet, Nydalen, 0424 Oslo, Norway.
| | - Caroline S Verbeke
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316 Oslo, Norway.
- Department of Pathology, Oslo University Hospital Rikshospitalet, Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
34
|
Bahmani B, Uehara M, Ordikhani F, Li X, Jiang L, Banouni N, Ichimura T, Kasinath V, Eskandari SK, Annabi N, Bromberg JS, Shultz LD, Greiner DL, Abdi R. Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: A unique site for targeted delivery. EBioMedicine 2018; 38:79-88. [PMID: 30497977 PMCID: PMC6306381 DOI: 10.1016/j.ebiom.2018.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nanomedicine offers an excellent opportunity to tackle treatment-refractory malignancies by enhancing the delivery of therapeutics to the tumor site. High endothelial venules (HEVs) are found primarily in lymph nodes or formed de novo in peripheral tissues during inflammatory responses. They express peripheral node addressin (PNAd), which is recognized by the monoclonal antibody MECA79. METHODS Here, we demonstrated that HEVs form de novo in human pancreatic ductal adenocarcinoma (PDAC). We engineered MECA79 coated nanoparticles (MECA79-NPs) that recognize these ectopic HEVs in PDAC. FINDINGS The trafficking of MECA79-NPs following intravenous delivery to human PDAC implanted in a humanized mouse model was more robust than non-conjugated NPs. Treatment with MECA79-Taxol-NPs augmented the delivery of Paclitaxel (Taxol) to the tumor site and significantly reduced the tumor size. This effect was associated with a higher apoptosis rate of PDAC cells and reduced vascularization within the tumor. INTERPRETATION Targeting the HEVs of PDAC using MECA79-NPs could lay the ground for the localized delivery of a wide variety of drugs including chemotherapeutic agents. FUND: National Institutes of Health (NIH) grants: T32-EB016652 (B·B.), NIH Cancer Core Grant CA034196 (L.D.S.), National Institute of Allergy and Infectious Diseases grants R01-AI126596 and R01-HL141815 (R.A.).
Collapse
Affiliation(s)
- Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siawosh K Eskandari
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, CA 90095, USA
| | - Jonathan S Bromberg
- Department of Surgery and Microbiology and Immunobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Leonard D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Dale L Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Henry KE, Dacek MM, Dilling TR, Caen JD, Fox IL, Evans MJ, Lewis JS. A PET Imaging Strategy for Interrogating Target Engagement and Oncogene Status in Pancreatic Cancer. Clin Cancer Res 2018; 25:166-176. [PMID: 30228208 DOI: 10.1158/1078-0432.ccr-18-1485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/17/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers, with a 5-year survival rate of less than 10%. Physicians often rely on biopsy or CT to guide treatment decisions, but these techniques fail to reliably measure the actions of therapeutic agents in PDAC. KRAS mutations are present in >90% of PDAC and are connected to many signaling pathways through its oncogenic cascade, including extracellular regulated kinase (ERK) and MYC. A key downstream event of MYC is transferrin receptor (TfR), which has been identified as a biomarker for cancer therapeutics and imaging. EXPERIMENTAL DESIGN In this study, we aimed to test whether zirconium-89 transferrin ([89Zr]Zr-Tf) could measure changes in MYC depending on KRAS status of PDAC, and assess target engagement of anti-MYC and anti-ERK-targeted therapies. RESULTS Mice bearing iKras*p53* tumors showed significantly higher (P < 0.05) uptake of [89Zr]Zr-Tf in mice withdrawn from inducible oncogenic KRAS. A therapy study with JQ1 showed a statistically significant decrease (P < 0.05) of [89Zr]Zr-Tf uptake in drug versus vehicle-treated mice bearing Capan-2 and Suit-2 xenografts. IHC analysis of resected PDAC tumors reflects the data observed via PET imaging and radiotracer biodistribution. CONCLUSIONS Our study demonstrates that [89Zr]Zr-Tf is a valuable tool to noninvasively assess oncogene status and target engagement of small-molecule inhibitors downstream of oncogenic KRAS, allowing a quantitative assessment of drug delivery.
