1
|
Alom MW, Jibon MDK, Faruqe MO, Rahman MS, Akter F, Ali A, Rahman MM. Integrated Gene Expression Data-Driven Identification of Molecular Signatures, Prognostic Biomarkers, and Drug Targets for Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6810200. [PMID: 39184354 PMCID: PMC11343637 DOI: 10.1155/2024/6810200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Glioblastoma (GBM) is a highly prevalent and deadly brain tumor with high mortality rates, especially among adults. Despite extensive research, the underlying mechanisms driving its progression remain poorly understood. Computational analysis offers a powerful approach to explore potential prognostic biomarkers, drug targets, and therapeutic agents for GBM. In this study, we utilized three gene expression datasets from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) associated with GBM progression. Our goal was to uncover key molecular players implicated in GBM pathogenesis and potential avenues for targeted therapy. Analysis of the gene expression datasets revealed a total of 78 common DEGs that are potentially involved in GBM progression. Through further investigation, we identified nine hub DEGs that are highly interconnected in protein-protein interaction (PPI) networks, indicating their central role in GBM biology. Gene Ontology (GO) and pathway enrichment analyses provided insights into the biological processes and immunological pathways influenced by these DEGs. Among the nine identified DEGs, survival analysis demonstrated that increased expression of GMFG correlated with decreased patient survival rates in GBM, suggesting its potential as a prognostic biomarker and preventive target for GBM. Furthermore, molecular docking and ADMET analysis identified two compounds from the NIH clinical collection that showed promising interactions with the GMFG protein. Besides, a 100 nanosecond molecular dynamics (MD) simulation evaluated the conformational changes and the binding strength. Our study highlights the potential of GMFG as both a prognostic biomarker and a therapeutic target for GBM. The identification of GMFG and its associated pathways provides valuable insights into the molecular mechanisms driving GBM progression. Moreover, the identification of candidate compounds with potential interactions with GMFG offers exciting possibilities for targeted therapy development. However, further laboratory experiments are required to validate the role of GMFG in GBM pathogenesis and to assess the efficacy of potential therapeutic agents targeting this molecule.
Collapse
Affiliation(s)
- Md. Wasim Alom
- Department of Genetic Engineering and BiotechnologyUniversity of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Delowar Kobir Jibon
- Department of Genetic Engineering and BiotechnologyUniversity of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Omar Faruqe
- Department of Computer Science and EngineeringUniversity of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Siddikur Rahman
- Department of Genetic Engineering and BiotechnologyUniversity of Rajshahi, Rajshahi 6205, Bangladesh
| | - Farzana Akter
- Department of Genetic Engineering and BiotechnologyUniversity of Rajshahi, Rajshahi 6205, Bangladesh
| | - Aslam Ali
- Department of Genetic Engineering and BiotechnologyUniversity of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Motiur Rahman
- Department of Genetic Engineering and BiotechnologyUniversity of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
2
|
Abbruzzese C, Matteoni S, Matarrese P, Signore M, Ascione B, Iessi E, Gurtner A, Sacconi A, Ricci-Vitiani L, Pallini R, Pace A, Villani V, Polo A, Costantini S, Budillon A, Ciliberto G, Paggi MG. Chlorpromazine affects glioblastoma bioenergetics by interfering with pyruvate kinase M2. Cell Death Dis 2023; 14:821. [PMID: 38092755 PMCID: PMC10719363 DOI: 10.1038/s41419-023-06353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug. We performed a supervised recognition of the signal transduction pathways potentially influenced by CPZ via Reverse-Phase Protein microArrays (RPPA) and carried out an Activity-Based Protein Profiling (ABPP) followed by Mass Spectrometry (MS) analysis to possibly identify cellular factors targeted by the drug. Indeed, the glycolytic enzyme PKM2 was identified as one of the major targets of CPZ. Furthermore, using the Seahorse platform, we analyzed the bioenergetics changes induced by the drug. Consistent with the ability of CPZ to target PKM2, we detected relevant changes in GBM energy metabolism, possibly attributable to the drug's ability to inhibit the oncogenic properties of PKM2. RPE-1 non-cancer neuroepithelial cells appeared less responsive to the drug. PKM2 silencing reduced the effects of CPZ. 3D modeling showed that CPZ interacts with PKM2 tetramer in the same region involved in binding other known activators. The effect of CPZ can be epitomized as an inhibition of the Warburg effect and thus malignancy in GBM cells, while sparing RPE-1 cells. These preclinical data enforce the rationale that allowed us to investigate the role of CPZ in GBM treatment in a recent multicenter Phase II clinical trial.
