1
|
Tang Y, Liu T, Sun S, Peng Y, Huang X, Wang S, Zhou Z. Role and Mechanism of Growth Differentiation Factor 15 in Chronic Kidney Disease. J Inflamm Res 2024; 17:2861-2871. [PMID: 38741613 PMCID: PMC11090192 DOI: 10.2147/jir.s451398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
GDF-15 is an essential member of the transforming growth factor-beta superfamily. Its functions mainly involve in tissue injury, inflammation, fibrosis, regulation of appetite and weight, development of tumor, and cardiovascular disease. GDF-15 is involved in various signaling pathways, such as MAPK pathway, PI3K/AKT pathway, STAT3 pathway, RET pathway, and SMAD pathway. In addition, several factors such as p53, ROS, and TNF-α participate the regulation of GDF-15. However, the specific mechanism of these factors regulating GDF-15 is still unclear and more research is needed to explore them. GDF-15 mainly improves the function of kidneys in CKD and plays an important role in the prediction of CKD progression and cardiovascular complications. In addition, the role of GDF-15 in the kidney may be related to the SMAD and MAPK pathways. However, the specific mechanism of these pathways remains unclear. Accordingly, more research on the specific mechanism of GDF-15 affecting kidney disease is needed in the future. In conclusion, GDF-15 may be a therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Yifang Tang
- Department of Nephrology, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Tao Liu
- Organ Transplantation Center, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Youbo Peng
- Department of Nephrology, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Xiaoxiao Huang
- Department of Nephrology, Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Xishuangbanna, People’s Republic of China
| | - Shuangquan Wang
- Department of Nephrology, Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Xishuangbanna, People’s Republic of China
| | - Zhu Zhou
- Department of Nephrology, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
2
|
Inthi P, Pandith H, Kongtawelert P, Subhawa S, Banjerdpongchai R. Houttuynia cordata Thunb. Hexane fraction induces MDA-MB-231 cell apoptosis via caspases, ER stress, cell cycle arrest and attenuated Akt/ERK signaling. Heliyon 2023; 9:e18755. [PMID: 37576204 PMCID: PMC10415895 DOI: 10.1016/j.heliyon.2023.e18755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Houttuynia cordata Thunb. (HCT) is a perennial plant used in traditional Thai medicine for many centuries. This study aimed to investigate the antiproliferative effect of the hexane fraction, which has not been explored before. HCT ethanol extract (crude extract) was sequentially fractionated to obtain a hexane (H) fraction. GC-MS was used to determine the phytochemicals. The H fraction consisted of lipids, mainly α-linolenic acid and some terpenoids. MTT assay was used to determine the cytotoxic effects of H fraction in MCF-7, MDA-MB-231, NIH3T3 and PBMCs. The mode of cell death and cell cycle analysis were determined by flow cytometry. The mechanisms of cell death were defined by mitochondrial transmembrane potential (MTP) reduction and activation of caspase-3, -8 and -9. The expression levels of the Bcl-2 family, cell cycle-related, endoplasmic reticulum (ER) stress-associated proteins; and Akt/ERK signaling molecules were investigated by immunoblotting. The H fraction was toxic to MDA-MB-231 more than MCF-7 cells but not to NIH3T3 and PBMCs. The growth of MDA-MB-231 cells was inhibited through apoptosis. MTP was disrupted whereas caspase-3, -8 and -9 were activated. The expression of pro-apoptotic Bax and Bak was upregulated, while Bid and anti-apoptotic Bcl-xL proteins were downregulated. Cyclin D1 and CDK4 levels were downregulated. The cell cycle was arrested at G1. Moreover, GRP78 and CHOP elevation indicated ER stress-mediated pathway. The expression ratio of pAkt/Akt and pERK/ERK were reduced. Taken together, the molecular mechanisms of MDA-MB-231 cell apoptosis were via intrinsic/extrinsic pathways, cell cycle arrest, ER stress and abrogation of Akt/ERK survival pathways. According to the most current research, the H fraction may be used as an adjuvant in the BC treatment; however, before the anticancer strategy can be applied to patients, it is important to determine each active compound's effects in cell lines and in vivo when compared with a combined mixture.