Collapse
Affiliation(s)
- Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megan M Dacek
- Program of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan D Caen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian L Fox
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Evans
- Departments of Radiology and Biomedical Imaging, and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Program of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
36
|
Sielaff CM, Mousa SA. Status and future directions in the management of pancreatic cancer: potential impact of nanotechnology. J Cancer Res Clin Oncol 2018; 144:1205-1217. [PMID: 29721665 DOI: 10.1007/s00432-018-2651-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at a late stage, has limited treatments, and patients have poor survival rates. It currently ranks as the seventh leading cause of cancer deaths globally and has increasing rates of diagnosis. Improved PDAC treatment requires the development of innovative, effective, and economical therapeutic drugs. The late stage diagnosis limits options for surgical resection, and traditional PDAC chemotherapeutics correlate with increased organ and hematologic toxicity. In addition, PDAC tumor tissue is dense and highly resistant to many traditional chemotherapeutic applications, making the disease difficult to treat and impeding options for palliative care. New developments in nanotechnology may offer innovative options for targeted PDAC therapeutic drug delivery. Nanotechnology can be implemented using multimodality methods that offer increased opportunities for earlier diagnosis, precision enhanced imaging, targeted long-term tumor surveillance, and controlled drug delivery, as well as improved palliative care and patient comfort. Nanoscale delivery methods have demonstrated the capacity to infiltrate the dense, fibrous tumor tissue associated with PDAC, increasing delivery and effectiveness of chemotherapeutic agents and reducing toxicity through the loading of multiple drug therapies on a single nano delivery vehicle. This review presents an overview of nanoscale drug delivery systems and multimodality carriers at the forefront of new PDAC treatments.
Collapse
Affiliation(s)
- Catherine M Sielaff
- Department of Toxicology, School of Pharmacy, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA.
| |
Collapse
|
37
|
Meng H, Nel AE. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Adv Drug Deliv Rev 2018; 130:50-57. [PMID: 29958925 DOI: 10.1016/j.addr.2018.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
While chemotherapy is the only approved non-surgical option for the majority of pancreatic cancer patients, it rarely results in a cure. The failure to respond to chemotherapy is due to the presence of an abundant dysplastic stroma that interferes in drug delivery and as a result of drug resistance. It is appropriate, therefore, to consider the stromal contribution to the resistance to chemotherapy and sidestepping this barrier with nanocarriers that improve survival outcome. In this paper, we provide a short overview of the role of the stroma in chemotherapy resistance, including the use of nanocarriers to negate this barrier. We provide a perspective and guidance towards the implementation of nanotherapeutic approaches to improve therapeutic delivery and efficacy of PDAC management.
Collapse
Affiliation(s)
- Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, United States of America; California NanoSystems Institute, University of California, Los Angeles, United States of America.
| | - Andre E Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, United States of America; California NanoSystems Institute, University of California, Los Angeles, United States of America.
| |
Collapse
|
38
|
Reunov A, Reunov A, Pimenova E, Reunova Y, Menchinskaiya E, Lapshina L, Aminin D. The study of the calpain and caspase-1 expression in ultrastructural dynamics of Ehrlich ascites carcinoma necrosis. Gene 2018. [PMID: 29518545 DOI: 10.1016/j.gene.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An expression of calpain and caspase-1 as well as the concomitant ultrastructural alterations were investigated during necrosis of the mouse Ehrlich ascites carcinoma. The calpain expression was registered at 0 h and 1 h although caspase-1 did not induce any signals during these time periods. The rise of the cytoplasmic lytic zones contacted by calpain antibodies was identified as a morphologic event corresponding to the expression of calpain. Lytic zone's distribution followed by the appearance of the calpain/caspase-1 clusters assigned for lysis of the Golgi vesicles and ER. Also, the microapocrine secretion of the vesicles containing the calpain/caspase-1 clusters was detected. Further, the lysis of the plasma membrane occurred due to progression of intracellular lysis. Rupture of the plasma membrane resulted in the termination of secretion and dissemination of cell contents. The nuclei still had their normal shape. Nuclear lysis continued to rise with intranuclear lytic zones, of which the progression was accompanied with the presence of calpain/caspase-1 clusters. The data contribute to the concept of the initial role of calpain for tumor cell destruction, provide first evidence of the calpain/caspase-1 pathway in tumor cells, and highlight microapocrine secretion as a possible tumor cell death signalling mechanism.
