1
|
Bisht A, Avinash D, Sahu KK, Patel P, Das Gupta G, Kurmi BD. A comprehensive review on doxorubicin: mechanisms, toxicity, clinical trials, combination therapies and nanoformulations in breast cancer. Drug Deliv Transl Res 2024:10.1007/s13346-024-01648-0. [PMID: 38884850 DOI: 10.1007/s13346-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Doxorubicin is a key treatment for breast cancer, but its effectiveness often comes with significant side effects. Its actions include DNA intercalation, topoisomerase II inhibition, and reactive oxygen species generation, leading to DNA damage and cell death. However, it can also cause heart problems and low blood cell counts. Current trials aim to improve doxorubicin therapy by adjusting doses, using different administration methods, and combining it with targeted treatments or immunotherapy. Nanoformulations show promise in enhancing doxorubicin's effectiveness by improving drug delivery, reducing side effects, and overcoming drug resistance. This review summarizes recent progress and difficulties in using doxorubicin for breast cancer, highlighting its mechanisms, side effects, ongoing trials, and the potential impact of nanoformulations. Understanding these different aspects is crucial in optimizing doxorubicin's use and improving outcomes for breast cancer patients. This review examines the toxicity of doxorubicin, a drug used in breast cancer treatment, and discusses strategies to mitigate adverse effects, such as cardioprotective agents and liposomal formulations. It also discusses clinical trials evaluating doxorubicin-based regimens, the evolving landscape of combination therapies, and the potential of nanoformulations to optimize delivery and reduce systemic toxicity. The review also discusses the potential of liposomes, nanoparticles, and polymeric micelles to enhance drug accumulation within tumor tissues while sparing healthy organs.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Dubey Avinash
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Chaumuhan, Mathura, 281406, UP, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Satora M, Kułak K, Zaremba B, Grunwald A, Świechowska-Starek P, Tarkowski R. New hopes and promises in the treatment of ovarian cancer focusing on targeted treatment-a narrative review. Front Pharmacol 2024; 15:1416555. [PMID: 38948462 PMCID: PMC11212463 DOI: 10.3389/fphar.2024.1416555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Unfortunately, ovarian cancer is still diagnosed most often only in an advanced stage and is also the most lethal gynecological cancer. Another problem is the fact that treated patients have a high risk of disease recurrence. Moreover, ovarian cancer is very diverse in terms of molecular, histological features and mutations. Many patients may also develop platinum resistance, resulting in poor response to subsequent lines of treatment. To improve the prognosis of patients with ovarian cancer, it is expected to make better existing and implement new, promising treatment methods. Targeted therapies seem very promising. Currently, bevacizumab - a VEGF inhibitor and therapy with olaparib - a polyADP-ribose polymerase inhibitor are approved. Other methods worth considering in the future include: folate receptor α, immune checkpoints or other immunotherapy methods. To improve the treatment of ovarian cancer, it is also important to ameliorate the determination of molecular features to describe and understand which group of patients will benefit most from a given treatment method. This is important because a larger group of patients treated for ovarian cancer can have a greater chance of surviving longer without recurrence.
Collapse
Affiliation(s)
- Małgorzata Satora
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Kułak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| | - Bartłomiej Zaremba
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Grunwald
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | | | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Shalev N, Kendall M, Kumar N, Tiwari S, Anil SM, Hauschner H, Swamy SG, Doron-Faingenboim A, Belausov E, Kendall BE, Koltai H. Integrated transcriptome and cell phenotype analysis suggest involvement of PARP1 cleavage, Hippo/Wnt, TGF-β and MAPK signaling pathways in ovarian cancer cells response to cannabis and PARP1 inhibitor treatment. Front Genet 2024; 15:1333964. [PMID: 38322025 PMCID: PMC10844430 DOI: 10.3389/fgene.2024.1333964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction: Cannabis sativa is utilized mainly for palliative care worldwide. Ovarian cancer (OC) is a lethal gynecologic cancer. A particular cannabis extract fraction ('F7') and the Poly(ADP-Ribose) Polymerase 1 (PARP1) inhibitor niraparib act synergistically to promote OC cell apoptosis. Here we identified genetic pathways that are altered by the synergistic treatment in OC cell lines Caov3 and OVCAR3. Materials and methods: Gene expression profiles were determined by RNA sequencing and quantitative PCR. Microscopy was used to determine actin arrangement, a scratch assay to determine cell migration and flow cytometry to determine apoptosis, cell cycle and aldehyde dehydrogenase (ALDH) activity. Western blotting was used to determine protein levels. Results: Gene expression results suggested variations in gene expression between the two cell lines examined. Multiple genetic pathways, including Hippo/Wnt, TGF-β/Activin and MAPK were enriched with genes differentially expressed by niraparib and/or F7 treatments in both cell lines. Niraparib + F7 treatment led to cell cycle arrest and endoplasmic reticulum (ER) stress, inhibited cell migration, reduced the % of ALDH positive cells in the population and enhanced PARP1 cleavage. Conclusion: The synergistic effect of the niraparib + F7 may result from the treatment affecting multiple genetic pathways involving cell death and reducing mesenchymal characteristics.
