1
|
Chew FY, Tsai CH, Chang KH, Chang YK, Chou RH, Liu YJ. Exosomes as promising frontier approaches in future cancer therapy. World J Gastrointest Oncol 2025; 17:100713. [DOI: 10.4251/wjgo.v17.i1.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
In this editorial, we will discuss the article by Tang et al published in the recent issue of the World Journal of Gastrointestinal Oncology. They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized. The Tang et al’s study demonstrated that Exo-GEM exhibits enhanced cytotoxicity and apoptosis-inducing effects compared to free GEM, highlighting the potential of exosome-based drug delivery systems as a more effective and targeted approach to chemotherapy in pancreatic cancer. Additional in vivo studies are required to confirm the safety and effectiveness of Exo-GEM before it can be considered for clinical use.
Collapse
Affiliation(s)
- Fatt-Yang Chew
- Department of Medical Imaging, China Medical University Hospital, Taichung 404, Taiwan
- Department of Radiology, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chin-Hung Tsai
- Department of Cancer Center, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
- Department of Chest Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
- Center for General Education, China Medical University, Taichung 404, Taiwan
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Yu-Kang Chang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung 413, Taiwan
| | - Yi-Jui Liu
- Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan
| |
Collapse
|
2
|
Kobayashi-Ooka Y, Akagi T, Sukezane T, Yanagita E, Itoh T, Sasai K. Cultures derived from pancreatic cancer xenografts with long-term gemcitabine treatment produce chemoresistant secondary xenografts: Establishment of isogenic gemcitabine-sensitive and -resistant models. Pathol Res Pract 2024; 263:155632. [PMID: 39393265 DOI: 10.1016/j.prp.2024.155632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
In attempts to establish sophisticated models to reproduce the process of acquired drug resistance, we transformed normal human pancreatic ductal epithelial cells by introducing genes for multiple cellular factors. We also created isogenic gemcitabine-sensitive and -resistant models by short- and long-term gemcitabine treatment, respectively. These models demonstrated differences in drug resistance in vivo, but not in vitro. Gemcitabine treatment also induced squamous transdifferentiation in xenografts in mice. The transcription factor p63 was identified as a possible resistance-determining factor but was unlikely to be solely responsible for the resistance to gemcitabine. This system would prove useful to discover novel molecular targets to overcome chemotherapy resistance, by allowing the evaluation of molecules of interest in xenograft models after in vitro genetic ablation.
Collapse
Affiliation(s)
| | | | | | - Emmy Yanagita
- Division of Diagnostic Pathology, Kobe University Graduate School Medicine, Kobe, Hyogo, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Kobe University Graduate School Medicine, Kobe, Hyogo, Japan
| | - Ken Sasai
- KAN Research Institute, Inc., Kobe, Hyogo, Japan.
| |
Collapse
|
3
|
Sun J, Baker JR, Russell CC, Pham HNT, Goldsmith CD, Cossar PJ, Sakoff JA, Scarlett CJ, McCluskey A. Novel piperazine-1,2,3-triazole leads for the potential treatment of pancreatic cancer. RSC Med Chem 2023; 14:2246-2267. [PMID: 37974967 PMCID: PMC10650957 DOI: 10.1039/d2md00289b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/26/2023] [Indexed: 11/19/2023] Open
Abstract
From lead 1, (N-(4-((4-(3-(4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)propyl)piperazin-1-yl)sulfonyl)-phenyl)acetamide), a S100A2-p53 protein-protein interaction inhibitor based on an in silico modelling driven hypothesis, four focused libraries were designed and synthesised. Growth inhibition screening was performed against 16 human cancer cell lines including the pancreatic cell lines MiaPaCa2, BxPC3, AsPC-1, Capan-2, HPAC, PANC-1 and the drug resistant CFPAC1. Modification of 1's phenylacetamide moiety, gave Library 1 with only modest pancreatic cancer activity. Modification of the 3-OCH3Ph moiety (Library 2) gave 4-CH3 (26), 4-CH2CH3 (27), 4-CF3 (31) and 4-NO2 (32) with sterically bulky groups more active. A 4-CF3 acetamide replacement enhanced cytotoxicity (Library 3). The 4-C(CH3)336 resulted in a predicted steric clash in the S100A2-p53 binding groove, with a potency decrease. Alkyl moieties afforded more potent analogues, 34 (4-CH3) and 35 (CH2CH3), a trend evident against pancreatic cancer: GI50 3.7 (35; BxPC-3) to 18 (40; AsPC-1) μM. Library 4 analogues with a 2-CF3 and 3-CF3 benzenesulfonamide moiety were less active than the corresponding Library 3 analogues. Two additional analogues were designed: 51 (4-CF3; 4-OCH3) and 52 (4-CF3; 2-OCH3) revealed 52 to be 10-20 fold more active than 51, against the pancreatic cancer cell lines examined with sub-micromolar GI50 values 0.43 (HPAC) to 0.61 μM (PANC-1). MOE calculated binding scores for each pose are also consistent with the observed biological activity with 52. The obtained SAR data is consistent with the proposed interaction within the S100A2-p53 bonding groove.
Collapse
Affiliation(s)
- Jufeng Sun
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia
- Medicinal Chemistry, School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - Hong N T Pham
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah NSW 2298 Australia
| | - Chloe D Goldsmith
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah NSW 2298 Australia
| | - Peter J Cossar
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah NSW 2298 Australia
| | - Christopher J Scarlett
- School of Environmental & Life Sciences, The University of Newcastle Ourimbah NSW 2258 Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia
| |
Collapse
|
4
|
Imran KM, Gannon J, Morrison HA, Tupik JD, Tintera B, Nagai-Singer MA, Ivester H, Madanick JM, Hendricks-Wenger A, Uh K, Luyimbazi DT, Edwards M, Coutermarsh-Ott S, Eden K, Byron C, Clark-Deener S, Lee K, Vlaisavljevich E, Allen IC. Successful In Situ Targeting of Pancreatic Tumors in a Novel Orthotopic Porcine Model Using Histotripsy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2361-2370. [PMID: 37596154 PMCID: PMC10529075 DOI: 10.1016/j.ultrasmedbio.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE New therapeutic strategies and paradigms are direly needed to treat pancreatic cancer. The absence of a suitable pre-clinical animal model of pancreatic cancer is a major limitation to biomedical device and therapeutic development. Traditionally, pigs have proven to be ideal models, especially in the context of designing human-sized instruments, perfecting surgical techniques and optimizing clinical procedures for use in humans. However, pig studies have typically focused on healthy tissue assessments and are limited to general safety evaluations because of the inability to effectively model human tumors. METHODS Here, we establish an orthotopic porcine model of human pancreatic cancer using RAG2/IL2RG double-knockout immunocompromised pigs and treat the tumors ex vivo and in vivo with histotripsy. RESULTS Using these animals, we describe the successful engraftment of Panc-1 human pancreatic cancer cell line tumors and characterize their development. To illustrate the utility of these animals for therapeutic development, we determine for the first time, the successful targeting of in situ pancreatic tumors using histotripsy. Treatment with histotripsy resulted in partial ablation in vivo and reduction in collagen content in both in vivo tumor in pig pancreas and ex vivo patient tumor. CONCLUSION This study presents a first step toward establishing histotripsy as a non-invasive treatment method for pancreatic cancer and exposes some of the challenges of ultrasound guidance for histotripsy ablation in the pancreas. Simultaneously, we introduce a highly robust model of pancreatic cancer in a large mammal model that could be used to evaluate a variety biomedical devices and therapeutic strategies.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Jessica Gannon
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Holly A Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Juselyn D Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Benjamin Tintera
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Hannah Ivester
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Justin Markov Madanick
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Alissa Hendricks-Wenger
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Kyungjun Uh
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - David T Luyimbazi
- Department of Surgery, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Michael Edwards
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Christopher Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Huang L, Liu Y, Pan Y, Liu C, Gao H, Ren Q, Wang J, Wang H, Zhang Y, Wu A. Elaiophylin Elicits Robust Anti-Tumor Responses via Apoptosis Induction and Attenuation of Proliferation, Migration, Invasion, and Angiogenesis in Pancreatic Cancer Cells. Molecules 2023; 28:7205. [PMID: 37894684 PMCID: PMC10608934 DOI: 10.3390/molecules28207205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic cancer remains a formidable challenge in oncology due to its aggressive nature and limited treatment options. In this study, we investigate the potential therapeutic efficacy of elaiophylin, a novel compound, in targeting BxPC-3 and PANC-1 pancreatic cancer cells. We comprehensively explore elaiophylin's impact on apoptosis induction, proliferation inhibition, migration suppression, invasion attenuation, and angiogenesis inhibition, key processes contributing to cancer progression and metastasis. The results demonstrate that elaiophylin exerts potent pro-apoptotic effects, inducing a substantial increase in apoptotic cells. Additionally, elaiophylin significantly inhibits proliferation, migration, and invasion of BxPC-3 and PANC-1 cells. Furthermore, elaiophylin exhibits remarkable anti-angiogenic activity, effectively disrupting tube formation in HUVECs. Moreover, elaiophylin significantly inhibits the Wnt/β-Catenin signaling pathway. Our findings collectively demonstrate the multifaceted potential of elaiophylin as a promising therapeutic agent against pancreatic cancer via inhibition of the Wnt/β-Catenin signaling pathway. By targeting diverse cellular processes crucial for cancer progression, elaiophylin emerges as a prospective candidate for future targeted therapies. Further investigation of the in vivo efficacy of elaiophylin is warranted, potentially paving the way for novel and effective treatment approaches in pancreatic cancer management.
Collapse
Affiliation(s)
- Lufen Huang
- Department of Pharmacy, Jining Medical University, Rizhao 276500, China; (L.H.); (Y.L.); (C.L.); (H.G.); (Q.R.); (J.W.); (H.W.)
| | - Yufeng Liu
- Department of Pharmacy, Jining Medical University, Rizhao 276500, China; (L.H.); (Y.L.); (C.L.); (H.G.); (Q.R.); (J.W.); (H.W.)
| | - Yiru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China;
| | - Chao Liu
- Department of Pharmacy, Jining Medical University, Rizhao 276500, China; (L.H.); (Y.L.); (C.L.); (H.G.); (Q.R.); (J.W.); (H.W.)
| | - Huijie Gao
- Department of Pharmacy, Jining Medical University, Rizhao 276500, China; (L.H.); (Y.L.); (C.L.); (H.G.); (Q.R.); (J.W.); (H.W.)
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao 276500, China; (L.H.); (Y.L.); (C.L.); (H.G.); (Q.R.); (J.W.); (H.W.)
| | - Jianan Wang
- Department of Pharmacy, Jining Medical University, Rizhao 276500, China; (L.H.); (Y.L.); (C.L.); (H.G.); (Q.R.); (J.W.); (H.W.)
| | - Huiyun Wang
- Department of Pharmacy, Jining Medical University, Rizhao 276500, China; (L.H.); (Y.L.); (C.L.); (H.G.); (Q.R.); (J.W.); (H.W.)
| | - Yuntao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao 276500, China; (L.H.); (Y.L.); (C.L.); (H.G.); (Q.R.); (J.W.); (H.W.)