Collapse
Affiliation(s)
- Arkadiy Reunov
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada.
| | - Anatoliy Reunov
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Evgenia Pimenova
- National Scientific Centre of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Yulia Reunova
- National Scientific Centre of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Ekaterina Menchinskaiya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Larisa Lapshina
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Dmitry Aminin
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| |
Collapse
|
39
|
Amrutkar M, Gladhaug IP. Pancreatic Cancer Chemoresistance to Gemcitabine. Cancers (Basel) 2017; 9:E157. [PMID: 29144412 PMCID: PMC5704175 DOI: 10.3390/cancers9110157] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), commonly referred to as pancreatic cancer, ranks among the leading causes of cancer-related deaths in the Western world due to disease presentation at an advanced stage, early metastasis and generally a very limited response to chemotherapy or radiotherapy. Gemcitabine remains a cornerstone of PDAC treatment in all stages of the disease despite suboptimal clinical effects primarily caused by molecular mechanisms limiting its cellular uptake and activation and overall efficacy, as well as the development of chemoresistance within weeks of treatment initiation. To circumvent gemcitabine resistance in PDAC, several novel therapeutic approaches, including chemical modifications of the gemcitabine molecule generating numerous new prodrugs, as well as new entrapment designs of gemcitabine in colloidal systems such as nanoparticles and liposomes, are currently being investigated. Many of these approaches are reported to be more efficient than the parent gemcitabine molecule when tested in cellular systems and in vivo in murine tumor model systems; however, although promising, their translation to clinical use is still in a very early phase. This review discusses gemcitabine metabolism, activation and chemoresistance entities in the gemcitabine cytotoxicity pathway and provides an overview of approaches to override chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Manoj Amrutkar
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, PO Box 1057 Blindern, 0316 Oslo, Norway.
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, PO Box 1171 Blindern, 0318 Oslo, Norway.
| | - Ivar P Gladhaug
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, PO Box 1171 Blindern, 0318 Oslo, Norway.
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
40
|
Chandra D, Selvanesan BC, Yuan Z, Libutti SK, Koba W, Beck A, Zhu K, Casadevall A, Dadachova E, Gravekamp C. 32-Phosphorus selectively delivered by listeria to pancreatic cancer demonstrates a strong therapeutic effect. Oncotarget 2017; 8:20729-20740. [PMID: 28186976 PMCID: PMC5400540 DOI: 10.18632/oncotarget.15117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/24/2017] [Indexed: 12/21/2022] Open
Abstract
Our laboratory has developed a novel delivery platform using an attenuated non-toxic and non-pathogenic bacterium Listeria monocytogenes that infects tumor cells and selectively survives and multiplies in metastases and primary tumors with help of myeloid-derived suppressor cells (MDSC) and immune suppression in the tumor microenvironment (TME). 32P was efficiently incorporated into the Listeria bacteria by starvation of the bacteria in saline, and then cultured in phosphorus-free medium complemented with 32P as a nutrient. Listeria-32P kills tumor cells through both 32P-induced ionizing radiation and Listeria-induced reactive oxygen species (ROS). The levels of 32P and Listeria were studied in various normal and tumor tissues, at sequential time points after injection of mice with pancreatic cancer (syngeneic model Panc-02). We found that 32P and Listeria predominantly accumulated in tumors and metastases, with their highest accumulation 4 hrs (32P) and 3 days (Listeria) after injection. Listeria also penetrated the transgenic KPC (conditionally express endogenous Kras-G12D and p53-R172H mutant alleles) pancreatic tumors and metastases. This is remarkable since KPC tumors, like human tumors, exhibit a stromal barrier, which prevents most drugs from penetrating the pancreatic tumors. Therapeutic treatment with Listeria -32P resulted in a strong reduction of the growth of pancreatic cancer at early and late stages in Panc-02 and KPC mice. These results highlight the power of Listeria as new delivery platform of anticancer agents to the TME. Not only were therapeutic levels of radioactive Listeria reached in tumors and metastases but the selective delivery also led to minimal side effects.