Collapse
Affiliation(s)
- Nurit Shalev
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | | | - Navin Kumar
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | - Sudeep Tiwari
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | - Seegehalli M. Anil
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | - Hagit Hauschner
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Savvemala G. Swamy
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | - Adi Doron-Faingenboim
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | - Eduard Belausov
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | | | - Hinanit Koltai
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| |
Collapse
|
4
|
Du Y, Luo L, Xu X, Yang X, Yang X, Xiong S, Yu J, Liang T, Guo L. Unleashing the Power of Synthetic Lethality: Augmenting Treatment Efficacy through Synergistic Integration with Chemotherapy Drugs. Pharmaceutics 2023; 15:2433. [PMID: 37896193 PMCID: PMC10610204 DOI: 10.3390/pharmaceutics15102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is the second leading cause of death in the world, and chemotherapy is one of the main methods of cancer treatment. However, the resistance of cancer cells to chemotherapeutic drugs has always been the main reason affecting the therapeutic effect. Synthetic lethality has emerged as a promising approach to augment the sensitivity of cancer cells to chemotherapy agents. Synthetic lethality (SL) refers to the specific cell death resulting from the simultaneous mutation of two non-lethal genes, which individually allow cell survival. This comprehensive review explores the classification of SL, screening methods, and research advancements in SL inhibitors, including Poly (ADP-ribose) polymerase (PARP) inhibitors, Ataxia telangiectasia and Rad3-related (ATR) inhibitors, WEE1 G2 checkpoint kinase (WEE1) inhibitors, and protein arginine methyltransferase 5 (PRMT5) inhibitors. Emphasizing their combined use with chemotherapy drugs, we aim to unveil more effective treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| | - Shizheng Xiong
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| |
Collapse
|
5
|
Kumar S, Raina M, Tankay K, Ingle GM. Patient-derived organoids in ovarian cancer: Current research and its clinical relevance. Biochem Pharmacol 2023; 213:115589. [PMID: 37196684 DOI: 10.1016/j.bcp.2023.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Regardless of recent advances in cancer treatment, ovarian cancer (OC) patients have had a five-year survival rate of 48% in the last few decades. Diagnosis at the advanced stage, disease recurrence, and lack of early biomarkers are the severe clinical challenges associated with disease survival rate. Identifying tumor origin and developing precision drugs will effectively advance OC patient's treatment. The lack of a proper platform to identify and develop new therapeutic strategies in OC treatment necessitates searching for a suitable model to address tumor recurrence and therapeutic resistance. The development of the OC patient-derived organoid model provided a unique platform to identify the exact origin of high-grade serous OC, drug screening, and the development of precision medicine. This review provides an overview of recent progress in developing patient-derived organoids and their clinical relevance. Here, we outline their uses for transcriptomics and genomics profiling, drug screening, translational study, and their future perspective and clinical outlook as a model to advance OC research that could offer a promising approach for developing precision medicine.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, India.
| | - Manita Raina
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, India
| | - Kalpana Tankay
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, India
| | - Gaurav Milind Ingle
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, India
| |
Collapse
|
6
|
Shalev N, Kendall M, Anil SM, Tiwari S, Peeri H, Kumar N, Belausov E, Vinayaka AC, Koltai H. Phytocannabinoid Compositions from Cannabis Act Synergistically with PARP1 Inhibitor against Ovarian Cancer Cells In Vitro and Affect the Wnt Signaling Pathway. Molecules 2022; 27:7523. [PMID: 36364346 PMCID: PMC9653955 DOI: 10.3390/molecules27217523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 10/16/2023] Open
Abstract
Ovarian cancer (OC) is the single most lethal gynecologic malignancy. Cannabis sativa is used to treat various medical conditions, and is cytotoxic to a variety of cancer types. We sought to examine the effectiveness of different combinations of cannabis compounds against OC. Cytotoxic activity was determined by XTT assay on HTB75 and HTB161 cell lines. Apoptosis was determined by flow cytometry. Gene expression was determined by quantitative PCR and protein localization by confocal microscopy. The two most active fractions, F5 and F7, from a high Δ9-tetrahydrocannabinol (THC) cannabis strain extract, and their standard mix (SM), showed cytotoxic activity against OC cells and induced cell apoptosis. The most effective phytocannabinoid combination was THC+cannabichromene (CBC)+cannabigerol (CBG). These fractions acted in synergy with niraparib, a PARP inhibitor, and were ~50-fold more cytotoxic to OC cells than to normal keratinocytes. The F7 and/or niraparib treatments altered Wnt pathway-related gene expression, epithelial-mesenchymal transition (EMT) phenotype and β-catenin cellular localization. The niraparib+F7 treatment was also effective on an OC patient's cells. Given the fact that combinations of cannabis compounds and niraparib act in synergy and alter the Wnt signaling pathway, these phytocannabinoids should be examined as effective OC treatments in further pre-clinical studies and clinical trials.
Collapse
Affiliation(s)
- Nurit Shalev
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | | | - Seegehalli M. Anil
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Sudeep Tiwari
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Hadar Peeri
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Navin Kumar
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Eduard Belausov
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Ajjampura C. Vinayaka
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Hinanit Koltai
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
7
|
Hongjin Zhai, Zhang S, Ampomah-Wireko M, Wang H, Cao Y, Yang P, Yang Y, Frejat FOA, Wang L, Zhao B, Ren C, Wu C. Pyrazole: An Important Core in Many Marketed and Clinical Drugs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Musacchio L, Cicala CM, Camarda F, Ghizzoni V, Giudice E, Carbone MV, Ricci C, Perri MT, Tronconi F, Gentile M, Salutari V, Scambia G, Lorusso D. Combining PARP inhibition and immune checkpoint blockade in ovarian cancer patients: a new perspective on the horizon? ESMO Open 2022; 7:100536. [PMID: 35849879 PMCID: PMC9294238 DOI: 10.1016/j.esmoop.2022.100536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have completely reshaped the treatment of many malignancies, with remarkable improvements in survival outcomes. In ovarian cancer (OC), however, this emerging class of drugs has not yet found a favorable use due to results from phase I and II studies, which have not suggested a substantial antitumoral activity of these agents when administered as monotherapy. Robust preclinical data seem to suggest that the combination ICIs with poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) may result in a synergistic activity; furthermore, data from phase II clinical studies, evaluating this combination, have shown encouraging outcomes especially for those OC patients not suitable for platinum retreatment. While waiting for ongoing phase III clinical trial results, which will clarify the role of ICIs in combination with PARPis in the newly diagnosed OC, this review aims to summarize the preclinical data and clinical evidence available to date. Preclinical data indicate that PARPis exhibit immune modulating properties. The combination of PARPi with ICIs displays significant synergistic activity in preclinical models. Phase I and II clinical trials showed encouraging results for this combination, especially in platinum-resistant OC. Four ongoing phase III trials exploring the combination in first-line setting will delineate the role of immunotherapy in OC.