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China;
| |
Collapse
|
6
|
Guo H, Hu Z, Yang X, Yuan Z, Gao Y, Chen J, Xie L, Chen C, Guo Y, Bai Y. STAT3 inhibition enhances gemcitabine sensitivity in pancreatic cancer by suppressing EMT, immune escape and inducing oxidative stress damage. Int Immunopharmacol 2023; 123:110709. [PMID: 37515849 DOI: 10.1016/j.intimp.2023.110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Pancreatic cancer (PC) is a highly-malignant tumor of the digestive system with a very poor prognosis and high mortality. Chemotherapy and PD-1/PD-L1 immune checkpoint blockade are important treatment strategies for advanced PC. However, chemotherapy resistance and poor therapeutic effect of immune checkpoint inhibitors is are the main clinical problems to be solved urgently at present. The effects of combined application of gemcitabine and STAT3 inhibition on the proliferation, apoptosis, migration, and invasion of PC cells (PCCs) were investigated. In addition, oxidative stress (OS), ferroptosis, immune escape, and the epithelial-mesenchymal transition (EMT) were evaluated. STAT3 inhibition with Stattic enhanced the inhibitory activity of gemcitabine on PCC proliferation by regulating the cell cycle. STAT3 inhibition enhanced mitochondrial-dependent apoptosis in gemcitabine-treated PCCs, but did not induce autophagy and ferroptosis. Further study showed that the anti-proliferative and pro-apoptotic effects may be associated with increased OS damage by inactivating Nrf2-HO-1 signaling, as well as DNA damage by inducing the imbalance between ATM andATR-Chk1 pathway. In addition, STAT3 inhibition strengthened gemcitabine-mediated suppression in PCC invasion and migration by antagonizing Smad2/3-dependent EMT. Moreover, the anti-tumorimmuneresponse of gemcitabine was upregulated by Stattic through reducing the expression of PD-L1 and CD47. Mechanistically, combined application of gemcitabine and Stattic suppressed the phosphorylation and nuclear expression of STAT3. Interestingly, the activities of AKT and β-catenin signaling were also regulated, suggesting that drug combination has a broad-spectrum signal regulation effect. STAT3 inhibition enhanced the sensitivity of PCCs to the chemotherapy drug gemcitabine by suppressing EMT and immune escape and inducing OS damage.
Collapse
Affiliation(s)
- Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; The 404th Hospital of Mianyang, 621000 Sichuan, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiawei Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lili Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chaoyue Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Guo
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
7
|
Galindo-Vega A, Maldonado-Lagunas V, Mitre-Aguilar IB, Melendez-Zajgla J. Tumor Microenvironment Role in Pancreatic Cancer Stem Cells. Cells 2023; 12:1560. [PMID: 37371030 DOI: 10.3390/cells12121560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a majority of patients presenting with unresectable or metastatic disease, resulting in a poor 5-year survival rate. This, in turn, is due to a highly complex tumor microenvironment and the presence of cancer stem cells, both of which induce therapy resistance and tumor relapse. Therefore, understanding and targeting the tumor microenvironment and cancer stem cells may be key strategies for designing effective PDAC therapies. In the present review, we summarized recent advances in the role of tumor microenvironment in pancreatic neoplastic progression.
Collapse
Affiliation(s)
- Aaron Galindo-Vega
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| | | | - Irma B Mitre-Aguilar
- Biochemistry Unit, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| |
Collapse
|
8
|
Xu ZJ, Li PC, Wang WQ, Liu L. Identification of characteristic markers correlated with Th2 cell infiltration and metabolism molecular subtype in pancreatic adenocarcinoma. J Gastrointest Oncol 2022; 13:3193-3206. [PMID: 36636065 PMCID: PMC9830327 DOI: 10.21037/jgo-22-333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/08/2022] [Indexed: 12/29/2022] Open
Abstract
Background Pancreatic adenocarcinoma, the deadliest malignant cancer, has gradually become the third leading cause of cancer-related death. Multidisciplinary therapy has been difficult to implement because of the particularity of pancreatic adenocarcinoma. Research has increasingly indicated the significance of metabolic adaption in pancreatic adenocarcinoma. The difference in metabolism may influence immune cell infiltration in pancreatic adenocarcinoma. Novel immune-related metabolism biomarkers are needed to improve the therapeutic outcomes of existing targeted therapies. Methods We enrolled whole-genome sequencing data and clinical information about 168 pancreatic adenocarcinoma samples from The Cancer Genome Atlas (TCGA) database, other pancreatic adenocarcinoma samples, and clinical information from other cohorts. We used the gene set variation analysis (GSVA) package to calculate feature score, the weighted gene co-expression network analysis (WGCNA) and randomSurvivalForest package to screen hub genes, the ConsenClusterPlus package to classify subtypes, the pRRopthetic package to evaluate drug sensibility, the maftools package to analyze mutation information and the Seurat package to analyze single cell sequencing data. Results We revealed the prognosis significance of Th2 cell infiltration, classified two subtypes based on hub genes, compared immune cell infiltration, substance metabolism, cellular processes, gene mutation, and copy number variation (CNV) between subtypes and explored the clinical and biological features of Th2 cell infiltration. Conclusions We displayed the poor prognosis significance of Th2 cell infiltration and the significant difference of simple nucleotide polymorphism, CNV, natural killer (NK) CD56 bright cell infiltration, substance metabolism, autophagy and necroptosis between subtypes. Additionally, we discovered the sensitivity difference of chemotherapy drug and the Th2 cell infiltration changes after chimeric antigen receptor T cells (CAR-T) cell therapy and radiotherapy and explored the differences between normal liver and metastatic liver tissues of pancreatic adenocarcinoma patients.
Collapse
Affiliation(s)
- Zi-Jin Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China;,Department of Surgery Training Base, Fudan University Shanghai Cancer Center Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Jomaa S, Deeb H, Alshaar D, Alahmar FO. Surgical challenges during open pancreaticoduodenectomy in a patient with situs inversus totalis: A rare case report and literature review. Ann Med Surg (Lond) 2022; 82:104610. [PMID: 36268427 PMCID: PMC9577509 DOI: 10.1016/j.amsu.2022.104610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Situs inversus totalis is a rare congenital anomaly defined by a mirror-image of thoracic and abdominal viscera. Discrete cases of situs inversus totalis and its association with gastrointestinal tumors have been reported. Here we report the first case of pancreatic-head serous cystadenoma in patient with situs inversus totalis. Case presentation A 68-year-old woman presented with an abdominal mass that appeared four months ago. She was otherwise asymptomatic and her physical examination was unremarkable. Chest X-ray revealed dextrocardia. CT scan confirmed situs inversus totalis with an irregular, clear border, heterogenous pancreatic-head mass measuring 11 cm. Laboratory studies were within the reference range and pancreatic tumor markers were normal. We performed an elective open pancreaticoduodenectomy followed by an end-to-side pancreaticojejunostomy, an end-to-side choledochojenunostomy, and a side-to-side gastrojejunostomy. The immediate postoperative course was uneventful, and she was discharged four days later without any complications. Four-month of follow-ups revealed no recurrent or relapsed disease. Discussion Although the steps of the Whipple procedure are almost the same in SIT patients. The main differences during the operation in SIT patients are the anatomical variations and how the surgeon will cope with them to avoid any mistakes. Conclusion The surgeons should improve their skills and gain control in both hands to easily adjust with the anatomic variations of situs inversus totalis and reduce the operation time and the associated risk of long operation time. Situs inversus totalis (SIT) is a rare congenital anomaly defined by a mirror-image of thoracic and abdominal viscera. Pancreaticoduodenectomy is more demanding and challenging to perform in patients with situs inversus totalis. Surgeons should have a complete state of focus and take extreme care at each step during the operation. Surgeons should improve their skills and gain control in both hands to adjust with the anatomic variations of SIT.
Collapse
|
10
|
Tang X, Du X, Yu Y, Qin M, Qian L, Zhang M, Yang Y, Yu Q, Gan Z. Deep-Penetrating Triple-Responsive Prodrug Nanosensitizer Actuates Efficient Chemoradiotherapy in Pancreatic Ductal Adenocarcinoma Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202834. [PMID: 35808966 DOI: 10.1002/smll.202202834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Chemoradiotherapy (CRT) is the most accepted treatment for locally advanced pancreatic ductal adenocarcinoma (PDAC) and can significantly improve the R0 resection rate. However, there are few long-term survivors after CRT. Although some polymer nanoparticles have shown potential in alleviating the dose-limiting toxicity and assisting the chemotherapy of PDAC, there are few efficient nanosensitizers (NS) available for CRT of this malignancy, especially in the context of its hypoxic nature. Herein, based on the biological features of PDAC, a γ-glutamyl transpeptidase (GGT)/glutathione (GSH)/hypoxia triple-responsive prodrug NS to overcome the biological barrier and microenvironmental limitations confronted by CRT in PDAC is developed. Due to triple-responsiveness, deep tumor penetration, GSH/hypoxia-responsive drug release/activation, and hypoxia-induced chemoradio-sensitization can be simultaneously achieved with this NS. As a result, tumor shrinkage after CRT with this NS can be observed in both subcutaneous and orthotopic PDAC models, foreshadowing its potential in clinical neoadjuvant CRT.
Collapse
Affiliation(s)
- Xiaohu Tang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaomeng Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, P. R. China
| | - Yanting Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Qin
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lili Qian
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Zhang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yan Yang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingsong Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhihua Gan
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
11
|
Islam MM, Goertzen A, Singh PK, Saha R. Exploring the metabolic landscape of pancreatic ductal adenocarcinoma cells using genome-scale metabolic modeling. iScience 2022; 25:104483. [PMID: 35712079 PMCID: PMC9194136 DOI: 10.1016/j.isci.2022.104483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major research focus because of its poor therapy response and dismal prognosis. PDAC cells adapt their metabolism to the surrounding environment, often relying on diverse nutrient sources. Because traditional experimental techniques appear exhaustive to find a viable therapeutic strategy, a highly curated and omics-informed PDAC genome-scale metabolic model was reconstructed using patient-specific transcriptomics data. From the model-predictions, several new metabolic functions were explored as potential therapeutic targets in addition to the known metabolic hallmarks of PDAC. Significant downregulation in the peroxisomal beta oxidation pathway, flux modulation in the carnitine shuttle system, and upregulation in the reactive oxygen species detoxification pathway reactions were observed. These unique metabolic traits of PDAC were correlated with potential drug combinations targeting genes with poor prognosis in PDAC. Overall, this study provides a better understanding of the metabolic vulnerabilities in PDAC and will lead to novel effective therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Andrea Goertzen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Pankaj K. Singh
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
12
|
Liu SS, Ouyang YJ, Lu XZ. Potential roles of exosomal non-coding RNAs in chemoresistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2022; 30:303-309. [DOI: 10.11569/wcjd.v30.i7.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest digestive system tumors in the world, primarily attributed to difficulty in early diagnosis, early metastasis, and insen-sitivity to chemotherapy. The survival of advanced PC patients can be improved by chemotherapy, including gemcitabine, platinum drugs, and 5-fluorouracil, and targeted therapy such as PARP inhibitors. Nevertheless, primary or acquired drug resistance ultimately leads to treatment failure and poor prognosis in patients with PC. The mechanism underlying drug resistance in PC is complex and has not been fully elucidated. Recent studies have indicated that exsomes are the best natural carrier of non-coding RNAs (ncRNAs). They can regulate drug resistance by transporting ncRNAs. Accumulating evidence has demonstrated that exosomal ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play an crucial role in regulating resistance to chemotherapy drugs in PC. In this review, we systematically focus on the emerging role and regulatory mechanisms of exosomal ncRNAs in influencing chemotherapy resistance in PC. We believe that exosomal ncRNAs can be considered as potential biomarkers for the diagnosis and prognosis of PC as well as new therapeutic targets.
