1
|
Alfaro I, Vega M, Romero C, Garrido MP. Mechanisms of Regulation of the Expression of miRNAs and lncRNAs by Metformin in Ovarian Cancer. Pharmaceuticals (Basel) 2023; 16:1515. [PMID: 38004379 PMCID: PMC10674581 DOI: 10.3390/ph16111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecological malignancies. The use of biological compounds such as non-coding RNAs (ncRNAs) is being considered as a therapeutic option to improve or complement current treatments since the deregulation of ncRNAs has been implicated in the pathogenesis and progression of OC. Old drugs with antitumoral properties have also been studied in the context of cancer, although their antitumor mechanisms are not fully clear. For instance, the antidiabetic drug metformin has shown pleiotropic effects in several in vitro models of cancer, including OC. Interestingly, metformin has been reported to regulate ncRNAs, which could explain its diverse effects on tumor cells. In this review, we discuss the mechanism of epigenetic regulation described for metformin, with a focus on the evidence of metformin-dependent microRNA (miRNAs) and long non-coding RNA (lncRNAs) regulation in OC.
Collapse
Affiliation(s)
- Ignacio Alfaro
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Maritza P. Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
2
|
Lu MZ, Li DY, Wang XF. Effect of metformin use on the risk and prognosis of ovarian cancer: an updated systematic review and meta-analysis. Panminerva Med 2023; 65:351-361. [PMID: 31290300 DOI: 10.23736/s0031-0808.19.03640-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Emerging evidence suggests that metformin has a potential antitumor effect both in vitro and in vivo. Increasing epidemiological studies indicate that diabetic patients receiving metformin therapy have lower incidences of cancer and have better survival rates. However, there are limited and inconsistent studies available about the effect of metformin therapy on ovarian cancer (OC). Thus, we conducted this meta-analysis to study the effect of metformin therapy on OC. Meanwhile, we systematically reviewed relevant studies to provide a framework for future research. EVIDENCE ACQUISITION We conducted a systematic literature search on PubMed, Web of Science, Springerlink, CNKI, VIP, SinoMed, and Wanfang up to the period of October 2018. A random-effects meta-analysis model was used to derive pooled effect estimates. EVIDENCE SYNTHESIS A total of 13 studies were retrieved of which 5 studies explained the prevention and 8 studies explained the treatment for OC. Our pooled results showed that metformin has a potential preventive effect on OC in diabetic women (pooled odds ratio [OR] 0.62, 95% confidence interval [95% CI] 0.34, 1.11; P<0.001). In addition, metformin can also significantly prolong progression-free survival (PFS) (pooled hazard ratio [HR] 0.49, 95% CI 0.34, 0.70; P=0.002), and overall survival (OS) (HR 0.71, 95%CI 0.61, 0.82; P<0.001) in patients with OC, regardless of whether they had diabetes. CONCLUSIONS The use of metformin can potentially reduce the risk of OC among diabetics, and it also can significantly improve PFS and OS in patients with OC. A further large clinical investigation would be needed to adopt our finding in practice, however, our systematic review provides an insight for future study designs.
Collapse
Affiliation(s)
- Min-Zhen Lu
- Second Clinical Medical College of Southern Medical University, Guangzhou, China -
| | - De-Yu Li
- Department of Oncology, Fujian Provincial Hospital, Fujian, China
| | - Xue-Feng Wang
- Department of Obstetrics and Gynecology, Third Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Antitumoral Activity of Leptocarpha rivularis Flower Extracts against Gastric Cancer Cells. Int J Mol Sci 2023; 24:ijms24021439. [PMID: 36674960 PMCID: PMC9862749 DOI: 10.3390/ijms24021439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Leptocarpha rivularis is a native South American plant used ancestrally by Mapuche people to treat gastrointestinal ailments. L. rivularis flower extracts are rich in molecules with therapeutic potential, including the sesquiterpene lactone leptocarpin, which displays cytotoxic effects against various cancer types in vitro. However, the combination of active molecules in these extracts could offer a hitherto unexplored potential for targeting cancer. In this study, we investigated the effect of L. rivularis flower extracts on the proliferation, survival, and spread parameters of gastric cancer cells in vitro. Gastric cancer (AGS and MKN-45) and normal immortalized (GES-1) cell lines were treated with different concentrations of L. rivularis flower extracts (DCM, Hex, EtOAc, and EtOH) and we determined the changes in proliferation (MTS assay, cell cycle analysis), cell viability/cytotoxicity (trypan blue exclusion assay, DEVDase activity, mitochondrial membrane potential MMP, and clonogenic ability), senescence (β-galactosidase activity) and spread potential (invasion and migration assays using the Boyden chamber approach) in all these cells. The results showed that the DCM, EtOAc, and Hex extracts display a selective antitumoral effect in gastric cancer cells by affecting all the cancer parameters tested. These findings reveal an attractive antitumoral potential of L. rivularis flower extracts by targeting several acquired capabilities of cancer cells.