Collapse
Affiliation(s)
- L Musacchio
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy. https://twitter.com/lucia_musacchio
| | - C M Cicala
- Department of Medical and Surgical Science, Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy. https://twitter.com/carlomcicala
| | - F Camarda
- Department of Medical and Surgical Science, Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy. https://twitter.com/florianacamarda
| | - V Ghizzoni
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - E Giudice
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - M V Carbone
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - C Ricci
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - M T Perri
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - F Tronconi
- Medical Oncology Unit, Marche Polytechnic University, Ancona, Italy
| | - M Gentile
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - V Salutari
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - G Scambia
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Life Science and Public Health, Catholic University of Sacred Heart Largo Agostino Gemelli, Rome, Italy
| | - D Lorusso
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Life Science and Public Health, Catholic University of Sacred Heart Largo Agostino Gemelli, Rome, Italy.
| |
Collapse
|
9
|
Wu K, Chen M, Peng X, Li Y, Tang G, Peng J, Cao X. Recent Progress of the research on the benzimidazole PARP-1 inhibitors. Mini Rev Med Chem 2022; 22:2438-2462. [PMID: 35319364 DOI: 10.2174/1389557522666220321150700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a multifunctional protein that plays an important role in DNA repair and genome integrity. PARP-1 inhibitors can be used as effective drugs not only to treat BRCA-1/2 deficient cancers because of the effect of synthetically lethal, but also to treat non-BRCA1/2 deficient tumours because of the effect of PARP capture. Therefore, the PARP inhibitors have become a focus of compelling research. Among these inhibitors, substituted benzimidazole derivatives were mainly concerned lead compounds. However, the commercial available benzimidazole PARP-1 inhibitors have some shortcomings such as serious toxicity in combination with chemotherapy drugs, in vivo cardiovascular side effects such as anemia. Therefore it's crucial for scientists to explore more structure-activity relationships of the benzimidazole PARP-1 inhibitors and access safer and more effective PARP inhibitors. As the binding region of PARP-1 and the substrates is usually characterized as NI site and AD site, the modification of benzimidazoles mainly occurs on the benzimidazole skeleton (NI site), and the side chain of benzimidazole on 2-C position (AD site). Herein, the recent progresses of the researches of benzamides PARP inhibitors were introduced. We noticed that even though many efforts were taken to the modification of NI sites, there were still lacks of optimistic and impressive results. However, the structure-activity relationships of the modification of AD sites have not thoroughly discovered yet. We hope that enlightened by the previous researches, more researches of AD site should be occurred and more effective benzimidazole PARP-1 inhibitors could be designed, synthesized, and applied to clinics.
Collapse
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Miaojia Chen
- Department of Pharmacy, the first People\'s Hospital, Pingjiang, Yueyang, Hunan, China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
10
|
Qian B, Leng W, Yan Z, Lu J, Chen S, Yi H, Jiang Z. Clinical Benefit With PARP Inhibitor for Pathogenic Germline FANCA-Mutated Relapsed Epithelial Ovarian Cancer: A Case Report. Front Oncol 2022; 12:778545. [PMID: 35280757 PMCID: PMC8913585 DOI: 10.3389/fonc.2022.778545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/18/2022] [Indexed: 01/05/2023] Open
Abstract
Background PARP inhibitors have been approved as targeted therapy for BRCA-deficient metastatic ovarian cancer (OC). Fanconi anemia complementation group A (FANCA), one of the homologous recombination repair pathway genes, is a susceptibility gene to breast cancer and OC. Therefore, it is interesting to investigate whether germline FANCA-mutated relapsed epithelial OC could achieve clinical benefit from the treatment of PARP inhibitor. Case Presentation A 49-year-old female patient without a family history of cancer was diagnosed with epithelial OC. This patient underwent surgical resection plus platinum-based treatment twice in 2016 and 2018, successively. After the second relapse in July 2019, the patient underwent another radical resection. The next-generation sequencing analysis results revealed a germline FANCA mutation in the tumor tissue. Subsequently, the third-line treatment of liposomal doxorubicin hydrochloride plus lobaplatin was administrated for five cycles with the patient’s consent. Then, oral niraparib (200 mg daily) was given for maintenance treatment. During the follow-up, no evidence of tumor recurrence was observed. Currently, the survival with no evidence of disease has already exceeded 21 months, and the treatment is still going on. Conclusions This case highlighted that OC patients harboring pathogenic gene alterations in the homologous recombination pathway might achieve clinical benefit from PARP inhibitors, which should be confirmed in further studies.
Collapse
Affiliation(s)
- Bing Qian
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wenshu Leng
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengqing Yan
- Department of Medical Affairs, The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Jin Lu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shiqing Chen
- Department of Medical Affairs, The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Huan Yi
- Department of Medical Affairs, The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Zhi Jiang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zhi Jiang,
| |
Collapse
|
11
|
Pagkali A, Mamais I, Michalinos A, Agouridis AP. Safety Profile of Niraparib as Maintenance Therapy for Ovarian Cancer: A Systematic Review and Meta-Analysis. Curr Oncol 2022; 29:321-336. [PMID: 35049703 PMCID: PMC8774559 DOI: 10.3390/curroncol29010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Patients with epithelial ovarian cancer (EOC), treated with niraparib maintenance, present with haematological and gastrointestinal toxicities. Limited data exist on niraparib safety assessment. Objective: To evaluate niraparib safety profile, as maintenance therapy, in women with platinum-sensitive EOC. Methods: PubMed and Cochrane searches were carried out up to April 2021 for randomised controlled trials (RCTs) evaluating niraparib versus placebo in EOC patients with a response to platinum-based chemotherapy. Regarding the meta-analysis, for dichotomous data, the pooled risk ratio (RR) was calculated. Results: A total of 1539 patients from three RCTs revealed that niraparib-treated patients are associated with a significantly higher risk of any grade of nausea (RR, 2.15; 95% CI, 1.86 to 2.48), fatigue (RR, 1.26; 95% CI, 1.05 to 1.52, p < 0.00001), anemia (RR, 6.86; 95% CI, 2.54 to 18.52, p = 0.0001), thrombocytopenia (RR, 7.02; 95% CI, 1.68 to 29.38, p < 0.00001), vomiting (RR, 2.51; 95% CI, 1.50 to 4.19, p = 0.0005), neutropenia (RR, 2.96; 95% CI, 1.13 to 7.73, p < 0.00001), headache (RR, 2.08; 95% CI, 1.57 to 2.74, p < 0.00001), constipation (RR, 2.10; 95% CI, 1.72 to 2.57, p < 0.00001) and insomnia (RR, 2.48; 95% CI, 1.52 to 2.89, p = 0.0003) when compared with placebo. For grade 3 or 4 adverse effects, significantly higher risk was only noted for fatigue (RR,6.25; 95% CI, 1.70 to 23.05, p = 0.006), anemia (RR, 16.23; 95% CI, 4.86 to 54.17, p < 0.00001), thrombocytopenia (RR, 35.12; 95% CI, 12.23 to 100.82, p < 0.00001) and neutropenia episodes (RR, 6.35; 95% CI, 2.08 to 19.39, p = 0.001) for those taking niraparib. Notably, incidents of adverse effects and discontinuation rates were substantially lower among patients treated with an individualised niraparib dose than those treated with the standard one. Efficacy was not reduced, and no treatment-related deaths occurred during the included trials. Conclusion: Niraparib is considered an effective and well-tolerated choice, with an improved safety profile, for the maintenance treatment of EOC patients.