Collapse
Affiliation(s)
- Shi-Shi Liu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang 421200, Hunan province, China
| | - Yu-Juan Ouyang
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang 421200, Hunan province, China
| | - Xian-Zhou Lu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang 421200, Hunan province, China
| |
Collapse
|
13
|
Zhang Z, Yang A, Chaurasiya S, Park AK, Kim SI, Lu J, Olafsen T, Warner SG, Fong Y, Woo Y. PET imaging and treatment of pancreatic cancer peritoneal carcinomatosis after subcutaneous intratumoral administration of a novel oncolytic virus, CF33-hNIS-antiPDL1. Mol Ther Oncolytics 2022; 24:331-339. [PMID: 35118191 PMCID: PMC8784298 DOI: 10.1016/j.omto.2021.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022] Open
Abstract
Peritoneal carcinomatosis of gastrointestinal malignancies remains fatal. CF33-hNIS-antiPDL1, a chimeric orthopoxvirus expressing the human sodium iodide symporter (hNIS) and anti-human programmed death-ligand 1 antibody, has demonstrated robust preclinical activity against pancreatic adenocarcinoma (PDAC). We investigated the ability of CF33-hNIS-antiPDL1 to infect, help detect, and kill peritoneal tumors following intratumoral (i.t.) injection of subcutaneous (s.c.) tumors in vivo. Human PDAC AsPC-1-ffluc cells were inoculated in both the s.c. space and the peritoneal cavity of athymic mice. After successful tumor engraftment, s.c. tumors were injected with CF33-hNIS-antiPDL1 or PBS. We assessed the ability of CF33-hNIS-antiPDL1 to infect, replicate in, and allow the imaging of tumors at both sites (immunohistochemistry [IHC] and 124I-based positron emission tomography/computed tomography [PET/CT] imaging), tumor burden (bioluminescence imaging), and animal survival. IHC staining for hNIS confirmed expression in s.c. and peritoneal tumors following virus treatment. Compared to the controls, CF33-hNIS-antiPDL1-treated mice showed significantly decreased s.c. and peritoneal tumor burden and improved survival (p < 0.05). Notably, 2 of 8 mice showed complete regression of disease. PET/CT avidity for 124I uptake in s.c. and peritoneal tumors was visible starting at day 7 following the first i.t. dose of CF33-hNIS-antiPDL1. We show that CF33-hNIS-antiPDL1 can help detect and kill both s.c. and peritoneal tumors following s.c. i.t. treatment.
Collapse
|
14
|
Fan YF, Shang WT, Lu GH, Guo KX, Deng H, Zhu XH, Wang CC, Tian J. Decreasing hyaluronic acid combined with drug-loaded nanoprobes improve the delivery and efficacy of chemotherapeutic drugs for pancreatic cancer. Cancer Lett 2021; 523:1-9. [PMID: 34530049 DOI: 10.1016/j.canlet.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system, and its clinical treatment is still very challenging. Most of the pancreatic cancer chemotherapeutic drugs have poor plasma stability, low cell uptake efficiency, and are prone to developing drug resistance and toxic side effects. Besides, pancreatic cancer often has a dense extracellular matrix, which consists of collagens, hyaluronic acid, and other proteoglycans. Among them, hyaluronic acid is a key component of the dense matrix, which results in vascular compression and insufficient perfusion, and hinders the delivery of chemotherapeutic drugs. In this study, we explore using hyaluronidase in tumor-bearing mice to eliminate the hyaluronic acid barrier, to reduce blood vessel compression and reshape the tumor microenvironment. In addition, we evaluate using doxorubicin-loaded nanoprobes to improve the stability and local tumor-killing effect of the drug. The nanoprobes have the characteristics of near-infrared optical imaging, which are used to monitor the tumor size in real-time during the treatment process, and dynamically observe the tumor inhibitory effect. The results show that elimination of the hyaluronic acid barrier combined with the doxorubicin-loaded nanoprobes can greatly increase drug penetration into tumor tissue and improve the effectiveness of chemotherapy drugs. This study provides a novel strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ying-Fang Fan
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Wen-Ting Shang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing, 100190, China
| | - Guan-Hua Lu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing, 100190, China; Department of Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Kun-Xiong Guo
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing, 100190, China
| | - Han Deng
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing, 100190, China
| | - Xin-Hong Zhu
- Department of Neurobiology, Southern Medical University, Guangzhou, 510515, China
| | - Cun-Chuan Wang
- Department of Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing, 100190, China; Beihang University, Beijing, 100083, China.
| |
Collapse
|
15
|
Kohyama A, Kim MJ, Yokoyama R, Sun S, Omar AM, Phan ND, Meselhy MR, Tsuge K, Awale S, Matsuya Y. Structure-activity relationship and mechanistic study on guggulsterone derivatives; Discovery of new anti-pancreatic cancer candidate. Bioorg Med Chem 2021; 54:116563. [PMID: 34942553 DOI: 10.1016/j.bmc.2021.116563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is one of the deadliest types of malignancies. A new intervention aiming to combat pancreatic cancer is targeting its extra-ordinary ability to tolerate nutrition starvation, a phenomenon known as "Austerity". As a part of a research program aiming to develop a new-generation of anticancer agents, known as "anti-austerity agents", guggulsterone derivatives (GSDs) were identified as unique anti-austerity agents in terms of potency and selectivity. These agents are able to exert preferential cytotoxic activity only under nutrient-deprived conditions with little or no toxicity under normal conditions. In the present study, a library of 14 GSDs was synthesized and screened against PANC-1 human pancreatic cells. Among tested compounds, GSD-11 showed the most potent activity with PC50 a value of 0.72 μM. It also inhibited pancreatic cancer cell migration and colony formation in a concentration-dependent manner. A mechanistic study revealed that this compound can inhibit the activation of the Akt/mTOR signaling pathway. Therefore, GSD-11 could be a promising lead compound for the anticancer drug discovery against pancreatic cancer.
Collapse
Affiliation(s)
- Aki Kohyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Min Jo Kim
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Rei Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sijia Sun
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ashraf M Omar
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nguyen Duy Phan
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kiyoshi Tsuge
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yuji Matsuya
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
16
|
Orlacchio A, Mazzone P. The Role of Toll-like Receptors (TLRs) Mediated Inflammation in Pancreatic Cancer Pathophysiology. Int J Mol Sci 2021; 22:12743. [PMID: 34884547 PMCID: PMC8657588 DOI: 10.3390/ijms222312743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal forms of cancer, characterized by its aggressiveness and metastatic potential. Despite significant improvements in PC treatment and management, the complexity of the molecular pathways underlying its development has severely limited the available therapeutic opportunities. Toll-like receptors (TLRs) play a pivotal role in inflammation and immune response, as they are involved in pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Activation of TLRs initiates a signaling cascade, which in turn, leads to the transcription of several genes involved in inflammation and anti-microbial defense. TLRs are also deregulated in several cancers and can be used as prognostic markers and potential targets for cancer-targeted therapy. In this review we discuss the current knowledge about the role of TLRs in PC progression, focusing on the available TLRs-targeting compounds and their possible use in PC therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Pellegrino Mazzone
- Biogem Scarl, Istituto di Ricerche Genetiche Gaetano Salvatore, 83031 Ariano Irpino, Italy
| |
Collapse
|
17
|
Zhu WJ, Hu ZF, Yuan Z. Progress in research of tumor infiltrating lymphocytes in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:1207-1214. [DOI: 10.11569/wcjd.v29.i21.1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The 5-year survival rate of pancreatic cancer is less than 5%, and the only available treatments, surgery, chemotherapy, and chemoradiation, have shown limited effectiveness. Therefore, alternative treatment strategies are urgently needed. In recent years, tumor infiltrating lymphocyte (TIL) therapy has shown promising successes in the treatment of some types of solid tumors because of its diverse TCR clonality, superior tumor-homing ability, and low off-target toxicity. The significant association between a high TIL density in pancreatic cancer tissue and a good clinical outcome and success of pancreatic cancer-specific TIL expansion ex vivo potentiates the rationality of the TIL therapy in pancreatic cancer. However, there are still many challenges ahead, such as neoantigen screening, rapid cell expansion, and low cytotoxicity. This article reviews the recent advances and limitations of TIL therapy in pancreatic cancer and discusses its future directions.
Collapse
Affiliation(s)
- Wen-Jun Zhu
- CAR-T (Shanghai) Cell Biotechnology Co., Ltd, Shanghai 200433, China
| | - Zhan-Fei Hu
- CAR-T (Shanghai) Cell Biotechnology Co., Ltd, Shanghai 200433, China
| | - Zhou Yuan
- The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| |
Collapse
|
18
|
Effective Oncoleaking Treatment of Pancreatic Cancer by Claudin-Targeted Suicide Gene Therapy with Clostridium perfringens Enterotoxin (CPE). Cancers (Basel) 2021; 13:cancers13174393. [PMID: 34503203 PMCID: PMC8431234 DOI: 10.3390/cancers13174393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Current therapies for pancreas carcinoma (PC) are of limited efficacy due to tumor aggressiveness and therapy resistance. Bacterial toxins with pore-forming (oncoleaking) potential are promising tools in cancer therapy. We have developed a novel, suicide gene therapy treatment, based on Clostridium perfringens enterotoxin (CPE)-mediated oncoleaking. This is achieved by CPE suicide gene therapy to treat PC, which overexpresses the claudin-3 and -4 (Cldn3/4) tight junction proteins, which are targets of CPE action. This targeted gene therapy causes rapid eradication of Cldn3/4 overexpressing PC cells via oncoleaking and initiation of apoptotic/necrotic signaling. We demonstrate efficacy of this approach in vitro and after nonviral in vivo gene transfer in cell lines and in patient derived xenograft PC models. This therapy approach has translational potential for treatment of pancreas carcinomas and could also be translated into new combination settings with conventional chemotherapy. Abstract Pancreatic cancer (PC) is one of the most lethal cancers worldwide, associated with poor prognosis and restricted therapeutic options. Clostridium perfringens enterotoxin (CPE), is a pore-forming (oncoleaking) toxin, which binds to claudin-3 and -4 (Cldn3/4) causing selective cytotoxicity. Cldn3/4 are highly upregulated in PC and represent an effective target for oncoleaking therapy. We utilized a translation-optimized CPE vector (optCPE) for new suicide approach of PC in vitro and in cell lines (CDX) and patient-derived pancreatic cancer xenografts (PDX) in vivo. The study demonstrates selective toxicity in Cldn3/4 overexpressing PC cells by optCPE gene transfer, mediated by pore formation, activation of apoptotic/necrotic signaling in vitro, induction of necrosis and of bystander tumor cell killing in vivo. The optCPE non-viral intratumoral in vivo jet-injection gene therapy shows targeted antitumoral efficacy in different CDX and PDX PC models, leading to reduced tumor viability and induction of tumor necrosis, which is further enhanced if combined with chemotherapy. This selective oncoleaking suicide gene therapy improves therapeutic efficacy in pancreas carcinoma and will be of value for better local control, particularly of unresectable or therapy refractory PC.
Collapse
|
19
|
Hussan MA, Yang Z, Dong X, Yang H, Li N, Qiao S. A laparoscopic pancreaticoduodenectomy for pancreatic adenocarcinoma in a patient with situs inversus totalis. J Surg Case Rep 2021; 2021:rjab316. [PMID: 34316352 PMCID: PMC8301639 DOI: 10.1093/jscr/rjab316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023] Open
Abstract
Situs inversus totalis (SIT) is a congenital disorder in which the thoracic and abdominal viscera organs are mirrored from their normal anatomical position. Thus, the presence of any cancerous mass in one of the visceral organs of patients with SIT represents a great challenge due to the anatomical variation. We report a 52-year-old male with SIT who presented with obstructive jaundice and pancreatic-head mass. After preoperative examinations, it was decided to perform a laparoscopic pancreaticoduodenectomy. In this case, we aim to demonstrate the diagnosis and management of pancreatic cancer in an SIT patient, in addition to presenting the advantages and difficulties of laparoscopic surgery in this case.