Collapse
|
4
|
Sulaiman R, De P, Aske JC, Lin X, Dale A, Koirala N, Gaster K, Espaillat LR, Starks D, Dey N. Patient-Derived Primary Cancer-Associated Fibroblasts Mediate Resistance to Anti-Angiogenic Drug in Ovarian Cancers. Biomedicines 2023; 11:biomedicines11010112. [PMID: 36672620 PMCID: PMC9855717 DOI: 10.3390/biomedicines11010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Ovarian cancers rank first in both aggressiveness and dismal prognosis among gynecological neoplasms. The poor outcome is explained by the fact that most patients present with late-stage disease and progress through the first line of treatment. Ovarian neoplasms, especially epithelial ovarian cancers, are diagnosed at advanced/metastatic stages, often with a high angiogenesis index, one of the hallmarks of ovarian cancers with rapid progression and poor outcome as resistance to anti-angiogenic therapy develops. Despite therapy, the metastatic progression of aggressive ovarian cancer is a spectacularly selective function of tumor cells aided and abetted by the immune, mesenchymal and angiogenic components of the tumor microenvironment (TME) that enforces several pro-metastatic event(s) via direct and indirect interactions with stromal immune cells, cancer-associated fibroblasts (CAFs), and vascular endothelial cells. Since transdifferentiation of tumor endothelium is one of the major sources of CAFs, we hypothesized that ovarian CAF plays a critical role in resisting anti-angiogenic effects via direct crosstalk with endothelium and hence plays a direct role in the development of resistance to anti-angiogenic drugs. To test the hypothesis, we set up a hybrid ex vivo model for co-culture comprising Patient-Derived ex vivo primary CAFs from ovarian tumor samples and human umbilical vein endothelial cells (HUVEC). Patient-Derived CAFs were characterized by the mRNA and protein expression of positive (SMA, S100A4, TE-7, FAP-A, CD90/THY1), negative (EpCAM, CK 8,18, CD31, CD44, CD45), functional (PDGFRA, TGFB1, TGFB2, TGFRA) and immunological markers (PD-L1, PD-L2, PD-1) associated with CAFs by qRT-PCR, flow cytometry, Western blot, and ICC. Data from our HUVEC-on-CAF ex vivo Hybrid Co-Culture (HyCC) study demonstrate the pro-angiogenic effect of Patient-Derived ovarian CAFs by virtue of their ability to resist the effect of anti-angiogenic drugs, thereby aiding the development of resistance to anti-angiogenic drugs. Ascertaining direct experimental proof of the role of CAFs in developing resistance to specific anti-angiogenic drugs will provide an opportunity to investigate new drugs for counteracting CAF resistance and "normalizing/re-educating" TME in aggressive ovarian cancers. Our data provide a unique experimental tool for the personalized testing of anti-angiogenic drugs, positively predicting the development of future resistance to anti-angiogenic drugs well before it is clinically encountered in patients.
Collapse
Affiliation(s)
- Raed Sulaiman
- Department of Pathology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Pradip De
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD 57105, USA
| | - Jennifer C. Aske
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Xiaoqian Lin
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Adam Dale
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Nischal Koirala
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Kris Gaster
- Assistant VP Outpatient Cancer Clinics, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Luis Rojas Espaillat
- Department of Gynecologic Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - David Starks
- Department of Gynecologic Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD 57105, USA
- Correspondence:
| |
Collapse
|
5
|
Khanlarkhani N, Azizi E, Amidi F, Khodarahmian M, Salehi E, Pazhohan A, Farhood B, Mortezae K, Goradel NH, Nashtaei MS. Metabolic risk factors of ovarian cancer: a review. JBRA Assist Reprod 2022; 26:335-347. [PMID: 34751020 PMCID: PMC9118962 DOI: 10.5935/1518-0557.20210067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022] Open
Abstract
Ovarian cancer continues to be the leading cause of death from gynecological cancers. Despite inconsistent results, patients with metabolic abnormalities, including obesity and diabetes mellitus (DM), have poorer outcomes, showing a correlation with ovarian cancer incidence and ovarian cancer survival. Since ovarian cancer is the most common cancer in women, and considering the increasing prevalence of obesity and DM, this paper reviews the literature regarding the relationship between the aforementioned metabolic derangements and ovarian cancer, with a focus on ovarian cancer incidence, mortality, and likely mechanisms behind them. Several systematic reviews and meta-analyses have shown that obesity is associated with a higher incidence and poorer survival in ovarian cancer. Although more studies are required to investigate the etiological relation of DM and ovarian cancer, sufficient biological evidence indicates poorer outcomes and shorter survival in DM women with ovarian cancer. A variety of pathologic factors may contribute to ovarian cancer risk, development, and survival, including altered adipokine expression, increased levels of circulating growth factors, altered levels of sex hormones, insulin resistance, hyperinsulinemia, and chronic inflammation. Thus, obesity and DM, as changeable risk factors, can be targeted for intervention to prevent ovarian cancer and improve its outcomes.