Collapse
Affiliation(s)
- Pitsinee Inthi
- Department of Biochemistry, Chiang Mai University, 110 Inthawaroros Road., Sripoom, Muang, Chiang Mai, 50200, Thailand
| | - Hataichanok Pandith
- Department of Biology, Chiang Mai University, 239 Huaykaew Road, Suthep, Muang, Chiang Mai, 50200, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Prachya Kongtawelert
- Department of Biochemistry, Chiang Mai University, 110 Inthawaroros Road., Sripoom, Muang, Chiang Mai, 50200, Thailand
| | - Subhawat Subhawa
- Department of Biochemistry, Chiang Mai University, 110 Inthawaroros Road., Sripoom, Muang, Chiang Mai, 50200, Thailand
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Chiang Mai University, 110 Inthawaroros Road., Sripoom, Muang, Chiang Mai, 50200, Thailand
| |
Collapse
|
3
|
Margetuximab and trastuzumab deruxtecan: New generation of anti-HER2 immunotherapeutic agents for breast cancer. Mol Immunol 2022; 152:45-54. [DOI: 10.1016/j.molimm.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
4
|
Wu K, Chen M, Peng X, Li Y, Tang G, Peng J, Cao X. Recent Progress of the research on the benzimidazole PARP-1 inhibitors. Mini Rev Med Chem 2022; 22:2438-2462. [PMID: 35319364 DOI: 10.2174/1389557522666220321150700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a multifunctional protein that plays an important role in DNA repair and genome integrity. PARP-1 inhibitors can be used as effective drugs not only to treat BRCA-1/2 deficient cancers because of the effect of synthetically lethal, but also to treat non-BRCA1/2 deficient tumours because of the effect of PARP capture. Therefore, the PARP inhibitors have become a focus of compelling research. Among these inhibitors, substituted benzimidazole derivatives were mainly concerned lead compounds. However, the commercial available benzimidazole PARP-1 inhibitors have some shortcomings such as serious toxicity in combination with chemotherapy drugs, in vivo cardiovascular side effects such as anemia. Therefore it's crucial for scientists to explore more structure-activity relationships of the benzimidazole PARP-1 inhibitors and access safer and more effective PARP inhibitors. As the binding region of PARP-1 and the substrates is usually characterized as NI site and AD site, the modification of benzimidazoles mainly occurs on the benzimidazole skeleton (NI site), and the side chain of benzimidazole on 2-C position (AD site). Herein, the recent progresses of the researches of benzamides PARP inhibitors were introduced. We noticed that even though many efforts were taken to the modification of NI sites, there were still lacks of optimistic and impressive results. However, the structure-activity relationships of the modification of AD sites have not thoroughly discovered yet. We hope that enlightened by the previous researches, more researches of AD site should be occurred and more effective benzimidazole PARP-1 inhibitors could be designed, synthesized, and applied to clinics.
Collapse
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Miaojia Chen
- Department of Pharmacy, the first People\'s Hospital, Pingjiang, Yueyang, Hunan, China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Meegdes M, Geurts SME, Erdkamp FLG, Dercksen MW, Vriens BEPJ, Aaldering KNA, Pepels MJAE, van de Winkel LMH, Teeuwen NJA, de Boer M, Tjan-Heijnen VCG. The implementation of CDK 4/6 inhibitors and its impact on treatment choices in HR+/HER2- advanced breast cancer patients: A study of the Dutch SONABRE Registry. Int J Cancer 2022; 150:124-131. [PMID: 34460112 PMCID: PMC9290870 DOI: 10.1002/ijc.33785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022]
Abstract
In August 2017, cyclin‐dependent kinase 4/6 (CDK4/6) inhibitors combined with endocrine therapy have been reimbursed in the Netherlands for patients with hormone receptor positive (HR+), HER2 negative (HER2−) advanced breast cancer (ABC). This study evaluates the implementation of CDK4/6 inhibitors and changes in treatment choices in the Netherlands. All patients diagnosed with HR+/HER2− ABC in 2009 to 2018 in seven hospitals were selected from the Southeast Netherlands Advanced Breast cancer (SONABRE) registry. The 2‐year cumulative use of CDK4/6 inhibitors since reimbursement date (August 2017) was assessed using competing‐risk methodology in two cohorts. The first cohort included patients with ABC diagnosis between August 2017 and December 2018. The second cohort included patients with ABC diagnosis between 2009 and August 2017, and still alive on August 1, 2017. In addition, treatment choices in the first three lines of therapy in calendar years 2009 to 2018 were evaluated for the total study population. Among patients diagnosed since August 2017 (n = 214), 50% (95% confidence interval [CI] = 43‐57) received CDK4/6 inhibitors within 2 years beyond diagnosis. Of eligible patients diagnosed before August 2017 (n = 417), 31% (95% CI = 27‐36) received CDK4/6 inhibitors within 2 years following reimbursement. Another 20% of both cohorts are still CDK4/6 inhibitor naïve and on first‐line therapy. The use of chemotherapy decreased in first two lines of therapy between 2009 and 2018 (first‐line: 29%‐13%; second‐line: 26%‐19%). The implementation rate of CDK4/6 inhibitors since reimbursement is currently 50% within 2 years beyond diagnosis and is expected to increase further. The implementation of targeted therapy decreased the use of chemotherapy as first‐line therapy.
What's new?