Collapse
Affiliation(s)
- Claudia Abbruzzese
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Silvia Matteoni
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Elisabetta Iessi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Aymone Gurtner
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
- The Institute of Translational Pharmacology - IFT - CNR, Rome, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Roberto Pallini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Institute of Neurosurgery, Catholic University School of Medicine, 00168, Rome, Italy
| | - Andrea Pace
- Neuro-Oncology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Veronica Villani
- Neuro-Oncology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Polo
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Napoli, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Napoli, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Napoli, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Marco G Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
3
|
Rončević A, Koruga N, Soldo Koruga A, Rončević R, Rotim T, Šimundić T, Kretić D, Perić M, Turk T, Štimac D. Personalized Treatment of Glioblastoma: Current State and Future Perspective. Biomedicines 2023; 11:1579. [PMID: 37371674 DOI: 10.3390/biomedicines11061579] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive glial tumor of the central nervous system. Despite intense scientific efforts, patients diagnosed with GBM and treated with the current standard of care have a median survival of only 15 months. Patients are initially treated by a neurosurgeon with the goal of maximal safe resection of the tumor. Obtaining tissue samples during surgery is indispensable for the diagnosis of GBM. Technological improvements, such as navigation systems and intraoperative monitoring, significantly advanced the possibility of safe gross tumor resection. Usually within six weeks after the surgery, concomitant radiotherapy and chemotherapy with temozolomide are initiated. However, current radiotherapy regimens are based on population-level studies and could also be improved. Implementing artificial intelligence in radiotherapy planning might be used to individualize treatment plans. Furthermore, detailed genetic and molecular markers of the tumor could provide patient-tailored immunochemotherapy. In this article, we review current standard of care and possibilities of personalizing these treatments. Additionally, we discuss novel individualized therapeutic options with encouraging results. Due to inherent heterogeneity of GBM, applying patient-tailored treatment could significantly prolong survival of these patients.
Collapse
Affiliation(s)
- Alen Rončević
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Nenad Koruga
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Anamarija Soldo Koruga
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Neurology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Robert Rončević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tatjana Rotim
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tihana Šimundić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nephrology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Domagoj Kretić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Marija Perić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Cytology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tajana Turk
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Damir Štimac
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiology, National Memorial Hospital Vukovar, 32000 Vukovar, Croatia
| |
Collapse
|
4
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
5
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
6
|
Cirsilineol inhibits cell growth and induces apoptosis in glioma C6 cells via inhibiting MAPK and PI3K/Akt/mTOR signaling pathways. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Persico M, Abbruzzese C, Matteoni S, Matarrese P, Campana AM, Villani V, Pace A, Paggi MG. Tackling the Behavior of Cancer Cells: Molecular Bases for Repurposing Antipsychotic Drugs in the Treatment of Glioblastoma. Cells 2022; 11:263. [PMID: 35053377 PMCID: PMC8773942 DOI: 10.3390/cells11020263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is associated with a very dismal prognosis, and current therapeutic options still retain an overall unsatisfactorily efficacy in clinical practice. Therefore, novel therapeutic approaches and effective medications are highly needed. Since the development of new drugs is an extremely long, complex and expensive process, researchers and clinicians are increasingly considering drug repositioning/repurposing as a valid alternative to the standard research process. Drug repurposing is also under active investigation in GBM therapy, since a wide range of noncancer and cancer therapeutics have been proposed or investigated in clinical trials. Among these, a remarkable role is played by the antipsychotic drugs, thanks to some still partially unexplored, interesting features of these agents. Indeed, antipsychotic drugs have been described to interfere at variable incisiveness with most hallmarks of cancer. In this review, we analyze the effects of antipsychotics in oncology and how these drugs can interfere with the hallmarks of cancer in GBM. Overall, according to available evidence, mostly at the preclinical level, it is possible to speculate that repurposing of antipsychotics in GBM therapy might contribute to providing potentially effective and inexpensive therapies for patients with this disease.