Collapse
Affiliation(s)
- Maher Al Hussan
- Correspondence address. First Affiliated Hospital of Zhengzhou University, Jianshe Street, Erqi District, Zhengzhou, Henan 450000, China. Tel: +0086-15617660171; E-mail:
| | - Zhen Yang
- Hepatobiliary Pancreatic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinhua Dong
- Hepatobiliary Pancreatic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwei Yang
- Hepatobiliary Pancreatic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nanpeng Li
- Hepatobiliary Pancreatic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shishi Qiao
- Hepatobiliary Pancreatic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Feng F, Liu C, Bian H, Cai W, Zhou Y, Zhou L, Zhuang Z. TIPE2 Suppresses Malignancy of Pancreatic Cancer Through Inhibiting TGFβ1 Mediated Signaling Pathway. Front Oncol 2021; 11:680985. [PMID: 34249724 PMCID: PMC8260882 DOI: 10.3389/fonc.2021.680985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer is one of the major reasons of cancer-associated deaths due to poor diagnosis, high metastasis and drug resistance. Therefore, it is important to understand the cellular and molecular mechanisms of pancreatic cancer to identify new targets for the treatment. TIPE2 is an essential regulator of tumor apoptosis, inflammation and immune homeostasis. However, the role of TIPE2 is still not fully understood in pancreatic cancer. In this study, we found the expression of TIPE2 was decreased in pancreatic cancer tissues compare to paracancerous tissues, which was negatively correlated with tumor size in patients. Overexpression of TIPE2 significantly decreased cell proliferation, metastasis and increased apoptotic events in pancreatic cancer cell lines. Moreover, the results obtained from real time PCR and western blot revealed that TIPE2 was also involved in inhibiting MMPs and N-Cadherin expression while increasing Bax expression in pancreatic cancer cells. Similarly, TIPE2 could inhibit tumor growth in vivo, decrease the expression of Ki-67 and N-Cadherin, and increase the expression of Bax by IHC analysis in tumor tissues isolated from tumor-bearing mice. Mechanistic studies exhibited that TIPE2 might suppress pancreatic cancer development through inhibiting PI3K/AKT and Raf/MEK/ERK signaling pathways triggered by TGFβ1. Moreover, the tumor-infiltrating lymphocytes from tumor-bearing mice were analyzed by flow cytometry, and showed that TIPE2 could promote T cell activation to exert an anti-tumor effect possibly through activation of DCs in a TGFβ1 dependent manner. In general, we described the multiple regulatory mechanisms of TIPE2 in pancreatic tumorigenesis and tumor microenvironment, which suggested TIPE2 may act as a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Fang Feng
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China.,Department of Oncology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
| | - Chunliang Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huahui Bian
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Wei Cai
- Department of Oncology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
| | - Ying Zhou
- Department of Oncology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
| | - Li Zhou
- Department of Oncology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Sun J, Baker JR, Russell CC, Cossar PJ, Ngoc Thuy Pham H, Sakoff JA, Scarlett CJ, McCluskey A. Cytotoxic 1,2,3-Triazoles as Potential Leads Targeting the S100A2-p53 Complex: Synthesis and Cytotoxicity. ChemMedChem 2021; 16:2864-2881. [PMID: 34047450 DOI: 10.1002/cmdc.202000950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/18/2021] [Indexed: 11/10/2022]
Abstract
In silico screening predicted 1 (N-(4-((4-(3-(4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)propyl)piperazin-1-yl) sulfonyl)-phenyl)acetamide) as an inhibitor of the S100A2-p53 protein-protein interaction. S100A2 is a validated pancreatic cancer drug target. In the MiaPaCa-2 pancreatic cell line, 1 was a ∼50 μM growth inhibitor. Synthesis of five focused compound libraries and cytotoxicity screening revealed increased activity from the presence of electron withdrawing moieties on the sulfonamide aromatic ring, with the 3,5-bis-CF3 Library 3 analogues the most active, with GI50 values of 0.91 (3-ClPh; 13 i; BxPC-3, Pancreas) to 9.0 μM (4-CH3 ; 13 d; PANC-1, Pancreas). Activity was retained against an expanded pancreatic cancer cell line panel (MiaPaCa-2, BxPC-3, AsPC-1, Capan-2, PANC-1 and HPAC) and the normal cell line MCF10A (breast). Bulky 4-disposed substituents on the terminal phenyl ring enhanced broad spectrum activity with growth inhibition values spanning 1.1 to 3.1 μM (4-C(CH3 )3 ; 13 e; BxPC-3 and AsPC-1 (pancreas), respectively). Central alkyl spacer contraction from propyl to ethyl proved detrimental to activity with Library 4 and 5.5- to 10-fold less cytotoxic than the propyl linked Library 2 and Library 3. The data herein was consistent with the predicted binding poses of the compounds evaluated. The highest levels of cytotoxicity were observed with those analogues best capable of adopting a near identical pose to the p53-peptide in the S100A2-p53 binding groove.
Collapse
Affiliation(s)
- Jufeng Sun
- Chemistry, School of Environmental & Life Sciences The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.,Medicinal Chemistry, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental & Life Sciences The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Peter J Cossar
- Chemistry, School of Environmental & Life Sciences The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Hong Ngoc Thuy Pham
- School of Environmental & Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia.,Nha Trang University No. 2 Nguyen Dinh Chieu Street, Nha Trang City, Khanh Hoa, 8458, Vietnam
| | - Jennette A Sakoff
- Experimental Therapeutics Group Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street, Waratah, NSW 2298, Australia
| | - Christopher J Scarlett
- School of Environmental & Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
22
|
Muyinda IJ, Park JG, Jang EJ, Yoo BC. KRAS, A Prime Mediator in Pancreatic Lipid Synthesis through Extra Mitochondrial Glutamine and Citrate Metabolism. Int J Mol Sci 2021; 22:5070. [PMID: 34064761 PMCID: PMC8150642 DOI: 10.3390/ijms22105070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven pancreatic cancer is very lethal, with a five-year survival rate of <9%, irrespective of therapeutic advances. Different treatment modalities including chemotherapy, radiotherapy, and immunotherapy demonstrated only marginal efficacies because of pancreatic tumor specificities. Surgery at the early stage of the disease remains the only curative option, although only in 20% of patients with early stage disease. Clinical trials targeting the main oncogenic driver, KRAS, have largely been unsuccessful. Recently, global metabolic reprogramming has been identified in patients with pancreatic cancer and oncogenic KRAS mouse models. The newly reprogrammed metabolic pathways and oncometabolites affect the tumorigenic environment. The development of methods modulating metabolic reprogramming in pancreatic cancer cells might constitute a new approach to its therapy. In this review, we describe the major metabolic pathways providing acetyl-CoA and NADPH essential to sustain lipid synthesis and cell proliferation in pancreatic cancer cells.
Collapse
Affiliation(s)
- Isaac James Muyinda
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Uganda Cancer Institute, Mulago-Kampala 3935, Uganda
| | - Jae-Gwang Park
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Eun-Jung Jang
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
| | - Byong-Chul Yoo
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| |
Collapse
|
23
|
Khan AA, Liu X, Yan X, Tahir M, Ali S, Huang H. An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression. Cancer Metastasis Rev 2021; 40:245-272. [PMID: 33423164 DOI: 10.1007/s10555-020-09952-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is assumed to be an intimidating and deadly malignancy due to being the leading cause of cancer-led mortality, predominantly affecting males of older age. The overall (5 years) survival rate of PC is less than 9% and is anticipated to be aggravated in the future due to the lack of molecular acquaintance and diagnostic tools for its early detection. Multiple factors are involved in the course of PC development, including genetics, cigarette smoking, alcohol, family history, and aberrant epigenetic signatures of the epigenome. In this review, we will mainly focus on the genetic mutations and epigenetic signature of PC. Multiple tumor suppressor and oncogene mutations are involved in PC initiation, including K-RAS, p53, CDKN2A, and SMAD4. The mutational frequency of these genes ranges from 50 to 98% in PC. The nature of mutation diagnosis is mostly homozygous deletion, point mutation, and aberrant methylation. In addition to genetic modification, epigenetic alterations particularly aberrant hypermethylation and hypomethylation also predispose patients to PC. Hypermethylation is mostly involved in the downregulation of tumor suppressor genes and leads to PC, while multiple genes also represent a hypomethylation status in PC. Several renewable drugs and detection tools have been developed to cope with this aggressive malady, but all are futile, and surgical resection remains the only choice for prolonged survival if diagnosed before metastasis. However, the available therapeutic development is insufficient to cure PC. Therefore, novel approaches are a prerequisite to elucidating the genetic and epigenetic mechanisms underlying PC progression for healthier lifelong survival.
Collapse
Affiliation(s)
- Aamir Ali Khan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Xinhui Liu
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Xinlong Yan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China.
| | - Muhammad Tahir
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Sakhawat Ali
- College of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Hua Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China.
| |
Collapse
|
24
|
Kim D, Lee S, Na K. Immune Stimulating Antibody-Photosensitizer Conjugates via Fc-Mediated Dendritic Cell Phagocytosis and Phototriggered Immunogenic Cell Death for KRAS-Mutated Pancreatic Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006650. [PMID: 33590726 DOI: 10.1002/smll.202006650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Although cetuximab (CTX) is a chimeric epidermal growth factor receptor (EGFR) antibody, the antitumor efficacy of CTX has a negligible effect in patients with Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) mutated pancreatic adenocarcinoma. Given that all extant treatments are ineffective due to the undruggable characteristics of KRAS-mutated cancer, alternative strategies have been investigated. In this work, CTX-conjugated maleimide-polyethylene glycol-chlorin e6 (CMPC) is designed to strengthen its antitumor efficacy. With strong affinity for EGFR overexpressing Aspc-1 cells, CMPC with laser exerts the greatest cytotoxicity (90%) and induction of immunogenic cell death. Through a combination of fragment crystallizable region-mediated antigen uptake by CTX and danger-associated molecular patterns released by photodynamic therapy (PDT), phagocytosis and maturation of dendritic cells treated with CMPC plus laser show dramatic increases. In vivo biodistribution and antitumor effect also demonstrate that CMPC has significant tumor selectivity and tumor ablation efficacy upon laser irradiation. Furthermore, a large number of CD4+ , CD8+ T cells and mature DCs and natural killer cells are infiltrated in CMPC with laser-treated tumor tissues and tumor-draining lymph nodes, revealing both innate and adaptive cellular immune stimulation. This synergistic effect with CMPC and laser treatment provides an effective approach for pancreatic cancer immunotherapy attributed to both CTX and PDT.
Collapse
Affiliation(s)
- Dahye Kim
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi, 14662, Republic of Korea
| | - Sanghee Lee
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi, 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi, 14662, Republic of Korea
| |
Collapse
|
25
|
Ghidini M, Lampis A, Mirchev MB, Okuducu AF, Ratti M, Valeri N, Hahne JC. Immune-Based Therapies and the Role of Microsatellite Instability in Pancreatic Cancer. Genes (Basel) 2020; 12:33. [PMID: 33383713 PMCID: PMC7823781 DOI: 10.3390/genes12010033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive malignancies with limited treatment options thus resulting in high morbidity and mortality. Among all cancers, with a five-year survival rates of only 2-9%, pancreatic cancer holds the worst prognostic outcome for patients. To improve the overall survival, an earlier diagnosis and stratification of cancer patients for personalized treatment options are urgent needs. A minority of pancreatic cancers belong to the spectrum of Lynch syndrome-associated cancers and are characterized by microsatellite instability (MSI). MSI is a consequence of defective mismatch repair protein functions and it has been well characterized in other gastrointestinal tumors such as colorectal and gastric cancer. In the latter, high levels of MSI are linked to a better prognosis and to an increased benefit to immune-based therapies. Therefore, the same therapies could offer an opportunity of treatment for pancreatic cancer patients with MSI. In this review, we summarize the current knowledge about immune-based therapies and MSI in pancreatic cancer.