Collapse
Affiliation(s)
- Antonia Pagkali
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.P.); (A.M.)
| | - Ioannis Mamais
- Department of Health Sciences School of Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Adamantios Michalinos
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.P.); (A.M.)
| | - Aris P. Agouridis
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.P.); (A.M.)
- Correspondence: ; Tel.: +357-94049641
| |
Collapse
|
12
|
Bahar E, Kim JY, Kim DC, Kim HS, Yoon H. Combination of Niraparib, Cisplatin and Twist Knockdown in Cisplatin-Resistant Ovarian Cancer Cells Potentially Enhances Synthetic Lethality through ER-Stress Mediated Mitochondrial Apoptosis Pathway. Int J Mol Sci 2021; 22:ijms22083916. [PMID: 33920140 PMCID: PMC8070209 DOI: 10.3390/ijms22083916] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 inhibitors (PARPi) are used to treat recurrent ovarian cancer (OC) patients due to greater survival benefits and minimal side effects, especially in those patients with complete or partial response to platinum-based chemotherapy. However, acquired resistance of platinum-based chemotherapy leads to the limited efficacy of PARPi monotherapy in most patients. Twist is recognized as a possible oncogene and contributes to acquired cisplatin resistance in OC cells. In this study, we show how Twist knockdown cisplatin-resistant (CisR) OC cells blocked DNA damage response (DDR) to sensitize these cells to a concurrent treatment of cisplatin as a platinum-based chemotherapy agent and niraparib as a PARPi on in vitro two-dimensional (2D) and three-dimensional (3D) cell culture. To investigate the lethality of PARPi and cisplatin on Twist knockdown CisR OC cells, two CisR cell lines (OV90 and SKOV3) were established using step-wise dose escalation method. In addition, in vitro 3D spheroidal cell model was generated using modified hanging drop and hydrogel scaffolds techniques on poly-2-hydroxylethly methacrylate (poly-HEMA) coated plates. Twist expression was strongly correlated with the expression of DDR proteins, PARP1 and XRCC1 and overexpression of both proteins was associated with cisplatin resistance in OC cells. Moreover, combination of cisplatin (Cis) and niraparib (Nira) produced lethality on Twist-knockdown CisR OC cells, according to combination index (CI). We found that Cis alone, Nira alone, or a combination of Cis+Nira therapy increased cell death by suppressing DDR proteins in 2D monolayer cell culture. Notably, the combination of Nira and Cis was considerably effective against 3D-cultures of Twist knockdown CisR OC cells in which Endoplasmic reticulum (ER) stress is upregulated, leading to initiation of mitochondrial-mediated cell death. In addition, immunohistochemically, Cis alone, Nira alone or Cis+Nira showed lower ki-67 (cell proliferative marker) expression and higher cleaved caspase-3 (apoptotic marker) immuno-reactivity. Hence, lethality of PARPi with the combination of Cis on Twist knockdown CisR OC cells may provide an effective way to expand the therapeutic potential to overcome platinum-based chemotherapy resistance and PARPi cross resistance in OC.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Ji-Ye Kim
- Department of Pathology, Ilsan Paik Hospital, Inje University, Goyang 10380, Korea;
| | - Dong-Chul Kim
- Department of Pathology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52828, Korea;
| | - Hyun-Soo Kim
- Samsung Medical Center, Department of Pathology and Translational Genomics, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (H.-S.K.); (H.Y.); Tel.: +82-2-3410-1243 (H.-S.K.); +82-55-772-2422 (H.Y.)
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea;
- Correspondence: (H.-S.K.); (H.Y.); Tel.: +82-2-3410-1243 (H.-S.K.); +82-55-772-2422 (H.Y.)