Collapse
Affiliation(s)
- Michele Persico
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Claudia Abbruzzese
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Silvia Matteoni
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00162 Rome, Italy;
| | - Anna Maria Campana
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Veronica Villani
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.V.); (A.P.)
| | - Andrea Pace
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.V.); (A.P.)
| | - Marco G. Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| |
Collapse
|
8
|
Meyer N, Henkel L, Linder B, Zielke S, Tascher G, Trautmann S, Geisslinger G, Münch C, Fulda S, Tegeder I, Kögel D. Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death. Autophagy 2021; 17:3424-3443. [PMID: 33461384 PMCID: PMC8632287 DOI: 10.1080/15548627.2021.1874208] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that induction of lethal macroautophagy/autophagy carries potential significance for the treatment of glioblastoma (GBM). In continuation of previous work, we demonstrate that pimozide and loperamide trigger an ATG5- and ATG7 (autophagy related 5 and 7)-dependent type of cell death that is significantly reduced with cathepsin inhibitors and the lipid reactive oxygen species (ROS) scavenger α-tocopherol in MZ-54 GBM cells. Global proteomic analysis after treatment with both drugs also revealed an increase of proteins related to lipid and cholesterol metabolic processes. These changes were accompanied by a massive accumulation of cholesterol and other lipids in the lysosomal compartment, indicative of impaired lipid transport/degradation. In line with these observations, pimozide and loperamide treatment were associated with a pronounced increase of bioactive sphingolipids including ceramides, glucosylceramides and sphingoid bases measured by targeted lipidomic analysis. Furthermore, pimozide and loperamide inhibited the activity of SMPD1/ASM (sphingomyelin phosphodiesterase 1) and promoted induction of lysosomal membrane permeabilization (LMP), as well as release of CTSB (cathepsin B) into the cytosol in MZ-54 wild-type (WT) cells. Whereas LMP and cell death were significantly attenuated in ATG5 and ATG7 knockout (KO) cells, both events were enhanced by depletion of the lysophagy receptor VCP (valosin containing protein), supporting a pro-survival function of lysophagy under these conditions. Collectively, our data suggest that pimozide and loperamide-driven autophagy and lipotoxicity synergize to induce LMP and cell death. The results also support the notion that simultaneous overactivation of autophagy and induction of LMP represents a promising approach for the treatment of GBM.Abbreviations: ACD: autophagic cell death; AKT1: AKT serine/threonine kinase 1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG14: autophagy related 14; CERS1: ceramide synthase 1; CTSB: cathepsin B; CYBB/NOX2: cytochrome b-245 beta chain; ER: endoplasmatic reticulum; FBS: fetal bovine serum; GBM: glioblastoma; GO: gene ontology; HTR7/5-HT7: 5-hydroxytryptamine receptor 7; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAP: LC3-associated phagocytosis; LMP: lysosomal membrane permeabilization; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; RB1CC1: RB1 inducible coiled-coil 1; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SMPD1/ASM: sphingomyelin phosphodiesterase 1; VCP/p97: valosin containing protein; WT: wild-type.
Collapse
Affiliation(s)
- Nina Meyer
- Experimental Neurosurgery, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Lisa Henkel
- Experimental Neurosurgery, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Svenja Zielke
- Experimental Cancer Research in Pediatrics, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Simone Fulda
- Experimental Cancer Research in Pediatrics, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
9
|
G-protein-coupled receptors as therapeutic targets for glioblastoma. Drug Discov Today 2021; 26:2858-2870. [PMID: 34271165 DOI: 10.1016/j.drudis.2021.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumour in adults. Treatments include surgical resection, radiotherapy, and chemotherapy. Despite this, the prognosis remains poor, with an impacted quality of life during treatment coupled with brain tumour recurrence; thus, new treatments are desperately needed. In this review, we focus on recent advances in G-protein-coupled receptor (GPCR) targets. To date, the most promising targets are the chemokine, cannabinoid, and dopamine receptors, but future work should further examine the melanocortin receptor-4 (MC4R), adhesion, lysophosphatidic acid (LPA) and smoothened (Smo) receptors to initiate new drug-screening strategies and targeted delivery of safe and effective GBM therapies.