In the Netherlands, inhibitors of cyclin‐dependent kinase 4/6 (CDK 4/6) are eligible for reimbursement by health insurers. The present report describes implementation patterns of CDK4/6 inhibitors for the treatment of advanced breast cancer since 2017, based on data and observations collected from seven hospitals across the Southeast Netherlands. Analyses show that about half of patients with HR+/HER2‐ metastatic breast cancer are treated with CDK4/6 inhibitors. Following the implementation of these therapies, use of first‐line chemotherapy decreased significantly. Reduced chemotherapy use may have beneficial effects on quality of life for patients, adding value to overall gains in survival.
Collapse
Affiliation(s)
- Marissa Meegdes
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sandra M E Geurts
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frans L G Erdkamp
- Department of Internal Medicine, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | | | - Birgit E P J Vriens
- Department of Internal Medicine, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Manon J A E Pepels
- Department of Internal Medicine, Elkerliek Hospital, Helmond, The Netherlands
| | | | - Nathalie J A Teeuwen
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maaike de Boer
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Vivianne C G Tjan-Heijnen
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
6
|
Saleh L, Wilson C, Holen I. CDK4/6 inhibitors: A potential therapeutic approach for triple negative breast cancer. MedComm (Beijing) 2021; 2:514-530. [PMID: 34977868 PMCID: PMC8706744 DOI: 10.1002/mco2.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) cells lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). Thus, TNBC does not respond to hormone-based therapy. TNBC is also an aggressive subtype associated with poorer prognoses compared to other breast cancers. Conventional chemotherapeutics are used to manage TNBC although systemic relapse is common with limited benefits being reported as well as adverse events being documented. Here, we discuss current therapies for TNBC in the neo- and adjuvant settings, as well as recent advancements in the targeting of PD-L1-positive tumors and inclusion of PARP inhibitors for TNBC patients with BRCA mutations. The recent development of cyclin-dependent kinase (CDK) 4/6 inhibitors in ER-positive breast cancers has demonstrated significant improvements in progression free survival in patients. Here, we review preclinical data of CDK 4/6 inhibitors and describe current clinical trials assessing these in TNBC disease.
Collapse
Affiliation(s)
- Lubaid Saleh
- Department of Oncology and MetabolismMedical SchoolUniversity of SheffieldSheffieldUK
| | | | - Ingunn Holen
- Department of Oncology and MetabolismMedical SchoolUniversity of SheffieldSheffieldUK
| |
Collapse
|
7
|
Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol 2021; 48:102194. [PMID: 34814083 PMCID: PMC8608616 DOI: 10.1016/j.redox.2021.102194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) act as a double-edged sword in cancer, where low levels of ROS are beneficial but excessive accumulation leads to cancer progression. Elevated levels of ROS in cancer are counteracted by the antioxidant defense system. An imbalance between ROS generation and the antioxidant system alters gene expression and cellular signaling, leading to cancer progression or death. Post-translational modifications, such as ubiquitination, phosphorylation, and SUMOylation, play a critical role in the maintenance of ROS homeostasis by controlling ROS production and clearance. Recent evidence suggests that deubiquitinating enzymes (DUBs)-mediated ubiquitin removal from substrates is regulated by ROS. ROS-mediated oxidation of the catalytic cysteine (Cys) of DUBs, leading to their reversible inactivation, has emerged as a key mechanism regulating DUB-controlled cellular events. A better understanding of the mechanism by which DUBs are susceptible to ROS and exploring the ways to utilize ROS to pharmacologically modulate DUB-mediated signaling pathways might provide new insight for anticancer therapeutics. This review assesses the recent findings regarding ROS-mediated signaling in cancers, emphasizes DUB regulation by oxidation, highlights the relevant recent findings, and proposes directions of future research based on the ROS-induced modifications of DUB activity.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
8
|
Bou-Dargham MJ, Draughon S, Cantrell V, Khamis ZI, Sang QXA. Advancements in Human Breast Cancer Targeted Therapy and Immunotherapy. J Cancer 2021; 12:6949-6963. [PMID: 34729098 PMCID: PMC8558657 DOI: 10.7150/jca.64205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Human breast cancer treatment regimens have evolved greatly due to the significant advances in understanding the molecular mechanisms and pathways of the common subtypes of breast cancer. In this review, we discuss recent progress in breast cancer targeted therapy and immunotherapy as well as ongoing clinical trials. We also highlight the potential of combination therapies and personalized approaches to improve clinical outcomes. Targeted therapies have surpassed the hormone receptors and the human epidermal growth factor receptor 2 (HER2) to include many other molecules in targetable pathways such as the epidermal growth factor receptor (EGFR), poly (adenosine diphosphate-ribose) polymerase (PARP), and cyclin-dependent kinase 4/6 (CDK4/6). However, resistance to targeted therapy persists, underpinning the need for more efficacious therapies. Immunotherapy is considered a milestone in breast cancer treatments, including the engineered immune cells (CAR-T cell therapy) to better target the tumor cells, vaccines to stimulate the patient's immune system against tumor antigens, and checkpoint inhibitors (PD-1, PD-L1, and CTLA4) to block molecules that mediate immune inhibition. Targeted therapies and immunotherapy tested in breast cancer clinical trials are discussed here, with special emphasis on combinatorial approaches which are believed to maximize treatment efficacy and enhance patient survival.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Sophia Draughon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Vance Cantrell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America.,Department of Chemistry and Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