| |
Collapse
|
13
|
Perrone MG, Luisi O, De Grassi A, Ferorelli S, Cormio G, Scilimati A. Translational Theragnosis of Ovarian Cancer: where do we stand? Curr Med Chem 2020; 27:5675-5715. [PMID: 31419925 DOI: 10.2174/0929867326666190816232330] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/13/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer is the second most common gynecologic malignancy, accounting for approximately 220,000 deaths annually worldwide. Despite radical surgery and initial high response rates to platinum- and taxane-based chemotherapy, most patients experience a relapse, with a median progression-free survival of only 18 months. Overall survival is approximately 30% at 5 years from the diagnosis. In comparison, patients out from breast cancer are more than 80 % after ten years from the disease discovery. In spite of a large number of published fundamental and applied research, and clinical trials, novel therapies are urgently needed to improve outcomes of the ovarian cancer. The success of new drugs development in ovarian cancer will strongly depend on both fully genomic disease characterization and, then, availability of biomarkers able to identify women likely to benefit from a given new therapy. METHODS In this review, the focus is given to describe how complex is the diseases under the simple name of ovarian cancer, in terms of cell tumor types, histotypes, subtypes, and specific gene mutation or differently expressed in the tumor with respect the healthy ovary. The first- and second-line pharmacological treatment clinically used over the last fifty years are also described. Noteworthy achievements in vitro and in vivo tested new drugs are also summarized. Recent literature related to up to date ovarian cancer knowledge, its detection by biomarkers and chemotherapy was searched from several articles on Pubmed, Google Scholar, MEDLINE and various Governmental Agencies till April 2019. RESULTS The papers referenced by this review allow a deep analysis of status of the art in the classification of the several types of ovarian cancer, the present knowledge of diagnosis based on biomarkers and imaging techniques, and the therapies developed over the past five decades. CONCLUSION This review aims at stimulating more multi-disciplinary efforts to identify a panel of novel and more specific biomarkers to be used to screen patients for a very early diagnosis, to have prognosis and therapy efficacy indications. The desired final goal would be to have available tools allowing to reduce the recurrence rate, increase both the disease progression free interval and of course the overall survival at five years from the diagnosis that today is still very low.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Oreste Luisi
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Oncologico "Giovanni Paolo II" Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
14
|
Landry M, DuRoss A, Neufeld M, Hahn L, Sahay G, Luxenhofer R, Sun C. Low dose novel PARP-PI3K inhibition via nanoformulation improves colorectal cancer immunoradiotherapy. Mater Today Bio 2020; 8:100082. [PMID: 33294836 PMCID: PMC7689338 DOI: 10.1016/j.mtbio.2020.100082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/20/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multimodal therapy is often used in oncology to overcome dosing limitations and chemoresistance. Recently, combination immunoradiotherapy has shown great promise in a select subset of patients with colorectal cancer (CRC). Furthermore, molecularly targeted agents delivered in tandem with immunotherapy regimens have been suggested to improve treatment outcomes and expand the population of responding patients. In this study, radiation-sensitizing small molecules niraparib (PARP inhibitor) and HS-173 (PI3K inhibitor) are identified as a novel combination that synergistically enhance toxicity and induce immunogenic cell death both in vitro and in vivo in a CRC model. These inhibitors were co-encapsulated in a polymer micelle to overcome solubility limitations while minimizing off-target toxicity. Mice bearing syngeneic colorectal tumors (CT26) were administered these therapeutic micelles in combination with X-ray irradiation and anti-CTLA-4 immunotherapy. This combination led to enhanced efficacy demonstrated by improved tumor control and increased tumor infiltrating lymphocytes. This report represents the first investigation of DNA damage repair inhibition combined with radiation to potentiate anti-CTLA-4 immunotherapy in a CRC model.
Collapse
Affiliation(s)
- M.R. Landry
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, 97201, OR, USA
| | - A.N. DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, 97201, OR, USA
| | - M.J. Neufeld
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, 97201, OR, USA
| | - L. Hahn
- Department of Chemistry and Pharmacy, University Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - G. Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, 97201, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, 97201, OR, USA
| | - R. Luxenhofer
- Department of Chemistry and Pharmacy, University Würzburg, Röntgenring 11, Würzburg, 97070, Germany
- Soft Matter Chemistry, Department of Chemistry, University of Helsinki, Helsinki, 00014, Finland
| | - C. Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, 97201, OR, USA
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, 97239, OR, USA
| |
Collapse
|
15
|
Lin Q, Liu W, Xu S, Shang H, Li J, Guo Y, Tong J. PARP inhibitors as maintenance therapy in newly diagnosed advanced ovarian cancer: a meta-analysis. BJOG 2020; 128:485-493. [PMID: 32654312 DOI: 10.1111/1471-0528.16411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Up to 70% of patients with advanced ovarian cancer have a relapse after primary therapy. New agents and approaches are urgently needed to avoid or slow down this recurrence. OBJECTIVES To investigate the efficacy of PARP inhibitors (PARPis) as maintenance treatment in patients with newly diagnosed advanced ovarian cancer. SEARCH STRATEGY PubMed, MEDLINE, EMBASE, Cochrane Library and Web of Science databases. SELECTION CRITERIA All randomised clinical trials (RCTs) that compared PARPis with placebo as first-line maintenance therapy in ovarian cancer. DATA COLLECTION AND ANALYSIS Two reviewers extracted data. Pooled hazard ratio (HR) and risk ratio (RR) with 95% confidence interval (CI) were calculated. MAIN RESULTS PARPis were associated with significant improvement of progression-free survival (PFS) in advanced epithelial ovarian cancer (AeOC) (HR = 0.53, 95% CI 0.40-0.71; P < 0.0001). The benefit was not only in women with BRCA mutations (HR = 0.35, 95% CI 0.29-0.42; P < 0.00001) and homologous recombination deficiency (HRD) (HR = 0.43, 95% CI 0.32-0.60; P < 0.00001), but also in those with nonmutated BRCA (HR = 0.72, 95% CI 0.63-0.82; P < 0.00001) and even non-HRD (HR = 0.83, 95% CI 0.70-0.99; P = 0.04). CONCLUSIONS PARP inhibitors are effective as maintenance therapy among patients with newly diagnosed advanced ovarian cancer after platinum-based chemotherapy, regardless of BRCA mutation or HRD status. TWEETABLE ABSTRACT PARPis provide a significant PFS benefit as first-line maintenance therapy in patients with newly diagnosed advanced ovarian cancer.
Collapse
Affiliation(s)
- Q Lin
- Department of Gynaecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - W Liu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - S Xu
- Department of Gynaecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - H Shang
- Department of Gynaecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - J Li
- Department of Gynaecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Y Guo
- Department of Gynaecological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - J Tong
- Department of Gynaecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Franzese E, Diana A, Centonze S, Pignata S, De Vita F, Ciardiello F, Orditura M. PARP Inhibitors in First-Line Therapy of Ovarian Cancer: Are There Any Doubts? Front Oncol 2020; 10:782. [PMID: 32596142 PMCID: PMC7303974 DOI: 10.3389/fonc.2020.00782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022] Open
Abstract
The standard of care for newly diagnosed advanced ovarian cancer (NADOC) is represented by surgical debulking followed by systemic platinum–taxanes combination chemotherapy. At the last European Society for Medical Oncology (ESMO) Congress, results from three trials testing three different poly-adenosine-diphosphate-ribose-polymerase (PARP) inhibitors (olaparib, niraparib, veliparib) in first-line therapy of OC have been presented. For the first time, these studies evaluated the efficacy of PARP inhibitors in this setting and the relative predictive biomarkers for patients' selection. The use of a PARP inhibitor is related with prolonged progression free survival (PFS) in the whole population of NADOC, although the magnitude of benefit varies widely among subgroups, highlighting the need to identify specific biological subtypes into clinical practice. In this minireview, we discuss the updated data available from clinical studies in this scenario.