Collapse
Affiliation(s)
- Neda Khanlarkhani
- Department of Physiology and Pharmacology, Karolinska Institute, Sweden
| | - Elham Azizi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Infertility department, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Gynecology, School of Medicine, Fertility and Infertility Research Center, Dr. Ali Shariati Hospital, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Azar Pazhohan
- Infertility Center, Academic Center for Education, Culture and Research, East Azarbaijan, Tabriz, Iran. / Department of Midwifery, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezae
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. / Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Retinopathy of prematurity: contribution of inflammatory and genetic factors. Mol Cell Biochem 2022; 477:1739-1763. [PMID: 35262882 DOI: 10.1007/s11010-022-04394-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Retinopathy of prematurity (ROP) is a retinal vasoproliferative disorder that represents an important cause of childhood visual impairment and blindness. Although oxidative stress has long been implicated in ROP etiology, other prenatal and perinatal factors are also involved. This review focuses on current research involving inflammation and genetic factors in the pathogenesis of ROP. Increasing evidence suggests that perinatal inflammation or infection contributes to ROP pathogenesis. Cytokines and chemokines with a fundamental role in inflammatory responses and that significantly contributing to angiogenesis are analyzed. Microglia cells, the retinal-resident macrophages, are crucial for retinal homeostasis, however, under sustained pathological stimuli release exaggerated amounts of inflammatory mediators and can promote pathological neovascularization. Current modulation of angiogenic cytokines, such as treatment with antibodies to vascular endothelial growth factor (anti-VEGF), has shown efficacy in the treatment of ocular neovascularization; however, some patients are refractory to anti-VEGF agents, suggesting that other angiogenic or anti-angiogenic cytokines need to be identified. Much evidence suggests that genetic factors contribute to the phenotypic variability of ROP. Several studies have implicated the involvement of candidate genes from different signaling pathways in the development of ROP. However, a genetic component with a major impact on ROP has not yet been discovered. Most studies have limitations and did not replicate results. Future research involving bioinformatics, genomics, and proteomics may contribute to finding more genes associated with ROP and may allow discovering better solutions in the management and treatment of ROP.
Collapse
|
7
|
Wang X, Du ZW, Xu TM, Wang XJ, Li W, Gao JL, Li J, Zhu H. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies. Front Oncol 2022; 11:785111. [PMID: 35004308 PMCID: PMC8739787 DOI: 10.3389/fonc.2021.785111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer is the eighth most commonly diagnosed cancer among women worldwide. Even with the development of novel drugs, nearly one-half of the patients with ovarian cancer die within five years of diagnosis. These situations indicate the need for novel therapeutic agents for ovarian cancer. Increasing evidence has shown that hypoxia-inducible factor-1α(HIF-1α) plays an important role in promoting malignant cell chemoresistance, tumour metastasis, angiogenesis, immunosuppression and intercellular interactions. The unique microenvironment, crosstalk and/or interaction between cells and other characteristics of ovarian cancer can influence therapeutic efficiency or promote the disease progression. Inhibition of the expression or activity of HIF-1α can directly or indirectly enhance the therapeutic responsiveness of tumour cells. Therefore, it is reasonable to consider HIF-1α as a potential therapeutic target for ovarian cancer. In this paper, we summarize the latest research on the role of HIF-1α and molecules which can inhibit HIF-1α expression directly or indirectly in ovarian cancer, and drug clinical trials about the HIF-1α inhibitors in ovarian cancer or other solid malignant tumours.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Zhen-Wu Du
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China.,Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Min Xu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Jun Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Li Gao