9
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Phosphatidylinositol 3-kinase (PI3K) inhibitors: a recent update on inhibitor design and clinical trials (2016-2020). Expert Opin Ther Pat 2021; 31:877-892. [PMID: 33970742 DOI: 10.1080/13543776.2021.1924150] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a central role in regulating cell growth and proliferation and thus has been considered as effective anticancer drug targets. Many PI3K inhibitors have been developed and progressed to various stages of clinical trials, and some have been approved as anticancer treatment. In this review, we discuss the drug design and clinical development of PI3K inhibitors over the past 4 years. We review the selectivity and potency of 47 PI3K inhibitors. Structural determinants for increasing selectivity toward PI3K subtype-selectivity or mutant selectivity are discussed. Future research direction and current clinical development in combination therapy of inhibitors involved in PI3Ks are also discussed.Area covered: This review covers clinical trial reports and patent literature on PI3K inhibitors and their selectivity published between 2016 and 2020.Expert opinion: To PI3Kα mutants (E542K, E545K, and H1047R), it is highly desirable to design and develop mutant-specific PI3K inhibitors. It is also necessary to develop subtype-selective PI3Kα inhibitors to minimize toxicity. To reduce drug resistance and to improve efficacy, future studies should include combination therapy of PI3K inhibitors with existing anticancer drugs from different pathways.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 362, Department of Chemistry, The University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
10
|
Romero-Pozuelo J, Figlia G, Kaya O, Martin-Villalba A, Teleman AA. Cdk4 and Cdk6 Couple the Cell-Cycle Machinery to Cell Growth via mTORC1. Cell Rep 2021; 31:107504. [PMID: 32294430 DOI: 10.1016/j.celrep.2020.03.068] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Cell growth is coupled to cell-cycle progression in mitotically proliferating mammalian cells, but the underlying molecular mechanisms are not well understood. CyclinD-Cdk4/6 is known to phosphorylate RB to promote S-phase entry, but recent work suggests they have additional functions. We show here that CyclinD-Cdk4/6 activates mTORC1 by binding and phosphorylating TSC2 on Ser1217 and Ser1452. Pharmacological inhibition of Cdk4/6 leads to a rapid, TSC2-dependent reduction of mTORC1 activity in multiple human and mouse cell lines, including breast cancer cells. By simultaneously driving mTORC1 and E2F, CyclinD-Cdk4/6 couples cell growth to cell-cycle progression. Consistent with this, we see that mTORC1 activity is cell cycle dependent in proliferating neural stem cells of the adult rodent brain. We find that Cdk4/6 inhibition reduces cell proliferation partly via TSC2 and mTORC1. This is of clinical relevance, because Cdk4/6 inhibitors are used for breast cancer therapy.
Collapse
Affiliation(s)
- Jesús Romero-Pozuelo
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Gianluca Figlia
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Oguzhan Kaya
- Heidelberg University, 69120 Heidelberg, Germany; Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Gong M, Zhang H, Wu D, Zhang Z, Zhang J, Bao D, Yang Y. Key metabolism pathways and regulatory mechanisms of high polysaccharide yielding in Hericium erinaceus. BMC Genomics 2021; 22:160. [PMID: 33676419 PMCID: PMC7937317 DOI: 10.1186/s12864-021-07480-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background Hericium erinaceus, a rare edible and medicine fungus, is widely used in the food and medical field. Polysaccharides from H. erinaceus are the main bioactive compound that exert high bioactive value in the medical and healthcare industries. Results The genome of H. erinaceus original strain HEA was reported 38.16 Mb, encoding 9780 predicted genes by single-molecule, real-time sequencing technology. The phylogenomic analysis showed that H. erinaceus had the closest evolutionary affinity with Dentipellis sp. The polysaccharide content in the fermented mycelia of mutated strains HEB and HEC, which obtained by ARTP mutagenesis in our previous study, was improved by 23.25 and 47.45%, and a new β-glucan fraction with molecular weight 1.056 × 106 Da was produced in HEC. Integrative analysis of transcriptome and proteomics showed the upregulation of the carbohydrate metabolism pathway modules in HEB and HEC might lead to the increased production of glucose-6P and promote the repeating units synthesis of polysaccharides. qPCR and PRM analysis confirmed that most of the co-enriched and differentially co-expressed genes involved in carbohydrate metabolism shared a similar expression trend with the transcriptome and proteome data in HEB and HEC. Heatmap analysis showed a noticeably decreased protein expression profile of the RAS-cAMP-PKA pathway in HEC with a highly increased 47.45% of polysaccharide content. The S phase progression blocking experiment further verified that the RAS-cAMP-PKA pathway’s dysfunction might promote high polysaccharide and β-glucan production in the mutant strain HEC. Conclusions The study revealed the primary mechanism of the increased polysaccharide synthesis induced by ARTP mutagenesis and explored the essential genes and pathways of polysaccharide synthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07480-x.