Collapse
Affiliation(s)
- Elisena Franzese
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Anna Diana
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Sara Centonze
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Sandro Pignata
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy
| |
Collapse
|
17
|
Tomao F, Bardhi E, Di Pinto A, Sassu CM, Biagioli E, Petrella MC, Palaia I, Muzii L, Colombo N, Panici PB. Parp inhibitors as maintenance treatment in platinum sensitive recurrent ovarian cancer: An updated meta-analysis of randomized clinical trials according to BRCA mutational status. Cancer Treat Rev 2019; 80:101909. [DOI: 10.1016/j.ctrv.2019.101909] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/01/2023]
|
18
|
Ledermann JA, Pujade-Lauraine E. Olaparib as maintenance treatment for patients with platinum-sensitive relapsed ovarian cancer. Ther Adv Med Oncol 2019; 11:1758835919849753. [PMID: 31205507 PMCID: PMC6535754 DOI: 10.1177/1758835919849753] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors were developed with the intention of treating patients with homologous recombination repair deficiency (HRD), specifically for patients with tumours that harbour a BRCA mutation (BRCAm). Evidence from clinical trials to date has demonstrated that patients with a BRCAm derive the greatest benefit from PARP inhibitors. However, clinical studies have also shown that PARP inhibitors provide benefit to women with ovarian cancer who do not have a BRCAm. The recent updated approvals of olaparib, niraparib and rucaparib by the US Food and Drug Administration and the European Medicines Agency for the treatment of all platinum-sensitive relapsed (PSR) ovarian-cancer populations, regardless of their BRCAm status, support this. Long-term tolerability and efficacy of olaparib have been demonstrated in patients both with and without a BRCAm, with 13% of patients receiving maintenance olaparib for at least 5 years in one study, which is unprecedented in the relapsed ovarian-cancer setting (versus 1% on placebo). Further studies should be performed to elucidate which non-BRCAm patients are deriving benefit and what molecular processes are enabling this, so that patients continue to receive optimal treatment for their disease. Here, we review clinical and molecular markers of HRD, the long-term clinical safety and efficacy of PARP inhibitors in ovarian cancer, with a focus on olaparib and the current approved indications for PARP inhibitors, as well as guidance on treatment decisions for patients with PSR ovarian cancer.
Collapse
Affiliation(s)
- Jonathan A. Ledermann
- UCL Cancer Institute, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | | |
Collapse
|
19
|
Poly (ADP-ribose) polymerase inhibitors combined with other small-molecular compounds for the treatment of ovarian cancer. Anticancer Drugs 2019; 30:554-561. [PMID: 30998513 DOI: 10.1097/cad.0000000000000793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ovarian cancer is a heterogeneous disease with complex molecular and genetic hallmarks. Benefitting from profound understanding of molecular mechanisms in ovarian cancer pathogenesis, novel targeted drugs have been actively explored in preclinical studies and clinical trials. Considered as one of the most potent and effective targeted therapies for the treatment of ovarian cancer, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) take advantages of synthetic lethality mechanisms to prevent DNA damage repair in cancer cells and cause their death, especially in cancers with BRCA mutations. Mounting evidence has indicated that the combination of PARPis with cytotoxic drugs or other targeted drugs has shown favorable synergistic effects. Excitingly, the antitumor activity of combination therapy of PARPis has been actively tested in multiple clinical trials and in-vitro or in-vivo experiments. In this review, we will briefly discuss the molecular mechanisms of PARPis combined with other therapeutic small-molecular compounds for the treatment of ovarian cancer.
Collapse
|
20
|
Jiang X, Li X, Li W, Bai H, Zhang Z. PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J Cell Mol Med 2019; 23:2303-2313. [PMID: 30672100 PMCID: PMC6433712 DOI: 10.1111/jcmm.14133] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/22/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022] Open
Abstract
Poly (ADP‐ribose) polymerase (PARP) inhibitors have provided great clinical benefits to ovarian cancer patients. To date, three PARP inhibitors, namely, olaparib, rucaparib and niraparib have been approved for the treatment of ovarian cancer in the United States. Homologous recombination deficiency (HRD) and platinum sensitivity are prospective biomarkers for predicting the response to PARP inhibitors in ovarian cancers. Preclinical data have focused on identifying the gene aberrations that might generate HRD and induce sensitivity to PARP inhibitors in vitro in cancer cell lines or in vivo in patient‐derived xenografts. Clinical trials have focused on genomic scar analysis to identify biomarkers for predicting the response to PARP inhibitors. Additionally, researchers have aimed to investigate mechanisms of resistance to PARP inhibitors and strategies to overcome this resistance. Combining PARP inhibitors with HR pathway inhibitors to extend the utility of PARP inhibitors to BRCA‐proficient tumours is increasingly foreseeable. Identifying the population of patients with the greatest potential benefit from PARP inhibitor therapy and the circumstances under which patients are no longer suited for PARP inhibitor therapy are important. Further studies are required in order to propose better strategies for overcoming resistance to PARP inhibitor therapy in ovarian cancers.
Collapse
Affiliation(s)
- Xuan Jiang
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Li
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Weihua Li
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Jain PG, Patel BD. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - A recent update. Eur J Med Chem 2019; 165:198-215. [PMID: 30684797 DOI: 10.1016/j.ejmech.2019.01.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) Polymerase1 (PARP1) is a member of 17 membered PARP family having diversified biological functions such as synthetic lethality, DNA repair, apoptosis, necrosis, histone binding etc. It is primarily a chromatin-bound nuclear enzyme that gets activated by DNA damage. It binds to DNA signal- and double-strand breaks, does parylation of target proteins (using NAD+ as a substrate) like histones and other DNA repair proteins and modifies them as a part of DNA repair mechanism. Inhibition of PARP1 prevents the DNA repair and leads to cell death. Clinically, PARP1 Inhibitors have shown their potential in treating BRCAm breast and ovarian cancers and trials are going on for the treatment of other solid tumors like pancreatic, prostate, colorectal etc. as a single agent or in combination. There are currently three FDA approved PARP1 inhibitors namely Olaparib, Rucaparib and Niraparib in the market while Veliparib and Talazoparib are in the late stage of clinical development. All these molecules are nonselective PARP1 inhibitors with concurrent inhibition of PARP2 with similar potency. In addition, resistance to marketed PARP1 inhibitors has been reported. Overall, looking at the success rate of PARP1 inhibitors into various solid tumors, there is an urge of a novel and selective PARP1 inhibitors. This review provides an update on various newer heterocyclic PARP1 inhibitors reported in last three years along with their structural design strategies. We classified them into two main chemical classes; NAD analogues and non-NAD analogues and discussed the medicinal chemistry approaches of each class. To understand the structural features required for in-silico designing of next-generation PARP1 inhibitors, we also reported the crucial amino acid interactions of these inhibitors at the target site. Thus, present review provides the insight on recent development on new lead structures as PARP1 inhibitors, their SAR, an overview of in-vitro and in-vivo screening methods, current challenges and opinion on future designing of more selective and safe PARP1 inhibitors.