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Garrido MP, Fredes AN, Lobos-González L, Valenzuela-Valderrama M, Vera DB, Romero C. Current Treatments and New Possible Complementary Therapies for Epithelial Ovarian Cancer. Biomedicines 2021; 10:77. [PMID: 35052757 PMCID: PMC8772950 DOI: 10.3390/biomedicines10010077] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynaecological malignancies. The late diagnosis is frequent due to the absence of specific symptomatology and the molecular complexity of the disease, which includes a high angiogenesis potential. The first-line treatment is based on optimal debulking surgery following chemotherapy with platinum/gemcitabine and taxane compounds. During the last years, anti-angiogenic therapy and poly adenosine diphosphate-ribose polymerases (PARP)-inhibitors were introduced in therapeutic schemes. Several studies have shown that these drugs increase the progression-free survival and overall survival of patients with ovarian cancer, but the identification of patients who have the greatest benefits is still under investigation. In the present review, we discuss about the molecular characteristics of the disease, the recent evidence of approved treatments and the new possible complementary approaches, focusing on drug repurposing, non-coding RNAs, and nanomedicine as a new method for drug delivery.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Allison N. Fredes
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile;
| | - Daniela B. Vera
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
9
|
Vera DB, Fredes AN, Garrido MP, Romero C. Role of Mitochondria in Interplay between NGF/TRKA, miR-145 and Possible Therapeutic Strategies for Epithelial Ovarian Cancer. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010008. [PMID: 35054401 PMCID: PMC8779980 DOI: 10.3390/life12010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Ovarian cancer is the most lethal gynecological neoplasm, and epithelial ovarian cancer (EOC) accounts for 90% of ovarian malignancies. The 5-year survival is less than 45%, and, unlike other types of cancer, the proportion of women who die from this disease has not improved in recent decades. Nerve growth factor (NGF) and tropomyosin kinase A (TRKA), its high-affinity receptor, play a crucial role in pathogenesis through cell proliferation, angiogenesis, invasion, and migration. NGF/TRKA increase their expression during the progression of EOC by upregulation of oncogenic proteins as vascular endothelial growth factor (VEGF) and c-Myc. Otherwise, the expression of most oncoproteins is regulated by microRNAs (miRs). Our laboratory group reported that the tumoral effect of NGF/TRKA depends on the regulation of miR-145 levels in EOC. Currently, mitochondria have been proposed as new therapeutic targets to activate the apoptotic pathway in the cancer cell. The mitochondria are involved in a myriad of functions as energy production, redox control, homeostasis of Ca+2, and cell death. We demonstrated that NGF stimulation produces an augment in the Bcl-2/BAX ratio, which supports the anti-apoptotic effects of NGF in EOC cells. The review aimed to discuss the role of mitochondria in the interplay between NGF/TRKA and miR-145 and possible therapeutic strategies that may decrease mortality due to EOC.
Collapse
Affiliation(s)
- Daniela B. Vera
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
| | - Allison N. Fredes
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
| | - Maritza P. Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
- Obstetrics and Gynecology Departament, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.P.G.); (C.R.)
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
- Obstetrics and Gynecology Departament, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.P.G.); (C.R.)
| |
Collapse
|
10
|
Barczyński B, Frąszczak K, Kotarski J. Perspectives of metformin use in endometrial cancer and other gynaecological malignancies. J Drug Target 2021; 30:359-367. [PMID: 34753372 DOI: 10.1080/1061186x.2021.2005072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Insulin resistance and hyperinsulinemia play a key role in type 1 endometrial cancer pathogenesis. Most of these cancers develop on a background of overweight or type 2 diabetes mellitus (T2DM). One of the medications widely used in the treatment of T2DM is biguanide derivative, metformin, which exerts promising anticancer properties principally through activation of adenosine monophosphate kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) pathways. Many epidemiological studies on diabetic patients show potential preventative role of metformin in endometrial cancer patients, but data regarding its therapeutic role is still limited. So far, most of attention has been paid to the concept of metformin use in fertility sparing treatment of early-stage cancer. Another investigated alternative is its application in patients with primary advanced or recurrent disease. In this review we present the latest data on clinical use of metformin in endometrial cancer patients and potential underlying mechanisms of its activity. Finally, we present some most important clinical information regarding metformin efficacy in other gynaecological malignancies, mainly breast and ovarian cancer.