Collapse
Affiliation(s)
- Ming Gong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
12
|
El-Kharashy G, Gowily A, Okda T, Houssen M. Association between serum soluble Toll-like receptor 2 and 4 and the risk of breast cancer. Mol Clin Oncol 2021; 14:38. [PMID: 33414918 PMCID: PMC7783720 DOI: 10.3892/mco.2020.2200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Soluble Toll-like receptor (sTLR) 2 and 4 are endogenous negative regulators of TLR2 and TLR4 signaling. Therefore, the present study aimed to determine the serum levels of sTLR2 and 4, and to investigate the association between their levels and the clinicopathological parameters of patients with breast cancer. A total of 100 female patients with breast cancer (50 non-metastatic and 50 metastatic), as well as 50 healthy control volunteers were enrolled in the present study, and serum levels of sTLR2 and 4 were determined by ELISA. A significant increase in serum sTLR2 was detected in patients with non-metastatic (2,258.2±1,832.44 pg/ml) and metastatic (5,997.4±8,585.23 pg/ml) breast cancer, compared with the control group (1,106.8± 99.93 pg/ml; P=0.0001). A significant increase in serum sTLR4 was also detected in patients with both non-metastatic (1,945.2±1,709.53 pg/ml) and metastatic breast cancer (7,800.1±13,041.28 pg/ml), compared with the control group (1,106.8±108.32 pg/ml; P=0.0001). Furthermore, a positive correlation was observed between the levels of serum sTLR4 and 2 and clinicopathological parameters, such as progesterone receptor and estrogen receptor expression. In conclusion, sTLR2 and sTLR4 may be potential biomarkers of breast cancer susceptibility.
Collapse
Affiliation(s)
- Ghada El-Kharashy
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Ahmed Gowily
- Department of Oncology Medicine, Faculty of Medicine, Alexandria University, Alexandria 21111, Egypt
| | - Tarek Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Maha Houssen
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
13
|
Jiao D, Zhang J, Chen P, Guo X, Qiao J, Zhu J, Wang L, Lu Z, Liu Z. HN1L promotes migration and invasion of breast cancer by up-regulating the expression of HMGB1. J Cell Mol Med 2021; 25:397-410. [PMID: 33191617 PMCID: PMC7810958 DOI: 10.1111/jcmm.16090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/01/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Recent reports showed that haematological and neurological expressed 1-like (HN1L) gene participated in tumorigenesis and tumour invasion. However, the expression and role of HN1L in breast cancer remain to be investigated. Here, bioinformatics, western blot and immunohistochemistry were used to detect the expression of HN1L in breast cancer. Wound healing, transwell assay, immunofluorescence assay and mass spectrum were used to explore the role and mechanism of HN1L on the migration and invasion of breast cancer, which was confirmed in vivo using a nude mice model. Results showed that HN1L was significantly over-expressed in breast cancer tissues, which was positively correlated with M metastasis of breast cancer patients. Silencing HN1L significantly inhibited the invasion and metastasis of breast cancer cells in vitro and lung metastasis in nude mice metastasis model of breast cancer. Mechanistically, HN1L interacted with HSPA9 and affected the expression of HMGB1, playing a key role in promoting the invasion and metastasis of breast cancer cell. These results suggested that HN1L was an appealing drug target for breast cancer.