Collapse
|
10
|
He Y, Li J, Koga T, Ma J, Dhawan S, Suzuki Y, Furnari F, Prabhu VV, Allen JE, Chen CC. Epidermal growth factor receptor as a molecular determinant of glioblastoma response to dopamine receptor D2 inhibitors. Neuro Oncol 2021; 23:400-411. [PMID: 32830856 DOI: 10.1093/neuonc/noaa188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There are ongoing clinical trials exploring the efficacy of dopamine receptor D2 (DRD2) inhibition against glioblastomas, the most common primary brain tumor. Here we examine potential molecular determinants of this efficacy. METHODS The Cancer Genome Atlas glioblastoma database and other published mRNA profiles were used to analyze the DRD2 and epidermal growth factor receptor (EGFR) expression pattern. In vitro and in vivo responses to DRD2 inhibitors were determined using patient-derived xenograft (PDX) glioblastoma models. Immunohistochemical studies were performed on clinically annotated glioblastoma samples derived from patients treated with ONC201. RESULTS Analysis of clinical glioblastoma specimens derived from independent patient cohorts revealed an inverse correlation between EGFR and DRD2 mRNA expression, with implication that signaling mediated by these proteins shares overlapping functions. In independent panels of PDX glioblastoma lines, high EGFR expression was associated with poor in vitro and in vivo response to DRD2 inhibitors, including haloperidol and ONC201. Moreover, ectopic expression of a constitutively active EGFR, variant (v)III, suppressed glioblastoma sensitivity to ONC201. DRD2 expression positively correlated with expression of rate-limiting enzymes for dopamine synthesis as well as dopamine secretion, suggesting contribution of autocrine DRD2 signaling. Analysis of specimens from patients treated with ONC201 (n = 15) showed an inverse correlation between the intensity of EGFR staining and clinical response. The median overall survival for patients with high and low EGFR staining was 162 and 373 days, respectively (0.037). CONCLUSIONS High EGFR expression is a determinant of poor glioblastoma response to DRD2. This finding should inform future clinical trial designs.
Collapse
Affiliation(s)
- Yuyu He
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jie Li
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | - Sanjay Dhawan
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuta Suzuki
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank Furnari
- Ludwig Institute of Cancer Research, University of California San Diego, San Diego, California, USA
| | | | | | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Galbraith K, Kumar A, Abdullah KG, Walker JM, Adams SH, Prior T, Dimentberg R, Henderson FC, Mirchia K, Sathe AA, Viapiano MS, Chin LS, Corona RJ, Hatanpaa KJ, Snuderl M, Xing C, Brem S, Richardson TE. Molecular Correlates of Long Survival in IDH-Wildtype Glioblastoma Cohorts. J Neuropathol Exp Neurol 2021; 79:843-854. [PMID: 32647886 DOI: 10.1093/jnen/nlaa059] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
IDH-wildtype glioblastoma is a relatively common malignant brain tumor in adults. These patients generally have dismal prognoses, although outliers with long survival have been noted in the literature. Recently, it has been reported that many histologically lower-grade IDH-wildtype astrocytomas have a similar clinical outcome to grade IV tumors, suggesting they may represent early or undersampled glioblastomas. cIMPACT-NOW 3 guidelines now recommend upgrading IDH-wildtype astrocytomas with certain molecular criteria (EGFR amplifications, chromosome 7 gain/10 loss, and/or TERT promoter mutations), establishing the concept of a "molecular grade IV" astrocytoma. In this report, we apply these cIMPACT-NOW 3 criteria to 2 independent glioblastoma cohorts, totaling 393 public database and institutional glioblastoma cases: 89 cases without any of the cIMPACT-NOW 3 criteria (GBM-C0) and 304 cases with one or more criteria (GBM-C1-3). In the GBM-C0 groups, there was a trend toward longer recurrence-free survival (median 12-17 vs 6-10 months), significantly longer overall survival (median 32-41 vs 15-18 months), younger age at initial diagnosis, and lower overall mutation burden compared to the GBM-C1-3 cohorts. These data suggest that while histologic features may not be ideal indicators of patient survival in IDH-wildtype astrocytomas, these 3 molecular features may also be important prognostic factors in IDH-wildtype glioblastoma.