Collapse
Affiliation(s)
- Priyancy G Jain
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Bhumika D Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
22
|
Zhang S, Chao HH, Wang X, Zhang Z, Lee EYC, Lee MYWT. Loss of the p12 subunit of DNA polymerase delta leads to a defect in HR and sensitization to PARP inhibitors. DNA Repair (Amst) 2019; 73:64-70. [PMID: 30470508 PMCID: PMC6312503 DOI: 10.1016/j.dnarep.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Human DNA polymerase δ is normally present in unstressed, non-dividing cells as a heterotetramer (Pol δ4). Its smallest subunit, p12, is transiently degraded in response to UV damage, as well as during the entry into S-phase, resulting in the conversion of Pol δ4 to a trimer (Pol δ3). In order to further understand the specific cellular roles of these two forms of Pol δ, the gene (POLD4) encoding p12 was disrupted by CRISPR/Cas9 to produce p12 knockout (p12KO) cells. Thus, Pol δ4 is absent in p12KO cells, leaving Pol δ3 as the sole source of Pol δ activity. GFP reporter assays revealed that the p12KO cells exhibited a defect in homologous recombination (HR) repair, indicating that Pol δ4, but not Pol δ3, is required for HR. Expression of Flag-tagged p12 in p12KO cells to restore Pol δ4 alleviated the HR defect. These results establish a specific requirement for Pol δ4 in HR repair. This leads to the prediction that p12KO cells should be more sensitive to chemotherapeutic agents, and should exhibit synthetic lethal killing by PARP inhibitors. These predictions were confirmed by clonogenic cell survival assays of p12KO cells treated with cisplatin and mitomycin C, and with the PARP inhibitors Olaparib, Talazoparib, Rucaparib, and Niraparib. The sensitivity to PARP inhibitors in H1299-p12KO cells was alleviated by expression of Flag-p12. These findings have clinical significance, as the expression levels of p12 could be a predictive biomarker of tumor response to PARP inhibitors. In addition, small cell lung cancers (SCLC) are known to exhibit a defect in p12 expression. Analysis of several SCLC cell lines showed that they exhibit hypersensitivity to PARP inhibitors, providing evidence that loss of p12 expression could represent a novel molecular basis for HR deficiency.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Hsiao Hsiang Chao
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
23
|
Mishra B, Zhang S, Zhao H, Darzynkiewicz Z, Lee EY, Lee MY, Zhang Z. Discovery of a novel DNA polymerase inhibitor and characterization of its antiproliferative properties. Cancer Biol Ther 2018; 20:474-486. [PMID: 30427259 PMCID: PMC6422523 DOI: 10.1080/15384047.2018.1529126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/22/2018] [Indexed: 12/31/2022] Open
Abstract
Chromosomal duplication is targeted by various chemotherapeutic agents for the treatment of cancer. However, there is no specific inhibitor of DNA polymerases that is viable for cancer management. Through structure-based in silico screening of the ZINC database, we identified a specific inhibitor of DNA polymerase δ. The discovered inhibitor, Zelpolib, is projected to bind to the active site of Pol δ when it is actively engaged in DNA replication through interactions with DNA template and primer. Zelpolib shows robust inhibition of Pol δ activity in reconstituted DNA replication assays. Under cellular conditions, Zelpolib is taken up readily by cancer cells and inhibits DNA replication in assays to assess global DNA synthesis or single-molecule bases by DNA fiber fluorography. In addition, we show that Zelpolib displays superior antiproliferative properties to methotrexate, 5-flourouracil, and cisplatin in triple-negative breast cancer cell line, pancreatic cancer cell line and platinum-resistant pancreatic cancer cell line. Pol δ is not only involved in DNA replication, it is also a key component in many DNA repair pathways. Pol δ is the key enzyme responsible for D-loop extension during homologous recombination. Indeed, Zelpolib shows robust inhibition of homologous recombination repair of DNA double-strand breaks and induces "BRCAness" in HR-proficient cancer cells and enhances their sensitivity to PARP inhibitors.
Collapse
Affiliation(s)
- Bhanvi Mishra
- Department of Biochemistry and Molecular Biology, Valhalla, NY, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, Valhalla, NY, USA
| | - Hong Zhao
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | | | - Ernest Y.C. Lee
- Department of Biochemistry and Molecular Biology, Valhalla, NY, USA
| | | | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, Valhalla, NY, USA
| |
Collapse
|
24
|
Haynes B, Murai J, Lee JM. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition. Cancer Treat Rev 2018; 71:1-7. [PMID: 30269007 DOI: 10.1016/j.ctrv.2018.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 02/06/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibition serves as a potent therapeutic option eliciting synthetic lethality in cancers harboring homologous recombination (HR) repair defects, such as BRCA mutations. However, the development of resistance to PARP inhibitors (PARPis) poses a clinical challenge. Restoration of HR competency is one of the many molecular factors contributing to PARPi resistance. Combination therapy with cell cycle checkpoint (ATR, CHK1, and WEE1) inhibitors is being investigated clinically in many cancers, particularly in ovarian cancer, to enhance the efficacy and circumvent resistance to PARPis. Ideally, inhibition of ATR, CHK1 and WEE1 proteins will abrogate G2 arrest and subsequent DNA repair via restored HR in PARPi-treated cells. Replication fork stabilization has recently been identified as a potential compensatory PARPi resistance mechanism, found in the absence of restored HR. ATR, CHK1, and WEE1 each possess different roles in replication fork stabilization, providing different mechanisms to consider when developing combination therapies to avoid continued development of drug resistance. This review examines the impact of ATR, CHK1, and WEE1 on replication fork stabilization. We also address the therapeutic potential for combining PARPis with cell cycle inhibitors and the possible consequence of combination therapies which do not adequately address both restored HR and replication fork stabilization as PARPi resistance mechanisms.