Collapse
Affiliation(s)
- Dechuang Jiao
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Jingyang Zhang
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Ping Chen
- College of Basic Medical SciencesCollaborative Innovation Center of Henan Province for Cancer ChemopreventionZhengzhou UniversityZhengzhouChina
| | - Xuhui Guo
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Jianghua Qiao
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Jiujun Zhu
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Lina Wang
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Zhenduo Lu
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Zhenzhen Liu
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| |
Collapse
|
14
|
Wong KK. DNMT1 as a therapeutic target in pancreatic cancer: mechanisms and clinical implications. Cell Oncol (Dordr) 2020; 43:779-792. [PMID: 32504382 DOI: 10.1007/s13402-020-00526-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating cancer types with a 5-year survival rate of only 9%. PDAC is one of the leading causes of cancer-related deaths in both genders. Epigenetic alterations may lead to the suppression of tumor suppressor genes, and DNA methylation is a predominant epigenetic modification. DNA methyltransferase 1 (DNMT1) is required for maintaining patterns of DNA methylation during cellular replication. Accumulating evidence has implicated the oncogenic roles of DNMT1 in various malignancies including PDACs. CONCLUSIONS Herein, the expression profiles, oncogenic roles, regulators and inhibitors of DNMT1 in PDACs are presented and discussed. DNMT1 is overexpressed in PDAC cases compared with non-cancerous pancreatic ducts, and its expression gradually increases from pre-neoplastic lesions to PDACs. DNMT1 plays oncogenic roles in suppressing PDAC cell differentiation and in promoting their proliferation, migration and invasion, as well as in induction of the self-renewal capacity of PDAC cancer stem cells. These effects are achieved via promoter hypermethylation of tumor suppressor genes, including cyclin-dependent kinase inhibitors (e.g., p14, p15, p16, p21 and p27), suppressors of epithelial-mesenchymal transition (e.g., E-cadherin) and tumor suppressor miRNAs (e.g., miR-148a, miR-152 and miR-17-92 cluster). Pre-clinical investigations have shown the potency of novel non-nucleoside DNMT1 inhibitors against PDAC cells. Finally, phase I/II clinical trials of DNMT1 inhibitors (azacitidine, decitabine and guadecitabine) in PDAC patients are currently underway, where these inhibitors have the potential to sensitize PDACs to chemotherapy and immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
15
|
Shah AN, Metzger O, Bartlett CH, Liu Y, Huang X, Cristofanilli M. Hormone Receptor-Positive/Human Epidermal Growth Receptor 2-Negative Metastatic Breast Cancer in Young Women: Emerging Data in the Era of Molecularly Targeted Agents. Oncologist 2020; 25:e900-e908. [PMID: 32176406 PMCID: PMC7288640 DOI: 10.1634/theoncologist.2019-0729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most common malignancy in young women worldwide, accounting for an estimated 30% of new cancer diagnoses and 25% of cancer deaths. Approximately two thirds of young women with breast cancer have hormone receptor-positive (HR+)/human epidermal growth receptor 2-negative (HER2-) tumors. Numerous studies, primarily in early-stage breast cancer, have demonstrated that young age is an independent risk factor for more aggressive disease and worse outcomes. Although more limited data are available regarding outcomes in young patients with advanced disease, these age-related disparities suggest that breast cancer in premenopausal women has distinct clinicopathologic and molecular features that can impact treatment outcomes. Until recently, limited data were available on the intrinsic molecular subtypes and genetics of young patients with HR+/HER2- metastatic breast cancer (mBC). In this review, we explore insights into the clinical and pathologic features of HR+/HER2- mBC in younger women derived from recent clinical trials of the cyclin-dependent kinase 4/6 inhibitors palbociclib (PALOMA-3), ribociclib (MONALEESA-7), and abemaciclib (MONARCH 2) and the implications of these findings for clinical practice, guideline development, and future research. IMPLICATIONS FOR PRACTICE: This review provides clinicians with an overview of emerging data on the unique clinicopathologic and molecular features of hormone receptor-positive/human epidermal growth receptor 2-negative metastatic breast cancer (mBC) in premenopausal women, summarizes findings from the most recent clinical trials of endocrine-based treatment in this patient population, and explores the implications of these findings for clinical practice, guideline development, and future research. Improved understanding of the key factors influencing disease course and treatment response in premenopausal patients with mBC may lead to more timely incorporation of evidence-based treatment approaches, thereby improving patient care and outcomes.