Collapse
Affiliation(s)
- Dinesh Chandra
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY 10461, USA
| | | | - Ziqiang Yuan
- Montefiore Medical Center, Medical Arts Pavilion, MMC-MAP, Bronx, NY 10467, USA
| | - Steven K Libutti
- Montefiore Medical Center, Medical Arts Pavilion, MMC-MAP, Bronx, NY 10467, USA
| | - Wade Koba
- Albert Einstein College of Medicine, Department of Radiology, MRRC, Bronx, NY 10461, USA
| | - Amanda Beck
- Albert Einstein College of Medicine, Department of Pathology, Michael F. Price Center, Bronx, NY 10461, USA
| | - Kun Zhu
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY 10461, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD 21205, USA
| | - Ekaterina Dadachova
- Albert Einstein College of Medicine, Department of Radiology/Department of Microbiology and Immunology, Bronx, NY 10461, USA
| | - Claudia Gravekamp
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY 10461, USA
| |
Collapse
|
41
|
Ebelt ND, Manuel ER. Utilizing Salmonella to treat solid malignancies. J Surg Oncol 2017; 116:75-82. [PMID: 28420039 DOI: 10.1002/jso.24644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022]
Abstract
Despite intensive research into novel treatment strategies for cancer, it remains the second most common cause of death in industrialized populations. Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with dismal prognosis. Currently, surgical resection offers the best chance for extended survival, yet recurrence remains high and is associated with poor outcome. Systemic treatment has evolved from non-specific, cytotoxic chemotherapy to the use of cancer-targeting agents, profoundly changing treatment approaches in the metastatic and adjuvant settings. One promising approach, highlighted in this review, uses the inherent capacity of Salmonella to colonize and eliminate solid tumors.
Collapse
Affiliation(s)
- Nancy D Ebelt
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California
| | - Edwin R Manuel
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
42
|
Liu X, Lin P, Perrett I, Lin J, Liao YP, Chang CH, Jiang J, Wu N, Donahue T, Wainberg Z, Nel AE, Meng H. Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. J Clin Invest 2017; 127:2007-2018. [PMID: 28414297 DOI: 10.1172/jci92284] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/02/2017] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is almost uniformly fatal; however, some improvement in overall survival has been achieved with the introduction of nanocarriers that deliver irinotecan or paclitaxel. Although it is generally assumed that nanocarriers rely principally on abnormal leaky vasculature for tumor access, a transcytosis transport pathway that is regulated by neuropilin-1 (NRP-1) has recently been reported. NRP-1-mediated transport can be triggered by the cyclic tumor-penetrating peptide iRGD. In a KRAS-induced orthotopic PDAC model, coadministration of iRGD enhanced the uptake of an irinotecan-loaded silicasome carrier that comprises lipid bilayer-coated mesoporous silica nanoparticles (MSNPs); this uptake resulted in enhanced survival and markedly reduced metastasis. Further, ultrastructural imaging of the treated tumors revealed that iRGD coadministration induced a vesicular transport pathway that carried Au-labeled silicacomes from the blood vessel lumen to a perinuclear site within cancer cells. iRGD-mediated enhancement of silicasome uptake was also observed in patient-derived xenografts, commensurate with the level of NRP-1 expression on tumor blood vessels. These results demonstrate that iRGD enhances the efficacy of irinotecan-loaded silicasome-based therapy and may be a suitable adjuvant in nanoparticle-based treatments for PDAC.