Collapse
Affiliation(s)
- Brittany Haynes
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Junko Murai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
25
|
Jin M, Cai J, Wang X, Zhang T, Zhao Y. Successful maintenance therapy with apatinib inplatinum-resistant advanced ovarian cancer and literature review. Cancer Biol Ther 2018; 19:1088-1092. [PMID: 30110192 DOI: 10.1080/15384047.2018.1491500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer is a most common lethal gynecological malignant tumor, with a gradual increasing incidence throughout the world. The mainstay treatment is cytoreductive surgery followed by platinum-based chemotherapy. However, a high percentage of patients recur, thus needing multiple treatments with a frequently poor prognosis. Apatinib is a novel and highly selective tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2. Previous studies have suggested that apatinib is safe and effective in some solid tumors. We report one case with platinum-resistant advanced epithelial ovarian cancer, who had failed prior treatment with multiple chemotherapy reagents. She was negative for multiple driver genes including BRCA1/2、EGFR、KRAS/NRAS/BRAF, ALK, HER2 and cMET. Five courses of apatinib plus epirubicin were given. Due to the heavy leukothrombopenia, apatinib monotherapy, at 250 mg qd dose level, was used for maintenance therapy. The progression-free survival (PFS) time was 12.6 months. After that, the disease was slightly progressive during apatinib maintenance and then entered into a "stable" state until now. It indicated that apatinib may be a superior choice for advanced ovarian cancer patients, but further prospective studies are needed to optimize the treatment.
Collapse
Affiliation(s)
- Min Jin
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jun Cai
- b Department of Oncology , First Affiliated Hospital of Yangtz University , Jingzhou , China
| | - Xuan Wang
- b Department of Oncology , First Affiliated Hospital of Yangtz University , Jingzhou , China
| | - Tao Zhang
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Yingchao Zhao
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
26
|
Booth L, Roberts JL, Rais R, Poklepovic A, Dent P. Valproate augments Niraparib killing of tumor cells. Cancer Biol Ther 2018; 19:797-808. [PMID: 29923797 DOI: 10.1080/15384047.2018.1472190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
PARP1 inhibitors are approved therapeutic agents in ovarian carcinomas, and have clinical activity in some breast cancers. As a single agent, niraparib killed ovarian and mammary tumor cells via an ATM-AMPK-ULK1 pathway which resulted in mTOR inactivation and the formation of autophagosomes, temporally followed by autolysosome formation. In parallel, niraparib activated a CD95-FADD-caspase 8 pathway, and collectively these signals caused tumor cell death that was suppressed by knock down of Beclin1, ATG5, CD95, FADD or AIF; or by expression of c-FLIP-s, BCL-XL or dominant negative caspase 9. The HDAC inhibitors AR42 and sodium valproate enhanced niraparib lethality in a greater than additive fashion. HDAC inhibitors enhanced niraparib lethality by increasing activation of the ATM-AMPK-ULK1-autophagy and CD95-FADD-caspase 8 pathways. Knock down of eIF2α, ATM, AMPKα, ULK1, Beclin1 or ATG5 reduced tumor cell killing by the niraparib plus HDAC inhibitor combination. Blockade of either caspase 9 function or that of cathepsin B partially prevented cell death. As a single agent niraparib delayed tumor growth, but did not significantly alter the tumor control rate. Tumors previously exposed to niraparib had activated the ERK1/2 and AKT-mTOR pathways that correlated with increased plasma levels of IL-8, MIF, EGF, uPA and IL-12. Collectively our findings argue that the addition of HDAC inhibitors to niraparib enhances the anti-cancer activity of the PARP1 inhibitor niraparib.
Collapse
Affiliation(s)
- Laurence Booth
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| | - Jane L Roberts
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| | - Rumeesa Rais
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| | | | - Paul Dent
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
27
|
Coppola C, Rienzo A, Piscopo G, Barbieri A, Arra C, Maurea N. Management of QT prolongation induced by anti-cancer drugs: Target therapy and old agents. Different algorithms for different drugs. Cancer Treat Rev 2017; 63:135-143. [PMID: 29304463 DOI: 10.1016/j.ctrv.2017.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023]
Abstract
The side effects of anticancer drugs still play a critical role in survival and quality of life. Although the recent progresses of cancer therapies have significantly improved the prognosis of oncologic patients, side effects of antineoplastic treatments are still responsible for the increased mortality of cancer survivors. Cardiovascular toxicity is the most dangerous adverse effect induced by anticancer therapies. A survey conducted by the National Health and Nutrition Examination, showed that 1807 cancer survivors followed up for seven years: 51% died of cancer and 33% of heart disease (Vejpongsa and Yeh, 2014). Moreover, the risk of cardiotoxicity persists even with the targeted therapy, the newer type of cancer treatment, due to the presence of on-target and off-target effects related to this new class of drugs. The potential cardiovascular toxicity of anticancer agents includes: QT prolongation, arrhythmias, myocardial ischemia, stroke, hypertension (HTN), thromboembolism, left ventricular dysfunction and heart failure (HF). Compared to other cardiovascular disorders, the interest in QT prolongation and its complications is fairly recent. However, oncologists have to deal with it and to evaluate the risk-benefit ratio before starting the treatment or during the same. Electrolyte abnormalities, low levels of serum potassium and several drugs may favour the acquired QT prolongation. Treatment of marked QT prolongation includes cardiac monitoring, caution in the use or suspension of cancer drugs and correction of electrolyte abnormalities (hypokalaemia, hypomagnesaemia, hypocalcaemia). Syndrome of QT prolongation can be associated with potentially fatal cardiac arrhythmias and its treatment consists of intravenous administration of magnesium sulphate and the use of electrical cardioversion.
Collapse
Affiliation(s)
- Carmela Coppola
- Division of Cardiology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Anna Rienzo
- Division of Cardiology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Giovanna Piscopo
- Division of Cardiology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Antonio Barbieri
- Animal Facility Unit, Department of Translational Research, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Claudio Arra
- Animal Facility Unit, Department of Translational Research, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|