Collapse
Affiliation(s)
- Bartłomiej Barczyński
- Ist Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Frąszczak
- Ist Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- Ist Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Boreak N, Khayrat NMA, Shami AO, Zaylaee HJM, Hanbashi AA, Souri SA, Otayf HM, Bakri RE, Ajeely MEM, Bakri AEH, Jafer MA, Raj AT, Baeshen HA, Patil S. Metformin pre-conditioning enhances the angiogenic ability of the secretome of dental pulp stem cells. Saudi Pharm J 2021; 29:908-913. [PMID: 34408549 PMCID: PMC8363104 DOI: 10.1016/j.jsps.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to assess the influence of metformin on the angiogenic ability of secretomes from dental pulp stem cells. The stem cells were obtained from the dental pulp (DPSCs) (n = 3) using the explant culture method. We treated the DPSCs with different concentrations of metformin and assessed the expression of the angiogenesis-related genes. We also tested the angiogenic effect of the secretomes on the yolk sac membrane of the chick embryos by counting the quaternary blood vessel formations on the yolk sac membrane. We found that metformin treatment enhanced the angiogenic potential of the stem cell secretome in a dose-dependent manner. This was evidenced by the increase in the quaternary blood vessel formations in the yolk sac membrane with lower to higher concentrations of metformin. Pre-treatment with metformin modulates the angiogenic potential of the stem cell-conditioned media in a dose-dependent manner. The augmentation of the angiogenic potential of the DPSCs can aid regeneration, especially in scenarios requiring the regeneration of vacuoles.
Collapse
Affiliation(s)
- Nezar Boreak
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | - Mohammed Abdurabu Jafer
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Saudi Arabia
- Department of Health Promotion, Maastricht University/CAPHRI, The Netherlands
| | - A. Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
- Corresponding author.
| |
Collapse
|
12
|
Ren Y, Luo H. Metformin: The next angiogenesis panacea? SAGE Open Med 2021; 9:20503121211001641. [PMID: 33796300 PMCID: PMC7970164 DOI: 10.1177/20503121211001641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis, the development of new blood vessels from existing ones, is
a critical process in wound healing and skeletal muscle hypertrophy.
It also leads to pathological conditions such as retinopathy and tumor
genesis. Metformin, the first-line treatment for type 2 diabetic
mellitus, has a specific regulatory effect on the process of
angiogenesis. Anti-angiogenesis can inhibit the occurrence and
metastasis of tumors and alleviate patients’ symptoms with polycystic
ovary syndrome. Moreover, promoting angiogenesis effect can accelerate
wound healing and promote stroke recovery and limb ischemia
reconstruction. This review reorganizes metformin in angiogenesis, and
the underlying mechanism in alleviating disease to bring some
inspiration to relevant researchers.
Collapse
Affiliation(s)
- Yu Ren
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Hua Luo
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
13
|
Garrido MP, Salvatierra R, Valenzuela-Valderrama M, Vallejos C, Bruneau N, Hernández A, Vega M, Selman A, Quest AFG, Romero C. Metformin Reduces NGF-Induced Tumour Promoter Effects in Epithelial Ovarian Cancer Cells. Pharmaceuticals (Basel) 2020; 13:E315. [PMID: 33081077 PMCID: PMC7602813 DOI: 10.3390/ph13100315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a lethal gynaecological neoplasm characterized by rapid growth and angiogenesis. Nerve growth factor (NGF) and its high affinity receptor tropomyosin receptor kinase A (TRKA) contribute to EOC progression by increasing the expression of c-MYC, survivin and vascular endothelial growth factor (VEGF) along with a decrease in microRNAs (miR) 23b and 145. We previously reported that metformin prevents NGF-induced proliferation and angiogenic potential of EOC cells. In this study, we sought to obtain a better understanding of the mechanism(s) by which metformin blocks these NGF-induced effects in EOC cells. Human ovarian surface epithelial (HOSE) and EOC (A2780/SKOV3) cells were stimulated with NGF and/or metformin to assess the expression of c-MYC, β-catenin, survivin and VEGF and the abundance of the tumor suppressor miRs 23b and 145. Metformin decreased the NGF-induced transcriptional activity of MYC and β-catenin/T-cell factor/lymphoid enhancer-binding factor (TCF-Lef), as well as the expression of c-MYC, survivin and VEGF in EOC cells, while it increased miR-23b and miR-145 levels. The preliminary analysis of ovarian biopsies from women users or non-users of metformin was consistent with these in vitro results. Our observations shed light on the mechanisms by which metformin may suppress tumour growth in EOC and suggest that metformin should be considered as a possible complementary therapy in EOC treatment.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Renato Salvatierra
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile;
| | - Christopher Vallejos
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
| | - Nicole Bruneau
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
| | - Andrea Hernández
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
| | - Margarita Vega
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Alberto Selman
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Instituto Nacional del Cáncer, Santiago 8380455, Chile
| | - Andrew F. G. Quest
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad De Medicina, Universidad de Chile, Santiago 8380453, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380000, Chile
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| |
Collapse
|
14
|