Collapse
Affiliation(s)
- Ami N. Shah
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Otto Metzger
- Dana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Yuan Liu
- Pfizer OncologySan DiegoCaliforniaUSA
| | - Xin Huang
- Pfizer OncologySan DiegoCaliforniaUSA
| | - Massimo Cristofanilli
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
16
|
Wong KK. DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol 2020; 72:198-213. [PMID: 32461152 DOI: 10.1016/j.semcancer.2020.05.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Altered epigenetics regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. In this review, the oncogenic functions rendered by DNMT1 in TNBCs, and DNMT1 inhibitors targeting TNBC cells are presented and discussed. In summary, DNMT1 expression is associated with poor breast cancer survival, and it is overexpressed in TNBC subtype. The oncogenic roles of DNMT1 in TNBCs include: (1) Repression of estrogen receptor (ER) expression; (2) Promotion of epithelial-mesenchymal transition (EMT) required for metastasis; (3) Induces cellular autophagy and; (4) Promotes the growth of cancer stem cells in TNBCs. DNMT1 confers these phenotypes by hypermethylating the promoter regions of ER, multiple tumor suppressor genes, microRNAs and epithelial markers involved in suppressing EMT. DNMT1 inhibitors exert anti-tumorigenic effects against TNBC cells. This includes the hypomethylating agents azacitidine, decitabine and guadecitabine that might sensitize TNBC patients to immune checkpoint blockade therapy. DNMT1 represents an epigenetic target for TNBC cells destruction as well as to derail their metastatic and aggressive phenotypes.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
17
|
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10:54. [PMID: 32266056 PMCID: PMC7110906 DOI: 10.1186/s13578-020-00416-0] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The PI3 K/AKT/mTOR signalling pathway plays an important role in the regulation of signal transduction and biological processes such as cell proliferation, apoptosis, metabolism and angiogenesis. Compared with those of other signalling pathways, the components of the PI3K/AKT/mTOR signalling pathway are complicated. The regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway are important in many human diseases, including ischaemic brain injury, neurodegenerative diseases, and tumours. PI3K/AKT/mTOR signalling pathway inhibitors include single-component and dual inhibitors. Numerous PI3K inhibitors have exhibited good results in preclinical studies, and some have been clinically tested in haematologic malignancies and solid tumours. In this review, we briefly summarize the results of research on the PI3K/AKT/mTOR pathway and discuss the structural composition, activation, communication processes, regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway in the pathogenesis of neurodegenerative diseases and tumours.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Rd, Shanghai, 201318 China
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Yanfei Li
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| |
Collapse
|
18
|
Kim OH, Lee JH, Mah S, Park SY, Hong S, Hong SS. HS‑146, a novel phosphoinositide 3‑kinase α inhibitor, induces the apoptosis and inhibits the metastatic ability of human breast cancer cells. Int J Oncol 2020; 56:1509-1520. [PMID: 32236634 DOI: 10.3892/ijo.2020.5018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/21/2020] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide 3‑kinase (PI3K) signaling pathway plays an important role in human cancer as it regulates critical cellular functions, such as survival, proliferation and metabolism. In the present study, a novel PI3Kα inhibitor (HS‑146) was synthesized and its anticancer effects on MCF‑7, MDA‑MB‑231, SKBR3 and BT‑474 human breast cancer cell lines were confirmed. HS‑146 was found to be most effective in inhibiting the proliferation of MCF‑7 cells and in inducing cell cycle arrest in the G0/G1 phase by downregulating cyclin D1, cyclin E, cyclin‑dependent kinase (Cdk)2 and Cdk4, and upregulating p21Waf1/Cip1 protein levels in this cell line. The induction of apoptosis by HS‑146 was confirmed by DAPI staining and western blot analysis. Cell shrinkage and nuclear condensation, which are typical morphological markers of apoptosis, were increased by HS‑146 in the MCF‑7 cells in a concentration‑dependent manner, and HS‑146 also increased the protein expression levels of cleaved poly(ADP‑ribose) polymerase (PARP) and decreased the protein expression levels of Mcl‑1 and caspase‑7. In addition, HS‑146 effectively decreased the phosphorylation levels of downstream PI3K effectors, such as Akt, mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β), p70S6K1 and eukaryotic translation initiation factor 4E‑binding protein 1 (4E‑BP1). Hypoxia‑inducible factor (HIF)‑1α and vascular endothelial growth factor (VEGF) expression were also suppressed by HS‑146 under hypoxic conditions, and HS‑146 inhibited the migration and invasion of MCF‑7 cells in a concentration‑dependent manner. On the whole, the findings of the present study suggest that HS‑146, a novel PI3Kα inhibitor, may be an effective novel therapeutic candidate that suppresses breast cancer proliferation and metastasis by inhibiting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Ok Hyeon Kim
- College of Korean Medicine, Dongguk University, Goyang, Gyeonggi 10326, Republic of Korea
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang, Gyeonggi 10326, Republic of Korea
| | - Shinmee Mah
- Center for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sung Yun Park
- College of Korean Medicine, Dongguk University, Goyang, Gyeonggi 10326, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
19
|
DNA damage repair functions and targeted treatment in breast cancer. Breast Cancer 2020; 27:355-362. [PMID: 31898156 DOI: 10.1007/s12282-019-01038-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Cell DNA is continuously attacked by endogenous and exogenous agents, which causes DNA damage. During long-term evolution, complex defense systems for DNA damage repair are formed by cells to maintain genome stability. Defects in the DNA damage repair process may lead to various diseases, including tumors. Therefore, DNA damage repair systems have become a new anti-tumor drug target. To date, a number of inhibitors related to DNA damage repair systems have been developed, particularly for tumors with BRCA1 and BRCA2 mutations. Poly (ADP-ribose) polymerase inhibitors developed by synthetic lethality are widely used in individualized tumor therapy. In this review, we briefly introduce the mechanisms underlying DNA damage repair, particularly in breast cancer, and mainly focus on new treatments targeting the DNA damage repair pathway in breast cancer.