Collapse
Affiliation(s)
- Kristyn Galbraith
- From the Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth & Development
| | - Kalil G Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas
| | - Jamie M Walker
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas
| | - Steven H Adams
- College of Medicine, State University of New York, Upstate Medical University, Syracuse, New York
| | - Timothy Prior
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Dimentberg
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fraser C Henderson
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Kanish Mirchia
- From the Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| | | | | | | | - Robert J Corona
- From the Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Kimmo J Hatanpaa
- State University of New York, Upstate Medical University, Syracuse, New York; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York City, New York
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development.,Department of Bioinformatics and Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy E Richardson
- From the Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| |
Collapse
|
12
|
Richardson TE, Kumar A, Xing C, Hatanpaa KJ, Walker JM. Overcoming the Odds: Toward a Molecular Profile of Long-Term Survival in Glioblastoma. J Neuropathol Exp Neurol 2021; 79:1031-1037. [PMID: 32954439 DOI: 10.1093/jnen/nlaa102] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
For over a century, gliomas were characterized solely by histologic features. With the publication of the WHO Classification of Tumours of the Central Nervous System, Revised 4th Edition in 2016, integrated histologic and molecular diagnosis became the norm, providing improved tumor grading and prognosis with IDH1/2 (isocitrate dehydrogenase 1 and 2) mutation being the most significant prognostic feature in all grades of adult diffuse glioma. Since then, much work has been done to identify additional molecular prognostic features, but the bulk of the progress has been made in defining aggressive features in lower grade astrocytoma. Although there have been several large case series of glioblastomas with long-term survival (LTS; overall survival ≥36 months), less is known about the clinical and molecular features of these cases. Herein, we review 19 studies examining LTS glioblastoma patients from 2009 to 2020 that include variable molecular analysis, including 465 cases with survival of 36 months or more (total n = 2328). These studies suggest that while there is no definitive molecular signature of long survival, younger age, IDH mutation, and MGMT (methyl guanine methyl transferase) promoter hypermethylation are associated with longer overall survival, and in IDH-wildtype tumors, chromosome 19/20 co-gain and lack of EGFR amplification, chromosome 7 gain/10 loss, and TERT promoter mutation are associated with LTS.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth & Development
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development.,Department of Bioinformatics and Department of Population and Data Sciences
| | | | - Jamie M Walker
- University of Texas Southwestern Medical Center, Dallas, Texas; and Department of Pathology and Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
13
|
Matteoni S, Matarrese P, Ascione B, Buccarelli M, Ricci-Vitiani L, Pallini R, Villani V, Pace A, Paggi MG, Abbruzzese C. Anticancer Properties of the Antipsychotic Drug Chlorpromazine and Its Synergism With Temozolomide in Restraining Human Glioblastoma Proliferation In Vitro. Front Oncol 2021; 11:635472. [PMID: 33718225 PMCID: PMC7952964 DOI: 10.3389/fonc.2021.635472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
The extremely poor prognosis of patients affected by glioblastoma (GBM, grade IV glioma) prompts the search for new and more effective therapies. In this regard, drug repurposing or repositioning can represent a safe, swift, and inexpensive way to bring novel pharmacological approaches from bench to bedside. Chlorpromazine, a medication used since six decades for the therapy of psychiatric disorders, shows in vitro several features that make it eligible for repositioning in cancer therapy. Using six GBM cell lines, three of which growing as patient-derived neurospheres and displaying stem-like properties, we found that chlorpromazine was able to inhibit viability in an apoptosis-independent way, induce hyperdiploidy, reduce cloning efficiency as well as neurosphere formation and downregulate the expression of stemness genes in all these cell lines. Notably, chlorpromazine synergized with temozolomide, the first-line therapeutic in GBM patients, in hindering GBM cell viability, and both drugs strongly cooperated in reducing cloning efficiency and inducing cell death in vitro for all the GBM cell lines assayed. These results prompted us to start a Phase II clinical trial on GBM patients (EudraCT # 2019-001988-75; ClinicalTrials.gov Identifier: NCT04224441) by adding chlorpromazine to temozolomide in the adjuvant phase of the standard first-line therapeutic protocol.