Collapse
Affiliation(s)
- Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London SM25NG, UK; (A.L.); (M.R.); (N.V.)
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM25NG, UK
| | - Milko B. Mirchev
- Clinic of Gastroenterology, Medical University, 9002 Varna, Bulgaria;
| | | | - Margherita Ratti
- Division of Molecular Pathology, The Institute of Cancer Research, London SM25NG, UK; (A.L.); (M.R.); (N.V.)
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM25NG, UK
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, 26100 Cremona, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London SM25NG, UK; (A.L.); (M.R.); (N.V.)
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM25NG, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London SM25NG, UK
| | - Jens C. Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London SM25NG, UK; (A.L.); (M.R.); (N.V.)
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM25NG, UK
| |
Collapse
|
26
|
Lin Z, Lu S, Xie X, Yi X, Huang H. Noncoding RNAs in drug-resistant pancreatic cancer: A review. Biomed Pharmacother 2020; 131:110768. [PMID: 33152930 DOI: 10.1016/j.biopha.2020.110768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is the fourth-leading cause of cancer-related deaths and is expected to be the second-leading cause of cancer-related deaths in Europe and the United States by 2030. The high fatality rate of pancreatic cancer is ascribed to untimely diagnosis, early metastasis and limited responses to both chemotherapy and radiotherapy. Although gemcitabine, 5-fluorouracil and some other drugs can profoundly improve patient prognosis, most pancreatic cancer patients eventually develop drug resistance, leading to poor clinical outcomes. The underlying mechanisms of pancreatic cancer drug resistance are complicated and inconclusive. Interestingly, accumulating evidence has demonstrated that different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play a crucial role in pancreatic cancer resistance to chemotherapy reagents. In this paper, we systematically summarize the molecular mechanism underlying the influence of ncRNAs on the generation and development of drug resistance in pancreatic cancer and discuss the potential role of ncRNAs as prognostic markers and new therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Zhengjun Lin
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Shiyao Lu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xubin Xie
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xuyang Yi
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Pre-Clinical Medicine/ Second Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
27
|
Ciecielski KJ, Berninger A, Algül H. Precision Therapy of Pancreatic Cancer: From Bench to Bedside. Visc Med 2020; 36:373-380. [PMID: 33178734 PMCID: PMC7590788 DOI: 10.1159/000509232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), with a mortality rate of 94% and a 5-year-survival rate of only 8%, is one of the deadliest cancer entities worldwide, and early diagnostic methods as well as effective therapies are urgently needed. SUMMARY This review summarizes current clinical procedure and recent developments of oncological therapy in the palliative setting of metastatic PDAC. It further gives examples of successful, as well as failed, targeted therapy approaches and finally discusses promising ongoing research into the decade-old question of the "undruggability" of KRAS. KEY MESSAGES Bench-driven concepts change the clinical landscape from "one size fits all" towards precision medicine. With growing insight into the molecular mechanisms of pancreatic cancer the era of targeted therapy in PDAC is gaining a new momentum.
Collapse
Affiliation(s)
| | | | - Hana Algül
- Comprehensive Cancer Center Munich (CCCM), Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
28
|
Koeller J, Surinach A, Arikian SR, Zivkovic M, Janeczko P, Cockrum P, Kim G. Comparing real-world evidence among patients with metastatic pancreatic ductal adenocarcinoma treated with liposomal irinotecan. Ther Adv Med Oncol 2020; 12:1758835920944052. [PMID: 32874209 PMCID: PMC7436779 DOI: 10.1177/1758835920944052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
There are questions surrounding the real-world effectiveness of chemotherapeutic treatments for pancreatic ductal adenocarcinoma. This literature review compared the clinical characteristics and outcomes of available real-world evidence (RWE) for liposomal irinotecan in combination with 5-fluorouracil (5-FU) and leucovorin (LV), a treatment regimen indicated for patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) who previously progressed on gemcitabine-based therapy. A targeted literature search was conducted in the PubMed Central® and Embase® databases to identify available RWE regarding patients with mPDAC receiving liposomal irinotecan published within the last 5 years (January 2014–September 2019). Data were extracted for prior lines of therapy, performance status, overall survival (OS), progression-free survival (PFS), duration of exposure, and adverse events. Six studies met inclusion criteria. A comparison of baseline patient characteristics and results with the included evidence reveals a clinically fragile, real-world patient population in terms of age (range: 61–68), prior lines of therapy with 34–61% of patients receiving ⩾2 lines of lines of prior therapy and performance status [49.8–100% of patients with Eastern Cooperative Oncology Group (ECOG) 0–1]. Studies observed wide OS (range: 5.3–9.4 months) and similar PFS (range: 2.3–4.1 months), with two studies measuring duration of exposure (7.3 weeks, 3.1 months). Patients analyzed by RWE studies tended to be older with significant disease progression, poor performance status, and more heavily pretreated compared with the phase III registrational trial (NAPOLI-1). Despite this, patients treated with liposomal irinotecan + 5-FU/LV therapy had similar outcomes as those in NAPOLI-1.
Collapse
Affiliation(s)
- Jim Koeller
- University of Texas at Austin, Center for Pharmacoeconomic Studies, UTHSC, 7703 Floyd Curl Drive - MC 6220, San Antonio, TX 78229, USA
| | | | | | | | | | | | - George Kim
- Division of Hematology and Oncology, George Washington University, Washington, DC
| |
Collapse
|
29
|
Vena F, Bayle S, Nieto A, Quereda V, Aceti M, Frydman SM, Sansil SS, Grant W, Monastyrskyi A, McDonald P, Roush WR, Teng M, Duckett D. Targeting Casein Kinase 1 Delta Sensitizes Pancreatic and Bladder Cancer Cells to Gemcitabine Treatment by Upregulating Deoxycytidine Kinase. Mol Cancer Ther 2020; 19:1623-1635. [PMID: 32430484 PMCID: PMC7415672 DOI: 10.1158/1535-7163.mct-19-0997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Although gemcitabine is the cornerstone of care for pancreatic ductal adenocarcinoma (PDA), patients lack durable responses and relapse is inevitable. While the underlying mechanisms leading to gemcitabine resistance are likely to be multifactorial, there is a strong association between activating gemcitabine metabolism pathways and clinical outcome. This study evaluated casein kinase 1 delta (CK1δ) as a potential therapeutic target for PDA and bladder cancer, in which CK1δ is frequently overexpressed. We assessed the antitumor effects of genetically silencing or pharmacologically inhibiting CK1δ using our in-house CK1δ small-molecule inhibitor SR-3029, either alone or in combination with gemcitabine, on the proliferation and survival of pancreatic and bladder cancer cell lines and orthotopic mouse models. Genetic studies confirmed that silencing CK1δ or treatment with SR-3029 induced a significant upregulation of deoxycytidine kinase (dCK), a rate-limiting enzyme in gemcitabine metabolite activation. The combination of SR-3029 with gemcitabine induced synergistic antiproliferative activity and enhanced apoptosis in both pancreatic and bladder cancer cells. Furthermore, in an orthotopic pancreatic tumor model, we observed improved efficacy with combination treatment concomitant with increased dCK expression. This study demonstrates that CK1δ plays a role in gemcitabine metabolism, and that the combination of CK1δ inhibition with gemcitabine holds promise as a future therapeutic option for metastatic PDA as well as other cancers with upregulated CK1δ expression.
Collapse
Affiliation(s)
- Francesca Vena
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Simon Bayle
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Ainhoa Nieto
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida
| | - Victor Quereda
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | | | - Sylvia M Frydman
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Samer S Sansil
- Translational Research Core, Moffitt Cancer Center, Tampa, Florida
| | - Wayne Grant
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | | | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Derek Duckett
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
30
|
Agarwal S, Chakravarthi BVSK, Kim HG, Gupta N, Hale K, Balasubramanya SAH, Oliver PG, Thomas DG, Eltoum IEA, Buchsbaum DJ, Manne U, Varambally S. PAICS, a De Novo Purine Biosynthetic Enzyme, Is Overexpressed in Pancreatic Cancer and Is Involved in Its Progression. Transl Oncol 2020; 13:100776. [PMID: 32422575 PMCID: PMC7229293 DOI: 10.1016/j.tranon.2020.100776] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with an extremely poor prognosis. There is an urgent need to identify new therapeutic targets and also understand the mechanism of PDAC progression that leads to aggressiveness of the disease. To find therapeutic targets, we analyzed data related to PDAC transcriptome sequencing and found overexpression of the de novo purine metabolic enzyme phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS). Immunohistochemical analysis of PDAC tissues showed high expression of the PAICS protein. To assess the biological roles of PAICS, we used RNA interference and knock down of its expression in PDAC cell lines that caused a reduction in PDAC cell proliferation and invasion. Furthermore, results of chorioallantoic membrane assays and pancreatic cancer xenografts demonstrated that PAICS regulated pancreatic tumor growth. Our data also showed that, in PDAC cells, microRNA-128 regulates and targets PAICS. PAICS depletion in PDAC cells caused upregulation in E-cadherin, a marker of the epithelial-mesenchymal transition. In PDAC cells, a BET inhibitor, JQ1, reduced PAICS expression. Thus, our investigations show that PAICS is a therapeutic target for PDAC and, as an enzyme, is amenable to targeting by small molecules.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Nirzari Gupta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL
| | - Kevin Hale
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Patsy G Oliver
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Dafydd G Thomas
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Isam-Eldin A Eltoum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Donald J Buchsbaum
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
31
|
Hartley A, Kavishwar G, Salvato I, Marchini A. A Roadmap for the Success of Oncolytic Parvovirus-Based Anticancer Therapies. Annu Rev Virol 2020; 7:537-557. [PMID: 32600158 DOI: 10.1146/annurev-virology-012220-023606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autonomous rodent protoparvoviruses (PVs) are promising anticancer agents due to their excellent safety profile, natural oncotropism, and oncosuppressive activities. Viral infection can trigger immunogenic cell death, activating the immune system against the tumor. However, the efficacy of this treatment in recent clinical trials is moderate compared with results seen in preclinical work. Various strategies have been employed to improve the anticancer activities of oncolytic PVs, including development of second-generation parvoviruses with enhanced oncolytic and immunostimulatory activities and rational combination of PVs with other therapies. Understanding the cellular factors involved in the PV life cycle is another important area of investigation. Indeed, these studies may lead to the identification of biomarkers that would allow a more personalized use of PV-based therapies. This review focuses on this work and the challenges that still need to be overcome to move PVs forward into clinical practice as an effective therapeutic option for cancer patients.