NGF/TRKA Decrease miR-145-5p Levels in Epithelial Ovarian Cancer Cells. Int J Mol Sci 2020; 21:ijms21207657. [PMID: 33081171 PMCID: PMC7589588 DOI: 10.3390/ijms21207657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Nerve Growth Factor (NGF) and its high-affinity receptor tropomyosin receptor kinase A (TRKA) increase their expression during the progression of epithelial ovarian cancer (EOC), promoting cell proliferation and angiogenesis through several oncogenic proteins, such as c-MYC and vascular endothelial growth factor (VEGF). The expression of these proteins is controlled by microRNAs (miRs), such as miR-145, whose dysregulation has been related to cancer. The aims of this work were to evaluate in EOC cells whether NGF/TRKA decreases miR-145 levels, and the effect of miR-145 upregulation. The levels of miR-145-5p were assessed by qPCR in ovarian biopsies and ovarian cell lines (human ovarian surface epithelial cells (HOSE), A2780 and SKOV3) stimulated with NGF. Overexpression of miR-145 in ovarian cells was used to evaluate cell proliferation, migration, invasion, c-MYC and VEGF protein levels, as well as tumor formation and metastasis in vivo. In EOC samples, miR-145-5p levels were lower than in epithelial ovarian tumors. Overexpression of miR-145 decreased cell proliferation, migration and invasion of EOC cells, changes that were concomitant with the decrease in c-MYC and VEGF protein levels. We observed decreased tumor formation and suppressed metastasis behavior in mice injected with EOC cells that overexpressed miR-145. As expected, ovarian cell lines stimulated with NGF diminished miR-145-5p transcription and abundance. These results suggest that the tumoral effects of NGF/TRKA depend on the regulation of miR-145-5p levels in EOC cells, and that its upregulation could be used as a possible therapeutic strategy for EOC.
Collapse
|
15
|
Chen GG, Woo PYM, Ng SCP, Wong GKC, Chan DTM, van Hasselt CA, Tong MCF, Poon WS. Impact of metformin on immunological markers: Implication in its anti-tumor mechanism. Pharmacol Ther 2020; 213:107585. [PMID: 32473961 DOI: 10.1016/j.pharmthera.2020.107585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Metformin, an anti-hyperglycemic drug, has been known to have antitumor properties for around 15 years. Although there are a number of reports attributing the antitumor function of metformin to its impact on energy homeostasis and oxygen re-distribution in tumor microenvironment, detailed mechanisms remain largely unknown. In the past several years, there is an increasing number of publications indicating that metformin can affect various immunological components including lymphocytes, macrophages, cytokines and several key immunological molecules in both human and animal studies. These interesting results appear to be in line with emerging data that suggest associations between immune responses and energy homeostasis/oxygen re-distribution, which may explain effective impacts of metformin on immunotherapies against autoimmune diseases as well as cancers. This review article is to analyse and discuss recent development in the above areas with aim to justify metformin as a new adjuvant for immunotherapy against human cancers. We hope that our summary will help to optimize the application of metformin for various types of human cancers.
Collapse
Affiliation(s)
- George G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Peter Y M Woo
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Stephanie C P Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - George K C Wong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Danny T M Chan
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Charles A van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Michael C F Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wai Sang Poon
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
16
|
Garrido MP, Bruneau N, Vega M, Selman A, Tapia JC, Romero C. Follicle-stimulating hormone promotes nerve growth factor and vascular endothelial growth factor expression in epithelial ovarian cells. Histol Histopathol 2020; 35:961-971. [PMID: 32369181 DOI: 10.14670/hh-18-226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the first cause of death for gynecological malignances in developed countries and around 80% correspond to Epithelial Ovarian Cancer (EOC). Overexpression of Nerve Growth Factor (NGF) and its high affinity receptor TRKA are involved in EOC progression, modulating several oncogenic processes such as angiogenesis by the increase of Vascular Endothelial Growth Factor (VEGF). FSH receptors (FSH-R) are present in EOC, but their changes and contribution during EOC progression are still not thoroughly known. The aims of this study were to evaluate the abundance of FSH receptors during EOC differentiation and to determine whether FSH modulates oncoproteins such as NGF and VEGF in ovarian cells. FSH-R expression in EOC tissues and cell lines (A2780, poorly differentiated EOC cells and HOSE, non-tumoral ovarian surface epithelial cells) were measured by RT-PCR and laser capture of epithelial cells from EOC samples by qPCR. FSH-R protein levels were evaluated by immunohisto/cytochemistry. Additionally, ovarian explants and ovarian cell lines were stimulated with FSH and/or FSH-R inhibitor to assess NGF and VEGF mRNA and protein levels. The results showed that FSH-R levels decreased during EOC progression, nevertheless these receptors are still present in poorly differentiated EOC. FSH increased NGF expression in ovarian cells, which was prevented using a FSH-R inhibitor. Similarly, in ovarian cancer explants, FSH increased NGF and VEGF mRNA, as well as NGF protein levels. These results suggest that FSH would display a key role not only in initial stages of EOC, but also in late stages of this disease, by modulation of NGF and VEGF levels in EOC cells.