Collapse
Affiliation(s)
- Silvia Matteoni
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ascione
- Center for Gender Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Institute of Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Veronica Villani
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Pace
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Marco G Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Abbruzzese
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
14
|
Haloperidol Induced Cell Cycle Arrest and Apoptosis in Glioblastoma Cells. Biomedicines 2020; 8:biomedicines8120595. [PMID: 33322363 PMCID: PMC7763579 DOI: 10.3390/biomedicines8120595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Although several antipsychotic drugs have been shown to possess anticancer activities, haloperidol, a “first-generation” antipsychotic drug, has not been extensively evaluated for potential antineoplastic properties. The aim of this study was to investigate the antitumoral effects of haloperidol in glioblastoma (GBM) U87, U251 and T98 cell lines, and the effects of combined treatment with temozolomide (TMZ) and/or radiotherapy, using 4 Gy of irradiation. The viability and proliferation of the cells were evaluated with trypan blue exclusion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis, using the annexin-propidium iodide (PI), and cell cycle, cluster of differentiation (CD) expression and caspase-8 activation were measured using flow cytometry. Treatment with haloperidol significantly reduced cell viability in U87, U251 and T98 GBM cell lines. Haloperidol induced apoptosis in a dose-dependent manner, inhibited cell migration and produced an alteration in the expression of CD24/CD44. The additional effect of haloperidol, combined with temozolomide and radiation therapy, increased tumor cell death. Haloperidol was observed to induce apoptosis and to increase caspase-8 activation. In conclusion, haloperidol may represent an innovative strategy for the treatment of GBM and further studies are warranted in glioma xenograft models and other malignancies.
Collapse
|
15
|
Mastrangelopoulou M, Grigalavicius M, Raabe TH, Skarpen E, Juzenas P, Peng Q, Berg K, Theodossiou TA. Predictive biomarkers for 5-ALA-PDT can lead to personalized treatments and overcome tumor-specific resistances. Cancer Rep (Hoboken) 2020; 5:e1278. [PMID: 32737955 PMCID: PMC9780429 DOI: 10.1002/cnr2.1278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a minimally invasive, clinically approved therapy with numerous advantages over other mainstream cancer therapies. 5-aminolevulinic acid (5-ALA)-PDT is of particular interest, as it uses the photosensitiser PpIX, naturally produced in the heme pathway, following 5-ALA administration. Even though 5-ALA-PDT shows high specificity to cancers, differences in treatment outcomes call for predictive biomarkers to better stratify patients and to also diversify 5-ALA-PDT based on each cancer's phenotypic and genotypic individualities. AIMS The present study seeks to highlight key biomarkers that may predict treatment outcome and simultaneously be exploited to overcome cancer-specific resistances to 5-ALA-PDT. METHODS AND RESULTS We submitted two glioblastoma (T98G and U87) and three breast cancer (MCF7, MDA-MB-231, and T47D) cell lines to 5-ALA-PDT. Glioblastoma cells were the most resilient to 5-ALA-PDT, while intracellular production of 5-ALA-derived protoporphyrin IX (PpIX) could not account for the recorded PDT responses. We identified the levels of expression of ABCG2 transporters, ferrochelatase (FECH), and heme oxygenase (HO-1) as predictive biomarkers for 5-ALA-PDT. GPX4 and GSTP1 expression vs intracellular glutathione (GSH) levels also showed potential as PDT biomarkers. For T98G cells, inhibition of ABCG2, FECH, HO-1, and/or intracellular GSH depletion led to profound PDT enhancement. Inhibition of ABCG2 in U87 cells was the only synergistic adjuvant to 5-ALA-PDT, rendering the otherwise resistant cell line fully responsive to 5-ALA-PDT. ABCG2 or FECH inhibition significantly enhanced 5-ALA-PDT-induced MCF7 cytotoxicity, while for MDA-MB-231, ABCG2 inhibition and intracellular GSH depletion conferred profound synergies. FECH inhibition was the only synergism to ALA-PDT for the most susceptible among the cell lines, T47D cells. CONCLUSION This study demonstrates the heterogeneity in the cellular response to 5-ALA-PDT and identifies biomarkers that may be used to predict treatment outcome. The study also provides preliminary findings on the potential of inhibiting specific molecular targets to overcome inherent resistances to 5-ALA-PDT.