Collapse
Affiliation(s)
- Anna Hartley
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Gayatri Kavishwar
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Ilaria Salvato
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany; .,Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|
32
|
Mundry CS, Eberle KC, Singh PK, Hollingsworth MA, Mehla K. Local and systemic immunosuppression in pancreatic cancer: Targeting the stalwarts in tumor's arsenal. Biochim Biophys Acta Rev Cancer 2020; 1874:188387. [PMID: 32579889 DOI: 10.1016/j.bbcan.2020.188387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Late detection, compromised immune system, and chemotherapy resistance underlie the poor patient prognosis for pancreatic ductal adenocarcinoma (PDAC) patients, making it the 3rd leading cause of cancer-related deaths in the United States. Cooperation between the tumor cells and the immune system leads to the immune escape and eventual establishment of the tumor. For more than 20 years, sincere efforts have been made to intercept the tumor-immune crosstalk and identify the probable therapeutic targets for breaking self-tolerance toward tumor antigens. However, the success of these studies depends on detailed examination and understanding of tumor-immune cell interactions, not only in the primary tumor but also at distant systemic niches. Innate and adaptive arms of the immune system sculpt tumor immunogenicity, where they not only aid in providing an amenable environment for their survival but also act as a driver for tumor relapse at primary or distant organ sites. This review article highlights the key events associated with tumor-immune communication and associated immunosuppression at both local and systemic microenvironments in PDAC. Furthermore, we discuss the approaches and benefits of targeting both local and systemic immunosuppression for PDAC patients. The present articles integrate data from clinical and genetic mouse model studies to provide a widespread consensus on the role of local and systemic immunosuppression in undermining the anti-tumor immune responses against PDAC.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bone Marrow/drug effects
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cancer Vaccines/administration & dosage
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Chemotherapy, Adjuvant/methods
- Clinical Trials as Topic
- Combined Modality Therapy/methods
- Disease Models, Animal
- Disease-Free Survival
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Humans
- Immunity, Innate/drug effects
- Immunotherapy/methods
- Irinotecan/pharmacology
- Irinotecan/therapeutic use
- Leucovorin/pharmacology
- Leucovorin/therapeutic use
- Lymph Node Excision
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymph Nodes/surgery
- Mice
- Mice, Transgenic
- Neoadjuvant Therapy/methods
- Oxaliplatin/pharmacology
- Oxaliplatin/therapeutic use
- Pancreas/immunology
- Pancreas/pathology
- Pancreas/surgery
- Pancreatectomy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Spleen/immunology
- Spleen/pathology
- Spleen/surgery
- Splenectomy
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transplantation, Autologous/methods
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- United States/epidemiology
Collapse
Affiliation(s)
- Clara S Mundry
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kirsten C Eberle
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kamiya Mehla
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| |
Collapse
|
33
|
Zheng YB, Zhang MR, Li Y, Liu XJ, Zhen YS. DBDx-based drug combinations show highly potent therapeutic efficacy against human pancreatic cancer xenografts in athymic mice. Cancer Biol Ther 2020; 21:749-757. [PMID: 32644888 DOI: 10.1080/15384047.2020.1776580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that DBDx, a combination consisting of dipyridamole, bestatin and dexamethasone is highly effective against several cancer xenografts in athymic mice. Here the therapeutic effects of DBDx and its combination with gemcitabine or capcitabine against human pancreatic cancer xenografts and the mechanism were studied. In vivo experiments performed in athymic mice showed that the antitumor efficacy of DBDx was much stronger than that of gemcitabine or capecitabine alone. Notably, the combination of DBDx and gemcitabine or capcitabine further enhanced the efficacy. In the case of DBDx (242 mg/kg) plus gemcitabine (100 mg/kg), tumor weight decreased about 97.7%, and tumor sizes were shrinking during the treatment. In the case of DBDx (242 mg/kg) plus capecitabine (718.7 mg/kg), tumor weight decreased about 94.9%. Moreover, DBDx and its combinations obviously prolonged theoverall survival of mice compared with gemcitabine or capcitabine alone. DBDx-based drug combination therapy showed no obvious systematic toxicity. The gene expression profile analysis showed that the genes changed by DBDx were related to immune system and tumor vasculature. The result of protein array showed that the changed proteins in the serum of treated mice were related to immune and inflammation system. These results show that DBDx-based drug combinations, a new strategy which integrates the use of low-cytotoxic drugs and cytotoxic chemotherapeutics, are highly effective regimens against human pancreatic cancer in athymic mice at well tolerated doses. DBDx-based drug combination therapy might provide new options for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yan-Bo Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Meng-Ran Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Xiu-Jun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| |
Collapse
|
34
|
MIF inhibitor, ISO-1, attenuates human pancreatic cancer cell proliferation, migration and invasion in vitro, and suppresses xenograft tumour growth in vivo. Sci Rep 2020; 10:6741. [PMID: 32317702 PMCID: PMC7174354 DOI: 10.1038/s41598-020-63778-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
This study sought to investigate the biological effects of specific MIF inhibitor, ISO-1, on the proliferation, migration and invasion of PANC-1 human pancreatic cells in vitro, and on tumour growth in a xenograft tumour model in vivo. The effect of ISO-1 on PANC-1 cell proliferation was examined using CCK-8 cell proliferation assay. The effect of ISO-1 on collective cell migration and recolonization of PANC-1 cells was evaluated using the cell-wound closure migration assay. The effect of ISO-1 on the migration and invasion of individual PANC-1 cells in a 3-dimensional environment in response to a chemo-attractant was investigated through the use of Transwell migration/invasion assays. Quantitative real time PCR and western blot analyses were employed to investigate the effects of ISO-1 on MIF, NF-κB p65 and TNF-α mRNA and protein expression respectively. Finally, a xenograft tumor model in BALB/c nude mice were used to assess the in vivo effects of ISO-1 on PANC-1-induced tumor growth. We found high expression of MIF in pancreatic cancer tissues. We demonstrated that ISO-1 exerts anti-cancer effects on PANC-1 cell proliferation, migration and invasion in vitro, and inhibited PANC-1 cell-induced tumour growth in xenograft mice in vivo. Our data suggests that ISO-1 and its derivative may have potential therapeutic applications in pancreatic cancer.
Collapse
|
35
|
Synthesis of guggulsterone derivatives as potential anti-austerity agents against PANC-1 human pancreatic cancer cells. Bioorg Med Chem Lett 2020; 30:126964. [DOI: 10.1016/j.bmcl.2020.126964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
|
36
|
Pan P, Zhu Z, Oshima K, Aldakkak M, Tsai S, Huang YW, Dong W, Zhang J, Lin CW, Wang Y, Yearsley M, Yu J, Wang LS. Black raspberries suppress pancreatic cancer through modulation of NKp46 +, CD8 +, and CD11b + immune cells. FOOD FRONTIERS 2020; 1:70-82. [PMID: 32368735 DOI: 10.1002/fft2.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with a low survival rate (9%). Epidemiologic studies show that healthy dietary patterns enriched of fruits and vegetables lower the risk of PDAC. We previously showed that supplementing black raspberries (BRBs) to patients with colorectal cancer increased tumor-infiltrating NK cells and their cytotoxicity. We aimed to determine whether BRBs combat PDAC by modulating cancer immunity. NOD.SCID mice lacking T and B cells were injected with human Panc-1-Luc cells orthotopically, and immunocompetent Kras LSL.G12D/+ -Trp53 LSL.R172H/+ -Pdx-1-Cre mice were fed BRBs. Peripheral blood mononuclear cells (PBMCs) from PDAC patients were treated with butyrate, a microbial metabolite of BRBs. The absence of T and B cells did not dampen BRBs' anti-tumor effects in the NOD.SCID mice. In the Kras LSL.G12D/+ -Trp53 LSL.R172H/+ -Pdx-1-Cre mice, BRBs significantly prolonged survival (189 days versus 154 days). In both models, BRBs decreased tumor-infiltrating CD11b+ cells and the expression of IL-1β, sEH, and Ki67. BRBs also increased tumor-infiltrating NKp46+ cells and the expression of CD107a, a functional marker of cytolytic NK and CD8+ T cells. In Kras LSL.G12D/+ -Trp53 LSL.R172H/+ -Pdx-1-Cre mice, tumor infiltration of CD8+ T cells was increased by BRBs. Further using the PBMCs from PDAC patients, we show that butyrate decreased the population of myeloid-derived suppressor cells (MDSCs). Butyrate also reversed CD11b+ cell-mediated suppression on CD8+ T cells. Interestingly, there is a negative association between MDSC changes and patients' survival, suggesting that the more decrease in MDSC population induced by butyrate treatment, the longer the patient had survived. Our study suggests the immune-modulating potentials of BRBs in PDAC.
Collapse
Affiliation(s)
- Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| | - Zheng Zhu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute
| | | | | | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin
| | - Wenjuan Dong
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute
| | - Jianying Zhang
- Division of Biostatistics, Department of Science of Informatics, City of Hope National Medical Center and Beckman Research Institute
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin
| | - Youwei Wang
- The James Cancer Hospital, The Ohio State University
| | | | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| |
Collapse
|
37
|
Albahde MAH, Zhang P, Zhang Q, Li G, Wang W. Upregulated Expression of TUBA1C Predicts Poor Prognosis and Promotes Oncogenesis in Pancreatic Ductal Adenocarcinoma via Regulating the Cell Cycle. Front Oncol 2020; 10:49. [PMID: 32117719 PMCID: PMC7033491 DOI: 10.3389/fonc.2020.00049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease and has the worst prognosis and survival rate. TUBA1C is a microtubule component implicated in multiple cancers, however, the clinical significance and biological functions of TUBA1C in the progression of PDAC remain unexplored. Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis (GEPIA) data were employed to detect the TUBA1C mRNA expression and the relation between TUBA1C expression and overall survival (OS) in PDAC. Then, bioinformatic analysis was employed to determine the potential pathway and genes related to TUBA1C. Human pancreatic cancer tissue and adjacent non-tumor tissues samples were detected by immunochemistry (IHC) staining, and the correlation between TUBA1C expression and the clinicopathological features were investigated. Meanwhile, TUBA1C expression in PDAC cell lines was evaluated by western blotting. Furthermore, functional assays including cell viability, apoptosis, cell cycle, transwell assay, wound healing assay, and a xenograft tumor model were performed to determine the oncogenic role of TUBA1C in PDAC, respectively. Results: TUBA1C was overexpressed in the PDAC tissues and cells. IHC analysis showed that the TUBA1C overexpression was associated with short OS. Bioinformatic analysis indicated that TUBA1C overexpression was mainly associated with cell cycle regulation. The downregulation of TUBA1C significantly suppressed cell proliferation, induced cell apoptosis and cycle arrest, and inhibited invasion and migration in PDAC cells. Furthermore, TUBA1C downregulation also inhibited tumor growth in vivo. Conclusion: These findings suggested that TUBA1C downregulation suppressed PDAC aggressiveness via cell cycle pathway and that TUBA1C may serve as a potential prognostic marker for PDAC therapy.
Collapse
Affiliation(s)
- Mugahed Abdullah Hasan Albahde
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qiuqiang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Guoqi Li
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
38
|
Veschi S, Ronci M, Lanuti P, De Lellis L, Florio R, Bologna G, Scotti L, Carletti E, Brugnoli F, Di Bella MC, Bertagnolo V, Marchisio M, Cama A. Integrative proteomic and functional analyses provide novel insights into the action of the repurposed drug candidate nitroxoline in AsPC-1 cells. Sci Rep 2020; 10:2574. [PMID: 32054977 PMCID: PMC7018951 DOI: 10.1038/s41598-020-59492-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
We recently identified nitroxoline as a repurposed drug candidate in pancreatic cancer (PC) showing a dose-dependent antiproliferative activity in different PC cell lines. This antibiotic is effective in several in vitro and animal cancer models. To date, the mechanisms of nitroxoline anticancer action are largely unknown. Using shotgun proteomics we identified 363 proteins affected by nitroxoline treatment in AsPC-1 pancreatic cancer cells, including 81 consistently deregulated at both 24- and 48-hour treatment. These proteins previously unknown to be affected by nitroxoline were mostly downregulated and interconnected in a single highly-enriched network of protein-protein interactions. Integrative proteomic and functional analyses revealed nitroxoline-induced downregulation of Na/K-ATPase pump and β-catenin, which associated with drastic impairment in cell growth, migration, invasion, increased ROS production and induction of DNA damage response. Remarkably, nitroxoline induced a previously unknown deregulation of molecules with a critical role in cell bioenergetics, which resulted in mitochondrial depolarization. Our study also suggests that deregulation of cytosolic iron homeostasis and of co-translational targeting to membrane contribute to nitroxoline anticancer action. This study broadens our understanding of the mechanisms of nitroxoline action, showing that the drug modulates multiple proteins crucial in cancer biology and previously unknown to be affected by nitroxoline.