Collapse
Affiliation(s)
- Maritza P Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago, Chile.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nicole Bruneau
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago, Chile.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alberto Selman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile.,National Institute of Cancer, Santiago, Chile
| | - Julio C Tapia
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carmen Romero
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile.,Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago, Chile.
| |
Collapse
|
17
|
NGF-Enhanced Vasculogenic Properties of Epithelial Ovarian Cancer Cells Is Reduced by Inhibition of the COX-2/PGE 2 Signaling Axis. Cancers (Basel) 2019; 11:cancers11121970. [PMID: 31817839 PMCID: PMC6966471 DOI: 10.3390/cancers11121970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a lethal gynecological neoplasia characterized by extensive angiogenesis and overexpression of nerve growth factor (NGF). Here, we investigated the mechanism by which NGF increases vascular endothelial growth factor (VEGF) expression and the vasculogenic potential of EOC cells, as well as the contribution of the cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) signaling axis to these events. EOC biopsies and ovarian cell lines were used to determine COX-2 and PGE2 levels, as well as those of the potentially pro-angiogenic proteins c-MYC (a member of the Myc transcription factors family), survivin, and β-catenin. We observed that COX-2 and survivin protein levels increased during EOC progression. In the EOC cell lines, NGF increased the COX-2 and PGE2 levels. In addition, NGF increased survivin, c-MYC, and VEGF protein levels, as well as the transcriptional activity of c-MYC and β-catenin/T-cell factor/lymphoid enhancer-binding factor (TCF-Lef) in a Tropomyosin receptor kinase A (TRKA)-dependent manner. Also, COX-2 inhibition prevented the NGF-induced increases in these proteins and reduced the angiogenic score of endothelial cells stimulated with conditioned media from EOC cells. In summary, we show here that the pro-angiogenic effect of NGF in EOC depends on the COX-2/PGE2 signaling axis. Thus, inhibition COX-2/PGE2 signaling will likely be beneficial in the treatment of EOC.
Collapse
|
18
|
Garrido MP, Torres I, Vega M, Romero C. Angiogenesis in Gynecological Cancers: Role of Neurotrophins. Front Oncol 2019; 9:913. [PMID: 31608227 PMCID: PMC6761325 DOI: 10.3389/fonc.2019.00913] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis, or generation of new blood vessels from other pre-existing, is a key process to maintain the supply of nutrients and oxygen in tissues. Unfortunately, this process is exacerbated in pathologies such as retinopathies and cancers with high angiogenesis as ovarian cancer. Angiogenesis is regulated by multiple systems including growth factors and neurotrophins. One of the most studied angiogenic growth factors is the vascular endothelial growth factor (VEGF), which is overexpressed in several cancers. It has been recently described that neurotrophins could regulate angiogenesis through direct and indirect mechanisms. Neurotrophins are a family of proteins that include nerve growth factor (NGF), brain-derived growth factor (BDNF), and neurotrophins 3 and 4/5 (NT 3, NT 4/5). These molecules and their high affinity receptors (TRKs) regulate the development, maintenance, and plasticity of the nervous system. Furthermore, it was recently described that they display essential functions in non-neuronal tissues, such as reproductive organs among others. Studies have shown that several types of cancer overexpress neurotrophins such as NGF and BDNF, which might contribute to tumor progression and angiogenesis. Besides, in recent years the FDA has approved the use of pharmacologic inhibitors of pan-TRK receptors in patients with TRKs fusion-positive cancers. In this review, we discuss the mechanisms by which neurotrophins stimulate tumor progression and angiogenesis, with emphasis on gynecological cancers.