Collapse
Affiliation(s)
- Maria Mastrangelopoulou
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Mantas Grigalavicius
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Tine H. Raabe
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Ellen Skarpen
- Department of Molecular Cell BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Petras Juzenas
- Department of PathologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Qian Peng
- Department of PathologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Kristian Berg
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | | |
Collapse
|
16
|
Mirchia K, Richardson TE. Beyond IDH-Mutation: Emerging Molecular Diagnostic and Prognostic Features in Adult Diffuse Gliomas. Cancers (Basel) 2020; 12:E1817. [PMID: 32640746 PMCID: PMC7408495 DOI: 10.3390/cancers12071817] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Diffuse gliomas are among the most common adult central nervous system tumors with an annual incidence of more than 16,000 cases in the United States. Until very recently, the diagnosis of these tumors was based solely on morphologic features, however, with the publication of the WHO Classification of Tumours of the Central Nervous System, revised 4th edition in 2016, certain molecular features are now included in the official diagnostic and grading system. One of the most significant of these changes has been the division of adult astrocytomas into IDH-wildtype and IDH-mutant categories in addition to histologic grade as part of the main-line diagnosis, although a great deal of heterogeneity in the clinical outcome still remains to be explained within these categories. Since then, numerous groups have been working to identify additional biomarkers and prognostic factors in diffuse gliomas to help further stratify these tumors in hopes of producing a more complete grading system, as well as understanding the underlying biology that results in differing outcomes. The field of neuro-oncology is currently in the midst of a "molecular revolution" in which increasing emphasis is being placed on genetic and epigenetic features driving current diagnostic, prognostic, and predictive considerations. In this review, we focus on recent advances in adult diffuse glioma biomarkers and prognostic factors and summarize the state of the field.
Collapse
Affiliation(s)
- Kanish Mirchia
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA;
| | | |
Collapse
|
17
|
Chen YF, Shih PC, Kuo HM, Yang SN, Lin YY, Chen WF, Tzou SJ, Liu HT, Chen NF. TP3, an antimicrobial peptide, inhibits infiltration and motility of glioblastoma cells via modulating the tumor microenvironment. Cancer Med 2020; 9:3918-3931. [PMID: 32266797 PMCID: PMC7286473 DOI: 10.1002/cam4.3005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a cancer of the central nervous system with limited therapeutic outcomes. Infiltrating cancer cells are the contributing factor to high GBM malignancy. The intracranial brain cancer cell infiltration is a complex cascade involving adhesion, migration, and invasion. An arsenal of natural products has been under exploration to overcome GBM malignancy. This study applied the antimicrobial peptide tilapia piscidin 3 (TP3) to GBM8401, U87MG, and T98G cells. The cellular assays and microscopic observations showed that TP3 significantly attenuated cell adhesion, migration, and invasion. A live‐cell video clip showed the inhibition of filopodia protrusions and cell attachment. Probing at the molecular levels showed that the proteolytic activities (from secretion), the mRNA and protein expression levels of matrix metalloproteinases‐2 and ‐9 were attenuated. This result strongly evidenced that both invasion and metastasis were inhibited, although metastatic GBM is rare. Furthermore, the protein expression levels of cell‐mobilization regulators focal adhesion kinase and paxillin were decreased. Similar effects were observed in small GTPase (RAS), phosphorylated protein kinase B (AKT) and MAP kinases such as extracellular signal‐regulated kinases (ERK), JNK, and p38. Overall, TP3 showed promising activities to prevent cell infiltration and metastasis through modulating the tumor microenvironment balance, suggesting that TP3 merits further development for use in GBM treatments.
Collapse
Affiliation(s)
- Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Chang Shih
- UCL School of Pharmacy, University College London, London, UK.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - San-Nan Yang
- Department of Internal Medicine, E-DA Hospital and College of Medicine, I-SHOU University, Kaohsiung, Taiwan
| | - Yen-You Lin
- Department of Orthopedic Surgery, Ping-Tung Christian Hospital, Pingtung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurosurgery, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Shiow-Jyu Tzou
- Department of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Nan-Fu Chen
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
18
|
Jiang X, Tan J, Wen Y, Liu W, Wu S, Wang L, Wangou S, Liu D, Du C, Zhu B, Xie D, Ren C. MSI2-TGF-β/TGF-β R1/SMAD3 positive feedback regulation in glioblastoma. Cancer Chemother Pharmacol 2019; 84:415-425. [PMID: 31250154 DOI: 10.1007/s00280-019-03892-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/07/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Glioblastoma is the most malignant glioma tumors with inevitable relapse and resistance to chemotherapy; however, the mechanisms driving chemoresistance remain to be fully elucidated. This study is to explore the molecular and cellular mechanisms involving in the chemoresistance of glioblastoma. METHODS The expression of musashi (MSI) RNA-binding protein in the tumor tissues and cells of glioblastoma was measured. The effects of MSI2 in epithelial-to-mesenchymal transition (EMT), resistance to temozolomide (TMZ), tumor cell invasion, migration, and proliferation and associated signaling were evaluated. RESULTS High MSI2 expression was observed in the glioblastoma tissues. Silencing or overexpression of MSI2 significantly affected tumor cells invasion, migration, and proliferation. Silencing of MSI2 expression significantly inhibited O6-methylguanine-DNA methyltransferase (MGMT) expression and tumor growth, and reversed resistance to TMZ in xenograft tumor models. MSI2 expression regulated EMT through activating the transcription factors Snail and the TGFβ R1/SMAD3 signaling. CONCLUSIONS Our study demonstrated a positive feedback loop of MSI2-TGFβ/SMAD3 signaling which activates the EMT and MGMT which may contribute to chemoresistance in glioblastoma. This study also highlights that MSI2 could be a new target for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Xingjun Jiang
- Department of Neurosurgery, Collaborative Innovation Center for Cancer Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, People's Republic of China.