Collapse
Affiliation(s)
- Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Rosalba Florio
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giuseppina Bologna
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Federica Brugnoli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | - Valeria Bertagnolo
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Marchisio
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy. .,Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
39
|
Sun J, Russell CC, Scarlett CJ, McCluskey A. Small molecule inhibitors in pancreatic cancer. RSC Med Chem 2020; 11:164-183. [PMID: 33479626 PMCID: PMC7433757 DOI: 10.1039/c9md00447e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer (PC), with a 5 year survival of <7%, is one of the most fatal of all human cancers. The highly aggressive and metastatic character of this disease poses a challenge that current therapies are failing, despite significant efforts, to meet. This review examines the current status of the 35 small molecule inhibitors targeting pancreatic cancer in clinical trials and the >50 currently under investigation. These compounds inhibit biological targets spanning protein kinases, STAT3, BET, HDACs and Bcl-2 family proteins. Unsurprisingly, protein kinase inhibitors are overrepresented. Some trials show promise; a phase I combination trial of vorinostat 11 and capecitabine 17 gave a median overall survival (MoS) of 13 months and a phase II study of pazopanib 15 showed a MoS of 25 months. The current standard of care for metastatic pancreatic ductal adenocarcinoma, fluorouracil/folic acid (5-FU, Adrucil®), and gemcitabine (GEMZAR®) afforded a MoS of 23 and 23.6 months (EPAC-3 study), respectively. In patients who can tolerate the FOLFIRINOX regime, this is becoming the standard of treatment with a MoS of 11.1 months. Clinical study progress has been slow with limited improvement in patient survival relative to gemcitabine 1 monotherapy. A major cause of low PC survival is the late stage of diagnosis, occurring in patients who consider typical early stage warning signs of aches and pains normal. The selection of patients with specific disease phenotypes, the use of improved efficient drug combinations, the identification of biomarkers to specific cancer subtypes and more effective designs of investigation have improved outcomes. To move beyond the current dire condition and paucity of PC treatment options, determination of the best regimes and new treatment options is a challenge that must be met. The reasons for poor PC prognosis have remained largely unchanged for 20 years. This is arguably a consequence of significant changes in the drug discovery landscape, and the increasing pressure on academia to deliver short term 'media' friendly short-term news 'bites'. PC research sits at a pivotal point. Perhaps the greatest challenge is enacting a culture change that recognises that major breakthroughs are a result of blue sky, truly innovative and curiosity driven research.
Collapse
Affiliation(s)
- Jufeng Sun
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
- Medicinal Chemistry , School of Pharmacy , Binzhou Medical University , Yantai , 264003 , China
| | - Cecilia C Russell
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
| | - Christopher J Scarlett
- Applied Sciences , School of Environmental & Life Sciences , The University of Newcastle , Ourimbah NSW 2258 , Australia
| | - Adam McCluskey
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
| |
Collapse
|
40
|
Hong Z, Wang Z, Zhou B, Wang J, Tong H, Liao Y, Zheng P, Jamshed MB, Zhang Q, Chen H. Effects of evodiamine on PI3K/Akt and MAPK/ERK signaling pathways in pancreatic cancer cells. Int J Oncol 2020; 56:783-793. [PMID: 31922213 PMCID: PMC7010218 DOI: 10.3892/ijo.2020.4956] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
The effective antitumor drug evodiamine (EVO) is attracting increased attention. Therefore, the present study aimed to investigate the effects of EVO on the proliferation, apoptosis and autophagy of human pancreatic cancer (PC) cell lines in vitro and in vivo. Human PANC-1 and SW1990 PC cell lines were treated with different concentrations of EVO and proliferation was detected using a Cell Counting Kit (CCK)-8 assay. Colony formation and wound-healing assays showed that EVO inhibited PC cell viability and migration, and apoptosis was detected using flow cytometry. Western blotting and immunofluorescence detected the expression of proteins in PANC-1 and SW1990 cells. The PANC-1 cells were used to establish an orthotopic pancreatic tumor model in nude mice. Tumor-bearing nude mice were administered with different concentrations of EVO, and growth was monitored. High-resolution positron emission tomography and fluorine-18-labeled fluorodeoxyglucose were used to monitor the tumor/non-tumor (T/NT) ratio and standard uptake value (SUV) of the mice, which were subsequently sacrificed to measure the transplanted tumor weight. Apoptosis increased with increasing EVO concentration. The EVO-treated PC cells exhibited significantly higher expression of LC3II than the controls cells. EVO decreased LC3II, enhanced P62 and inhibited the expression of Akt, extracellular-signal-regulated protein kinase (ERK)1/2 and p38. Compared with the control group, the T/NT ratio, SUV and tumor weight decreased more markedly in the EVO-treated group. The tumor expression of phosphorylated AKT, detected using immunohistochemistry, decreased with increasing EVO doses in vivo. EVO induced PC cell apoptosis by inhibiting phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase/ERK and inhibiting the phosphorylation of signal transducer and activator of transcription activator 3 in PC cells to inhibit autophagy, suggesting that EVO may be considered as a novel PC treatment.
Collapse
Affiliation(s)
- Zhong Hong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhaohong Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jisheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hongfei Tong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yi Liao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Peng Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Muhammad Babar Jamshed
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hui Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
41
|
Karmakar S, Chatterjee S, Purkait K, Mukherjee A. A trans-dichloridoplatinum(II) complex of a monodentate nitrogen mustard: Synthesis, stability and cytotoxicity studies. J Inorg Biochem 2019; 204:110982. [PMID: 31911365 DOI: 10.1016/j.jinorgbio.2019.110982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/13/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
A trans-dichloridoplatinum(II) complex, trans-[PtIICl2(L)(DMSO)] (1) of a monodentate nitrogen mustard, bis(2-chloroethyl)amine (L), was synthesized by the reaction of cis-[PtIICl2(DMSO)2] &L.HCl in presence of Et3N. 1 was characterised by NMR, FT-IR and elemental analysis. L is unstable in aqueous solution while 1 displayed moderate stability. In aqueous buffer solution of pD 7.4, 1 starts to loose L slowly upon dissolution and even after 48 h there is still intact/aquated complex present in solution. 1 interacts with the model nucleobase 9-ethyl guanine. The ligand L was non-toxic against MCF-7, A549, HepG2 & MIA PaCa-2 up to 200 μM. In contrast, the Pt(II) complex 1 showed an excellent IC50 (ca. 600 nM) against MIA PaCa-2 and also displayed good IC50 value (3-7 μM) against the other cancer cell lines probed. The in vitro cytotoxicity of 1 is better than cisplatin against each of the treated cancer cell lines and it is not affected by hypoxia as per the in vitro studies. Complex 1 displays higher cellular accumulation than cisplatin and arrests the cell cycle in both S & G2/M phase inducing apoptotic cell death. The G2/M phase arrest is dominant at higher concentrations. The depolarisation of mitochondria by 1 combined with activation of caspase-7 indicates apoptotic cell death. Complex 1 induces low hemolysis of human blood signifying excellent blood compatibility.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India; Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Saptarshi Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Kallol Purkait
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Arindam Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| |
Collapse
|
42
|
Willumsen N, Ali SM, Leitzel K, Drabick JJ, Yee N, Polimera HV, Nagabhairu V, Krecko L, Ali A, Maddukuri A, Moku P, Ali A, Poulose J, Menon H, Pancholy N, Costa L, Karsdal MA, Lipton A. Collagen fragments quantified in serum as measures of desmoplasia associate with survival outcome in patients with advanced pancreatic cancer. Sci Rep 2019; 9:19761. [PMID: 31875000 PMCID: PMC6930304 DOI: 10.1038/s41598-019-56268-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients have poor prognosis and poor response to treatment. This is largely due to PDAC being associated with a dense and active stroma and tumor fibrosis (desmoplasia). Desmoplasia is characterized by excessive degradation and formation of the extracellular matrix (ECM) generating collagen fragments that are released into circulation. We evaluated the association of specific collagen fragments measured in pre-treatment serum with outcome in patients with PDAC. Matrix metalloprotease (MMP)-degraded type I collagen (C1M), type III collagen (C3M), type IV collagen (C4M) and a pro-peptide of type III collagen (PRO-C3) were measured by ELISA in pre-treatment serum from a randomized phase 3 clinical trial of patients with stage III/IV PDAC treated with 5-fluorouracil based therapy (n = 176). The collagen fragments were evaluated for their correlation (r, Spearman) with serum CA19-9 and for their association with overall survival (OS) based on Cox-regression analyses. In this phase 3 PDAC trial, pre-treatment serum collagen fragment levels were above the reference range for 67%-98% of patients, with median values in PDAC approximately two-fold higher than reference levels. Collagen fragment levels did not correlate with CA19-9 (r = 0.049–0.141, p = ns). On a continuous basis, higher levels of all collagen fragments were associated with significantly shorter OS. When evaluating degradation (C3M) and formation (PRO-C3) of type III collagen further, higher PRO-C3 was associated with poor OS (>25th percentile cut-point, HR = 2.01, 95%CI = 1.33–3.05) and higher C3M/PRO-C3 ratio was associated with improved OS (>25th percentile cut-point, HR = 0.53, 95%CI = 0.34–0.80). When adjusting for CA19–9 and clinical covariates, PRO-C3 remained significant (HR = 1.65, 95%CI = 1.09–2.48). In conclusion, collagen remodeling quantified in pre-treatment serum as a surrogate measure of desmoplasia was significantly associated with OS in a phase 3 clinical PDAC trial, supporting the link between desmoplasia, tumorigenesis, and response to treatment. If validated, these biomarkers may have prognostic and/or predictive potential in future PDAC trials.
Collapse
Affiliation(s)
| | - Suhail M Ali
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA.,Lebanon VA Medical Center, Lebanon, PA, USA
| | - Kim Leitzel
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Joseph J Drabick
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Nelson Yee
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Hyma V Polimera
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Vinod Nagabhairu
- Pinnacle Health System, University of Pittsburgh Medical Center, Harrisburg, PA, USA
| | - Laura Krecko
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Ayesha Ali
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Ashok Maddukuri
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Prashanth Moku
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Aamnah Ali
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Joyson Poulose
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Harry Menon
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Neha Pancholy
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Luis Costa
- Oncology division, Hospital de Santa Maria, Lisboa, Portugal.,Clinical Translational Oncology Research Unit, Institute of Molecular Medicine, Lisboa, Portugal
| | | | - Allan Lipton
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
43
|
Tshitenge DT, Bruhn T, Feineis D, Schmidt D, Mudogo V, Kaiser M, Brun R, Würthner F, Awale S, Bringmann G. Ealamines A-H, a Series of Naphthylisoquinolines with the Rare 7,8'-Coupling Site, from the Congolese Liana Ancistrocladus ealaensis, Targeting Pancreatic Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2019; 82:3150-3164. [PMID: 31630523 DOI: 10.1021/acs.jnatprod.9b00755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
From the twigs and leaves of the Central African liana Ancistrocladus ealaensis (Ancistrocladaceae), a series of ten 7,8'-coupled naphthylisoquinoline alkaloids were isolated, comprising eight new compounds, named ealamines A-H (4a, 4b, 5-10), and two known ones, 6-O-demethylancistrobrevine A (11) and yaoundamine A (12), which had previously been found in related African Ancistrocladus species. Only one of the new compounds within this series, ealamine H (10), is a typical Ancistrocladaceae-type alkaloid, with 3S-configuration at C-3 and an oxygen function at C-6, whereas seven of the new alkaloids are the first 7,8'-linked "hybrid-type" naphthylisoquinoline alkaloids, i.e., 3R-configured and 6-oxygenated in the tetrahydroisoquinoline part. The discovery of such a broad series of 7,8'-coupled naphthyltetrahydroisoquinolines is unprecedented, because representatives of this subclass of alkaloids are normally found in Nature quite rarely. The stereostructures of the new ealamines were assigned by HRESIMS, 1D and 2D NMR, oxidative degradation, and experimental and quantum-chemical ECD investigations, and-in the case of ealamine A (4a)-also confirmed by X-ray diffraction analysis. Ealamines A-D exhibited distinct-and specific-antiplasmodial activities, and they displayed pronounced preferential cytotoxic effects toward PANC-1 human pancreatic cancer cells in nutrient-deprived medium, without causing toxicity under normal, nutrient-rich conditions, with ealamine C (5) as the most potent agent.