Collapse
|
43
|
Nandy SB, Lakshmanaswamy R. Cancer Stem Cells and Metastasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:137-176. [DOI: 10.1016/bs.pmbts.2017.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Zhang K, Xu H, Jia X, Chen Y, Ma M, Sun L, Chen H. Ultrasound-Triggered Nitric Oxide Release Platform Based on Energy Transformation for Targeted Inhibition of Pancreatic Tumor. ACS NANO 2016; 10:10816-10828. [PMID: 28024356 DOI: 10.1021/acsnano.6b04921] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inspired by considerable application potential in various diseases, nitric oxide (NO) has gained increasing attention. Nevertheless, current NO release scaffolds suffer from some inevitable drawbacks, for example, high toxicity for NO donor byproducts, poor specificity, shallow penetration depth, and strong ionizing irradiation for triggers, all of which remain obstacles to clinical application. Herein, an ultrasound-triggered NO on-demand release system is constructed using natural l-arginine as NO donor and local ultrasound as trigger. The focused ultrasound can activate H2O2 to generate more oxygen-contained species (ROS) of stronger oxidation ability than H2O2 for oxidizing LA via the energy transformation from ultrasound mechanical energy to chemical energy, and thus produce more NO for ultimately suppressing the highly aggressive and lethal Panc-1 tumor. Moreover, a blood vessel-intercellular matrix-cell "relay" targeting strategy has been established and relying on it, over 7-fold higher retention of such NO release system in a subcutaneous xenograft mouse model of Panc-1 is obtained, which consequently results in a more evident inhibitory effect and a prolonged survival rate (80% ± 5% improvement in 60-day survival).
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of High performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth people's Hospital, Tongji University School of Medicine , 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
- Ultrasound Research and Education Institute, Tongji University School of Medicine , 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth people's Hospital, Tongji University School of Medicine , 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
- Ultrasound Research and Education Institute, Tongji University School of Medicine , 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Xiaoqing Jia
- State Key Laboratory of High performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, P. R. China
| | - Ming Ma
- State Key Laboratory of High performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, P. R. China
| | - Liping Sun
- Department of Medical Ultrasound, Shanghai Tenth people's Hospital, Tongji University School of Medicine , 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Hangrong Chen
- State Key Laboratory of High performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, P. R. China
| |
Collapse
|
45
|
Grünwald B, Vandooren J, Locatelli E, Fiten P, Opdenakker G, Proost P, Krüger A, Lellouche JP, Israel LL, Shenkman L, Comes Franchini M. Matrix metalloproteinase-9 (MMP-9) as an activator of nanosystems for targeted drug delivery in pancreatic cancer. J Control Release 2016; 239:39-48. [PMID: 27545397 DOI: 10.1016/j.jconrel.2016.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Specific cancer cell targeting is a pre-requisite for efficient drug delivery as well as for high-resolution imaging and still represents a major technical challenge. Tumor-associated enzyme-assisted targeting is a new concept that takes advantage of the presence of a specific activity in the tumor entity. MMP-9 is a protease found to be upregulated in virtually all malignant tumors. Consequently, we hypothesized that its presence can provide a de-shielding activity for targeted delivery of drugs by nanoparticles (NPs) in pancreatic cancer. Here, we describe synthesis and characterization of an optimized MMP-9-cleavable linker mediating specific removal of a PEG shield from a PLGA-b-PEG-based polymeric nanocarrier (Magh@PNPs-PEG-RegaCP-PEG) leading to specific uptake of the smaller PNPs with their cargo into cells. The specific MMP-9-cleavable linker was designed based on the degradation efficiency of peptides derived from the collagen type II sequence. MMP-9-dependent uptake of the Magh@PNPs-PEG-RegaCP-PEG was demonstrated in pancreatic cancer cells in vitro. Accumulation of the Magh@PNPs-PEG-RegaCP-PEG in pancreatic tissues in the clinically relevant KPC mouse model of pancreatic cancer, as a proof-of-concept, was tumor-specific and MMP-9-dependent, indicating that MMP-9 has a strong potential as a specific mediator of PNP de-shielding for tumor-specific uptake. Pre-treatment of mice with Magh@PNPs-PEG-RegaCP-PEG led to reduction of liver metastasis and drastically decreased average colony size. In conclusion, the increased tumor-specific presence and activity of MMP-9 can be exploited to deliver an MMP-9-activatable NP to pancreatic tumors specifically, effectively, and safely.