| | - Jun Tan
- Department of Neurosurgery, Collaborative Innovation Center for Cancer Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, People's Republic of China
| | - Yin Wen
- Department of Neurosurgery, Collaborative Innovation Center for Cancer Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, People's Republic of China
| | - Weidong Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, The Key Laboratory for Carcinogenesis of Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuyu Wu
- Department of Neurosurgery, Collaborative Innovation Center for Cancer Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, People's Republic of China
| | - Lei Wang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, The Key Laboratory for Carcinogenesis of Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Siyi Wangou
- Department of Neurosurgery, Collaborative Innovation Center for Cancer Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, People's Republic of China
| | - Dingyang Liu
- Department of Neurosurgery, Collaborative Innovation Center for Cancer Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, People's Republic of China
| | - Can Du
- Department of Neurosurgery, Collaborative Innovation Center for Cancer Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, People's Republic of China
| | - Bin Zhu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, The Key Laboratory for Carcinogenesis of Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Caiping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, The Key Laboratory for Carcinogenesis of Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
19
|
Richardson TE, Patel S, Serrano J, Sathe AA, Daoud EV, Oliver D, Maher EA, Madrigales A, Mickey BE, Taxter T, Jour G, White CL, Raisanen JM, Xing C, Snuderl M, Hatanpaa KJ. Genome-Wide Analysis of Glioblastoma Patients with Unexpectedly Long Survival. J Neuropathol Exp Neurol 2019; 78:501-507. [PMID: 31034050 PMCID: PMC9891105 DOI: 10.1093/jnen/nlz025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM), representing WHO grade IV astrocytoma, is a relatively common primary brain tumor in adults with an exceptionally dismal prognosis. With an incidence rate of over 10 000 cases in the United States annually, the median survival rate ranges from 10-15 months in IDH1/2-wildtype tumors and 24-31 months in IDH1/2-mutant tumors, with further variation depending on factors such as age, MGMT methylation status, and treatment regimen. We present a cohort of 4 patients, aged 37-60 at initial diagnosis, with IDH1-mutant GBMs that were associated with unusually long survival intervals after the initial diagnosis, currently ranging from 90 to 154 months (all still alive). We applied genome-wide profiling with a methylation array (Illumina EPIC Array 850k) and a next-generation sequencing panel to screen for genetic and epigenetic alterations in these tumors. All 4 tumors demonstrated methylation patterns and genomic alterations consistent with GBM. Three out of four cases showed focal amplification of the CCND2 gene or gain of the region on 12p that included CCND2, suggesting that this may be a favorable prognostic factor in GBM. As this study has a limited sample size, further evaluation of patients with similar favorable outcome is warranted to validate these findings.
Collapse
Affiliation(s)
- Timothy E Richardson
- Send correspondence to: Timothy E. Richardson, DO, PhD, Department of Pathology, State University of New York, Upstate Medical University, 750 E. Adams St., Syracuse, New York, 13210; E-mail:
| | - Seema Patel
- Department of Pathology, New York University Langone Medical Center, New York City, New York
| | - Jonathan Serrano
- Department of Pathology, New York University Langone Medical Center, New York City, New York
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dwight Oliver
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth A Maher
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alejandra Madrigales
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bruce E Mickey
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - George Jour
- Department of Pathology, New York University Langone Medical Center, New York City, New York
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jack M Raisanen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, Texas,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Matija Snuderl
- Department of Pathology, New York University Langone Medical Center, New York City, New York
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|