Collapse
Affiliation(s)
- Maritza P Garrido
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ignacio Torres
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Czogalla B, Kahaly M, Mayr D, Schmoeckel E, Niesler B, Hester A, Zeder-Göß C, Kolben T, Burges A, Mahner S, Jeschke U, Trillsch F. Correlation of NRF2 and progesterone receptor and its effects on ovarian cancer biology. Cancer Manag Res 2019; 11:7673-7684. [PMID: 31616183 PMCID: PMC6699153 DOI: 10.2147/cmar.s210004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose This study aimed to investigate the potential prognostic impact of nuclear factor erythroid 2-related factor 2 (NRF2) and progesterone receptor A (PRA)/progesterone receptor B (PRB) in ovarian cancer patients which might be the rationale for putative new treatment strategies. Patients and methods The presence of NRF2 and PRA/PRB was investigated in 156 ovarian cancer samples using immunohistochemistry (IHC). Staining of NRF2 and PRA/PRB was rated using the semi-quantitative immunoreactive score (IR score, Remmele’s score) and correlated to clinical and pathological data. NRF2 and PRA/PRB expression were compared with respect to the overall survival (OS). Results NRF2 staining was different in both, the cytoplasm and nucleus between the histological subtypes (p=0.001 and p=0.02, respectively). There was a significant difference in the PRA expression comparing all histological subtypes (p=0.02). Histological subtypes showed no significant differences in the PRB expression. A strong correlation of cytoplasmic NRF2 and PRA expression was detected (cc=0.247, p=0.003) as well as of cytoplasmic NRF2 and PRB expression (cc=0.25, p=0.003), confirmed by immunofluorescence double staining. Cytoplasmic NRF2 expression was associated with a longer OS (median 50.6 vs 32.5 months; p=0.1) as it was seen for PRA expression (median 63.4 vs 33.1 months; p=0.08), although not statistically significant. In addition, high PRB expression (median 80.4 vs 32.5 months; p=0.04) and concurrent expression of cytoplasmic NRF2 and PRA were associated with a significantly longer OS (median 109.7 vs 30.6 months; p=0.02). The same relationship was also noted for NRF2 and PRB with improved OS for patients expressing both cytoplasmic NRF2 and PRB (median 153.5 vs 30.6 months; p=0.009). Silencing of NFE2L2 induced higher mRNA expression of PGR in the cancer cell line OVCAR3 (p>0.05) confirming genetic interactions of NRF2 and PR. Conclusion In this study, the combination of cytoplasmic NRF2 and high PRA/PRB expression was demonstrated to be associated with improved overall survival in ovarian cancer patients. Further understanding of interactions within the NRF2/AKR1C1/PR pathway could open new additional therapeutic approaches.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Maja Kahaly
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Doris Mayr
- Faculty of Medicine, Institute of Pathology, Lmu Munich, Munich, Germany
| | - Elisa Schmoeckel
- Faculty of Medicine, Institute of Pathology, Lmu Munich, Munich, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Christine Zeder-Göß
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
20
|
Wang JC, Li GY, Wang B, Han SX, Sun X, Jiang YN, Shen YW, Zhou C, Feng J, Lu SY, Liu JL, Wang MD, Liu PJ. Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:235. [PMID: 31164151 PMCID: PMC6549289 DOI: 10.1186/s13046-019-1211-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
Background Vascular maturity and functionality are closely associated with tumor progression and chemosensitivity. The antidiabetic agent metformin has shown its ability to inhibit tumor angiogenesis in metastatic breast cancer models. However, it remains unclear if or how metformin remodels the abnormal vasculature of metastatic breast cancer, while inhibiting angiogenesis. Methods Metastatic breast cancer models were constructed to compare microvessel density (MVD), vascular maturity and function, lung metastasis and chemosensitivity in metformin-treated or untreated mice. Protein array assay and transcriptome sequencing were performed for genetic screening. Lentiviral shRNA-PDGF-B transfection was used for observing the contribution of PDGF-B knockdown to metformin’s vascular effects. Results Metastatic breast cancers were characterized by an excessively angiogenic, immature and morphologically abnormal vasculature. Compared to control, metformin significantly reduced MVD, leakage and hypoxia, and increased vascular mural cells coverage and perfusion, namely, “vessel normalization”. Metformin at human blood concentrations had no direct effect on the migration and proliferation of cancer cells. Based on that, reduced lung metastasis of the primary tumor and improved chemosensitization by metformin were assumed to be mediated via metformin’s vascular effects. Further results of genetic screening and in vivo experiments showed that the downregulation of platelet-derived growth factor B (PDGF-B) greatly contributed to the metformin-induced vessel normalization. Conclusions These findings provide pre-clinical evidences for the vascular mechanism of metformin-induced metastasis inhibition and the chemosensitization of metastatic breast cancers. Electronic supplementary material The online version of this article (10.1186/s13046-019-1211-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji-Chang Wang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.,Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Guang-Yue Li
- Department of Science and Technology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Bo Wang
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Su-Xia Han
- Department of Oncological Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Xin Sun
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yi-Na Jiang
- Department of Pathology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yan-Wei Shen
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Can Zhou
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jun Feng
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Shao-Ying Lu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jian-Lin Liu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Mao-De Wang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| | - Pei-Jun Liu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi Province, China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|