Collapse
Affiliation(s)
- Barbara Grünwald
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Belgium
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Pierre Fiten
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Belgium
| | - Paul Proost
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Belgium
| | - Achim Krüger
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Jean Paul Lellouche
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Liron Limor Israel
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Louis Shenkman
- Department of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| |
Collapse
|
46
|
Bhaw-Luximon A, Jhurry D. New avenues for improving pancreatic ductal adenocarcinoma (PDAC) treatment: Selective stroma depletion combined with nano drug delivery. Cancer Lett 2015; 369:266-73. [PMID: 26415628 DOI: 10.1016/j.canlet.2015.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/23/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022]
Abstract
The effectiveness of chemotherapy in PDAC is hampered by the dynamic interaction between stroma and cancer cell. The two opposing schools of thought - non-depletion of the stroma vs its depletion - to better drug efficacy are here discussed. Disrupting stroma-cancer cell interaction to reduce tumor progression and promote apoptosis is identified as the new direction of treatment for PDAC. Clinical data have shown that elimination of fibrosis and blockade of the Hedgehog pathway in stroma effectively promote drug delivery to tumor site and apoptosis. Reduced stiffness of ECM, lower fibrosis, higher permeability and higher blood flow after stroma depletion increase drug delivery. Combination strategies involving selective stroma depletion coupled with chemotherapy is currently proving to be the most efficient at clinical level. Striking the right balance between fibrosis depletion and angiogenesis promotion resulting in enhanced drug delivery and apoptosis is a major challenge. The use of nano drug delivery devices coupled with stroma depletion is emerging as the next phase treatment for PDAC. The breakthrough to combat PDAC will likely be a combination of early diagnosis and the emerging chemotherapy strategies.
Collapse
Affiliation(s)
- Archana Bhaw-Luximon
- ANDI Centre of Excellence for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Dhanjay Jhurry
- ANDI Centre of Excellence for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius.
| |
Collapse
|
47
|
Adjei IM, Blanka S. Modulation of the tumor microenvironment for cancer treatment: a biomaterials approach. J Funct Biomater 2015; 6:81-103. [PMID: 25695337 PMCID: PMC4384103 DOI: 10.3390/jfb6010081] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/07/2014] [Accepted: 02/12/2015] [Indexed: 12/26/2022] Open
Abstract
Tumors are complex tissues that consist of stromal cells, such as fibroblasts, immune cells and mesenchymal stem cells, as well as non-cellular components, in addition to neoplastic cells. Increasingly, there is evidence to suggest that these non-neoplastic cell components support cancer initiation, progression and metastasis and that their ablation or reprogramming can inhibit tumor growth. Our understanding of the activities of different parts of the tumor stroma in advancing cancer has been improved by the use of scaffold and matrix-based 3D systems originally developed for regenerative medicine. Additionally, drug delivery systems made from synthetic and natural biomaterials deliver drugs to kill stromal cells or reprogram the microenvironment for tumor inhibition. In this article, we review the impact of 3D tumor models in increasing our understanding of tumorigenesis. We also discuss how different drug delivery systems aid in the reprogramming of tumor stroma for cancer treatment.
Collapse
Affiliation(s)
- Isaac M Adjei
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Sharma Blanka
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
48
|
Lucero-Acuña A, Jeffery JJ, Abril ER, Nagle RB, Guzman R, Pagel MD, Meuillet EJ. Nanoparticle delivery of an AKT/PDK1 inhibitor improves the therapeutic effect in pancreatic cancer. Int J Nanomedicine 2014; 9:5653-65. [PMID: 25516710 PMCID: PMC4263440 DOI: 10.2147/ijn.s68511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The K-ras mutation in pancreatic cancer can inhibit drug delivery and increase drug resistance. This is exemplified by the therapeutic effect of PH-427, a small molecule inhibitor of AKT/PDK1, which has shown a good therapeutic effect against a BxPC3 pancreatic cancer model that has K-ras, but has a poor therapeutic effect against a MiaPaCa-2 pancreatic cancer model with mutant K-ras. To increase the therapeutic effect of PH-427 against the MiaPaCa-2 pancreatic cancer model with mutant K-ras, we encapsulated PH-427 into poly(lactic-co-glycolic acid) nanoparticles (PNP) to form drug-loaded PH-427-PNP. PH-427 showed a biphasic release from PH-427-PNP over 30 days during studies in sodium phosphate buffer, and in vitro studies revealed that the PNP was rapidly internalized into MiaPaCa-2 tumor cells, suggesting that PNP can improve PH-427 delivery into cells harboring mutant K-ras. In vivo studies of an orthotopic MiaPaCa-2 pancreatic cancer model showed reduced tumor load with PH-427-PNP as compared with treatment using PH-427 alone or with no treatment. Ex vivo studies confirmed the in vivo results, suggesting that PNP can improve drug delivery to pancreatic cancer harboring mutant K-ras.