Collapse
Affiliation(s)
- Dieudonné Tshitenge Tshitenge
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
- Faculty of Pharmaceutical Sciences , University of Kinshasa , B.P. 212 Kinshasa XI, Democratic Republic of the Congo
- Medicinal Chemistry , Bayer AG, Pharmaceuticals , Aprather Weg 18a , D-42096 Wuppertal , Germany
| | - Torsten Bruhn
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
- Federal Institute for Risk Assessment , Max-Dohrn-Straße 8-10 , D-10589 Berlin , Germany
| | - Doris Feineis
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - David Schmidt
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - Virima Mudogo
- Faculté des Sciences , Université de Kinshasa , B.P. 202 , Kinshasa XI, Democratic Republic of the Congo
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , CH-4002 Basel , Switzerland
- University of Basel , Petersplatz 1 , CH-4003 Basel , Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , CH-4002 Basel , Switzerland
- University of Basel , Petersplatz 1 , CH-4003 Basel , Switzerland
| | - Frank Würthner
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| | - Gerhard Bringmann
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
| |
Collapse
|
44
|
Park S, Kim D, Park JA, Kwon HJ, Lee Y. Targeting TM4SF5 with anti-TM4SF5 monoclonal antibody suppresses the growth and motility of human pancreatic cancer cells. Oncol Lett 2019; 19:641-650. [PMID: 31897180 PMCID: PMC6924189 DOI: 10.3892/ol.2019.11134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the most lethal cancers. Transmembrane 4 superfamily member 5 protein (TM4SF5) is one of the candidate molecular targets used for the prevention and treatment of TM4SF5-expressing cancers, including hepatocellular carcinoma, colon cancer and pancreatic cancer. Recently, a previous study reported the preventive effects of a peptide vaccine, which targeted TM4SF5, in a mouse pancreatic cancer model. The present study investigated the implication of TM4SF5 and the suppressive effect of anti-human TM4SF5 monoclonal antibody (anti-hTM4SF5 antibody) in human pancreatic cancer cell lines in vitro. Treatment with anti-hTM4SF5 antibody reduced cell viability, modulated the expression of EMT markers Vimentin and E-cadherin, and decreased cell motility in human pancreatic cancer cells that endogenously expressed TM4SF5. When TM4SF5 was exogenously overexpressed in the TM4SF5-negative cell line, the cells indicated increased cell viability and motility compared with control cells, and the phenotype was reversed by anti-hTM4SF5 antibody treatment. Therefore, the results of the current study demonstrated that the high expression of TM4SF5 is a tumorigenic factor in human pancreatic cells and anti-hTM4SF5 antibody treatment exhibits a suppressive effect in TM4SF5-expressing pancreatic cancer cells.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Dongbum Kim
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyung-Joo Kwon
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
45
|
Xenografts Derived From Patients' Ascites Recapitulate the Gemcitabine Resistance Observed in Pancreatic Cancer Patients. Pancreas 2019; 48:1294-1302. [PMID: 31688592 DOI: 10.1097/mpa.0000000000001438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Most patient-derived pancreatic ductal adenocarcinoma (PDAC) xenografts have been established from surgical specimens of patients who have not received chemotherapy. However, xenografts have rarely been established from chemotherapy-resistant, advanced PDACs, because such cases are usually inoperable. The purpose of this study is to establish patient-derived xenografts using PDAC cells refractory to chemotherapy. METHODS Clinical PDAC cells obtained from ascites of patients who had received continuous chemotherapy were implanted into the flanks of immunocompromised mice. Growth and histological features of the xenografts with and without gemcitabine treatment were then analyzed. RESULTS Ascites-derived PDAC cells were successfully expanded through serial xenograft passage without changes in histological appearance. While treatment with gemcitabine substantially inhibited the growth of all PDAC xenografts tested, the tumor volume gradually increased, and the tumors showed marked regrowth even under continued gemcitabine treatment. These findings are consistent with the actual clinical course of the corresponding patients for each xenograft. CONCLUSIONS Ascites-derived xenograft models represent a valuable experimental system for testing the efficacy of currently available therapeutic compounds on chemotherapy-resistant PDAC cells and for elucidation of the mechanisms underlying chemotherapy resistance.
Collapse
|
46
|
Lei F, Xi X, Batra SK, Bronich TK. Combination Therapies and Drug Delivery Platforms in Combating Pancreatic Cancer. J Pharmacol Exp Ther 2019; 370:682-694. [PMID: 30796131 PMCID: PMC6806650 DOI: 10.1124/jpet.118.255786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer-related death in the United States, is highly aggressive and resistant to both chemo- and radiotherapy. It remains one of the most difficult-to-treat cancers, not only due to its unique pathobiological features such as stroma-rich desmoplastic tumors surrounded by hypovascular and hypoperfused vessels limiting the transport of therapeutic agents, but also due to problematic early detection, which renders most treatment options largely ineffective, resulting in extensive metastasis. To elevate therapeutic effectiveness of treatments and overt their toxicity, significant enthusiasm was generated to exploit new strategies for combating PDAC. Combination therapy targeting different barriers to mitigate delivery issues and reduce tumor recurrence and metastasis has demonstrated optimal outcomes in patients' survival and quality of life, providing possible approaches to overcome therapeutic challenges. This paper aims to provide an overview of currently explored multimodal therapies using either conventional therapy or nanomedicines along with rationale, up-to-date progress, as well as the key challenges that must be overcome. Understanding the future directions of the field may assist in the successful development of novel treatment strategies for enhancing therapeutic efficacy in PDAC.
Collapse
Affiliation(s)
- Fan Lei
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Xinyuan Xi
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
47
|
Kajtazi Y, Kaemmerer D, Sänger J, Schulz S, Lupp A. Somatostatin and chemokine CXCR4 receptor expression in pancreatic adenocarcinoma relative to pancreatic neuroendocrine tumours. J Cancer Res Clin Oncol 2019; 145:2481-2493. [PMID: 31451931 DOI: 10.1007/s00432-019-03011-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Pancreatic adenocarcinoma (PAC) represents one of the most fatal types of cancer with an exceptionally poor prognosis, underscoring the need for improved diagnostic and treatment approaches. An over-expression of somatostatin receptors (SST) as well as of the chemokine receptor CXCR4 has been shown for many tumour entities. Respective expression data for PAC, however, are scarce and contradictory. METHODS Overall, 137 tumour samples from 70 patients, 26 of whom were diagnosed with PAC and 44 with pancreatic neuroendocrine tumour (PanNET), were compared in terms of SST and CXCR4 expression by immunohistochemical analysis using well-characterized rabbit monoclonal antibodies. RESULTS Only SST1 and CXCR4 expression was detected in PAC tumours, with SST1 present in 42.3% and CXCR4 in 7.7% of cases. However, the overall staining intensity was very weak. In contrast to the tumour cells, in many PAC cases, tumour capillaries exhibited strong SST3, SST5, or CXCR4 expression. In PanNETs, SST2 was the most-prominently expressed receptor, observed in 75.0% of the tumours at medium-strong intensity. SST5, SST1, and CXCR4 expression was detected in 20.5%, 15.9%, and 11.4% of PanNET cases, respectively, but the staining intensity was only weak. SST2 positivity in PanNET, but not in PAC, was associated with favourable patient outcomes. CONCLUSIONS SST or CXCR4 expression in PAC is clearly of no therapeutic relevance. However, indirect targeting of these tumours via SST3, SST5, or CXCR4 on tumour microvessels may represent a promising additional therapeutic strategy.
Collapse
Affiliation(s)
- Ylberta Kajtazi
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany.
| |
Collapse
|
48
|
Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 2019; 14:141. [PMID: 31395068 PMCID: PMC6688256 DOI: 10.1186/s13014-019-1345-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/24/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence. Late detection and a particularly aggressive biology are the major challenges which determine therapeutic failure. In this review, we present the current status and the recent advances in PDAC treatment together with the biological and immunological hallmarks of this cancer entity. On this basis, we discuss new concepts combining distinct treatment modalities in order to improve therapeutic efficacy and clinical outcome - with a specific focus on protocols involving radio(chemo)therapeutic approaches.
Collapse
|
49
|
Emerging therapeutic nanotechnologies in pancreatic cancer: advances, risks and challenges. Ther Deliv 2019; 9:691-694. [PMID: 30277137 DOI: 10.4155/tde-2018-0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
50
|
Li Y, Zhang Y, Liu J. NETO2 promotes pancreatic cancer cell proliferation, invasion and migration via activation of the STAT3 signaling pathway. Cancer Manag Res 2019; 11:5147-5156. [PMID: 31239769 PMCID: PMC6560188 DOI: 10.2147/cmar.s204260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: The biological functions of neuropilin and tolloid-like 2 (NETO2) in the progression of pancreatic cancer remained unexplored. We aimed to investigate the biological roles and underlying molecular mechanisms of NETO2 in pancreatic cancer. Materials and methods: Thirty paired pancreatic tumor tissue samples and corresponding nontumor tissues were obtained from 30 pancreatic cancer patients who did not receive preoperative chemotherapy or radiotherapy. The changes in multiple cellular functions associated with tumor progression were assessed after NETO2 knockdown/overexpression in pancreatic cancer cell lines. Additionally, a mouse-xenograft model was developed to verify the in vitro results. Results:NETO2 was upregulated in pancreatic tumor tissues. Elevated expression of NETO2 was not only associated with an advanced tumor stage, but was also a prediction of poor prognosis for pancreatic cancer patients. Knockdown of NETO2 in pancreatic cancer cell lines arrested the cell cycle and inhibited cell proliferation, colony formation, invasion, and migration; in contrast, overexpression of NETO2 had an opposite effect on all of these parameters. A STAT3 specific inhibitor, cryptotanshinone, reversed the tumor-promoting effects induced by NETO2 overexpression in pancreatic cancer. Western blot analysis showed that invasion and migration were closely related to epithelial–mesenchymal transition, and that the STAT3 signaling pathway was involved in NETO2-mediated oncogenic transformation in pancreatic cancer cells. Furthermore, NETO2 knockdown significantly inhibited the growth of pancreatic tumor xenografts in nude mice. Conclusion:NETO2 has an important role in the progression and metastasis of pancreatic cancer and could serve as a novel candidate for targeted therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Yaxiong Li
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yongping Zhang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jiansheng Liu
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| |
Collapse
|