Collapse
Affiliation(s)
- Armando Lucero-Acuña
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Justin J Jeffery
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Edward R Abril
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Raymond B Nagle
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Roberto Guzman
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Mark D Pagel
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA ; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA ; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Emmanuelle J Meuillet
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, USA ; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
49
|
Abstract
It is expected that the incidence of various adverse effects of anticancer agents maybe decreased owing to the reduced drug distribution in normal tissue. Anticancer agent incorporating nanoparticles including micelles and liposomes can evade non-specific capture by the reticuloendothelial system because the outer shell of the nanoparticles is covered with polyethylene glycol. Consequently, the micellar and liposomal carrier can be delivered selectively to a tumor by utilizing the enhanced permeability and retention effect. Presently, several anticancer agent-incorporating nano-carrier systems are under preclinical and clinical evaluation. Several drug delivery system formulations have been approved worldwide. Regarding a pipeline of clinical development of anticancer agent incorporating micelle carrier system, several clinical trials are now underway not only in Japan but also in other countries. A Phase 3 trial of NK105, a paclitaxel incorporating micelle is now underway. In this paper, preclinical and clinical studies of NK105, NC-6004, cisplatin incorporating micelle, NC-6300, epirubicin incorporating micelle and the concept of cancer stromal targeting therapy using nanoparticles and monoclonal antibodies against cancer related stromal components are reviewed.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
50
|
Zhang J, Miao L, Guo S, Zhang Y, Zhang L, Satterlee A, Kim WY, Huang L. Synergistic anti-tumor effects of combined gemcitabine and cisplatin nanoparticles in a stroma-rich bladder carcinoma model. J Control Release 2014; 182:90-6. [PMID: 24637468 DOI: 10.1016/j.jconrel.2014.03.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/20/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
Tumors grown in a stroma-rich mouse model resembling clinically advanced bladder carcinoma with UMUC3 and NIH 3T3 cells have high levels of fibroblasts and an accelerated tumor growth rate. We used this model to investigate the synergistic effect of combined gemcitabine monophosphate (GMP) nanoparticles and Cisplatin nanoparticles (Combo NP) on tumor-associated fibroblasts (TAFs). A single injection of Combo NP had synergistic anti-tumor effects while the same molar ratio of combined GMP and Cisplatin delivered as free drug (Combo Free) fell outside of the synergistic range. Combo NP nearly halted tumor growth with little evidence of general toxicity while Combo Free had only a modest inhibitory effect at 16mg/kg GMP and 1.6mg/kg Cisplatin. Combo NP increased levels of apoptosis within the tumor by approximately 1.3 folds (TUNEL analysis) and decreased α-SMA-positive fibroblast recruitment by more than 87% (immunofluorescence) after multiple injections compared with Combo Free, GMP NP or Cisplatin NP alone. The TAF-targeting capability of Combo NP was evaluated by double staining for TUNEL and α-SMA at various time points after a single injection. On day one after injection, 57% of the TUNEL-positive cells were identified as α-SMA-positive fibroblasts. By day four, tumor stroma was 85% depleted and 87% of the remaining TAFs were TUNEL-positive. Combo NP-treated tumors became 2.75 folds more permeable than those treated with Combo Free as measured by Evans Blue. We conclude that the antineoplastic effect of Combo NP works by first targeting TAFs and is more effective as an anti-tumor therapy than Combo Free, GMP NP or Cisplatin NP alone.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Lei Miao
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shutao Guo
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuan Zhang
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lu Zhang
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew Satterlee
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|