Collapse
|
20
|
Al Amri WS, Allinson LM, Baxter DE, Bell SM, Hanby AM, Jones SJ, Shaaban AM, Stead LF, Verghese ET, Hughes TA. Genomic and Expression Analyses Define MUC17 and PCNX1 as Predictors of Chemotherapy Response in Breast Cancer. Mol Cancer Ther 2019; 19:945-955. [PMID: 31879365 DOI: 10.1158/1535-7163.mct-19-0940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022]
Abstract
Poor-prognosis breast cancers are treated with cytotoxic chemotherapy, but often without any guidance from therapy predictive markers because universally accepted markers are not currently available. Treatment failure, in the form of recurrences, is relatively common. We aimed to identify chemotherapy predictive markers and resistance pathways in breast cancer. Our hypothesis was that tumor cells remaining after neoadjuvant chemotherapy (NAC) contain somatic variants causing therapy resistance, while variants present pre-NAC but lost post-NAC cause sensitivity. Whole-exome sequencing was performed on matched pre- and post-NAC cancer cells, which were isolated by laser microdissection, from 6 cancer cases, and somatic variants selected for or against by NAC were identified. Somatic variant diversity was significantly reduced after therapy (P < 0.05). MUC17 variants were identified in 3 tumors and were selected against by NAC in each case, while PCNX1 variants were identified in 2 tumors and were selected for in both cases, implicating the function of these genes in defining chemoresponse. In vitro knockdown of MUC17 or PCNX1 was associated with significantly increased or decreased chemotherapy sensitivity, respectively (P < 0.05), further supporting their roles in chemotherapy response. Expression was tested for predictive value in two independent cohorts of chemotherapy-treated breast cancers (n = 53, n = 303). Kaplan-Meier analyses revealed that low MUC17 expression was significantly associated with longer survival after chemotherapy, whereas low PCNX1 was significantly associated with reduced survival. We concluded that therapy-driven selection of somatic variants allows identification of chemotherapy response genes. With respect to MUC17 and PCNX1, therapy-driven selection acting on somatic variants, in vitro knockdown data concerning drug sensitivity, and survival analysis of expression levels in patient cohorts all define the genes as mediators of and predictive markers for chemotherapy response in breast cancer.
Collapse
Affiliation(s)
- Waleed S Al Amri
- School of Medicine, University of Leeds, Leeds, United Kingdom.,Department of Histopathology and Cytopathology, The Royal Hospital, Muscat, Oman
| | - Lisa M Allinson
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Diana E Baxter
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Sandra M Bell
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Andrew M Hanby
- School of Medicine, University of Leeds, Leeds, United Kingdom.,Department of Histopathology, St. James's University Hospital, Leeds, United Kingdom
| | - Stacey J Jones
- Department of Breast Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abeer M Shaaban
- Histopathology and Cancer Sciences, Queen Elizabeth Hospital Birmingham and University of Birmingham, Birmingham, United Kingdom
| | - Lucy F Stead
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Eldo T Verghese
- Department of Histopathology, St. James's University Hospital, Leeds, United Kingdom
| | - Thomas A Hughes
- School of Medicine, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
21
|
Al-Hatamleh MAI, E.A.R. ENS, Boer JC, Ferji K, Six JL, Chen X, Elkord E, Plebanski M, Mohamud R. Synergistic Effects of Nanomedicine Targeting TNFR2 and DNA Demethylation Inhibitor-An Opportunity for Cancer Treatment. Cells 2019; 9:E33. [PMID: 31877663 PMCID: PMC7016661 DOI: 10.3390/cells9010033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) is expressed on some tumor cells, such as myeloma, Hodgkin lymphoma, colon cancer and ovarian cancer, as well as immunosuppressive cells. There is increasingly evidence that TNFR2 expression in cancer microenvironment has significant implications in cancer progression, metastasis and immune evasion. Although nanomedicine has been extensively studied as a carrier of cancer immunotherapeutic agents, no study to date has investigated TNFR2-targeting nanomedicine in cancer treatment. From an epigenetic perspective, previous studies indicate that DNA demethylation might be responsible for high expressions of TNFR2 in cancer models. This perspective review discusses a novel therapeutic strategy based on nanomedicine that has the capacity to target TNFR2 along with inhibition of DNA demethylation. This approach may maximize the anti-cancer potential of nanomedicine-based immunotherapy and, consequently, markedly improve the outcomes of the management of patients with malignancy.
Collapse
Affiliation(s)
- Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia;
| | - Engku Nur Syafirah E.A.R.
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia;
| | - Jennifer C. Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia (M.P.)
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, F-5400 Nancy, France; (K.F.); (J.-L.S.)
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, F-5400 Nancy, France; (K.F.); (J.-L.S.)
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences. University of Macau, Macao 999078, China
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, 34110 Doha, Qatar;
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia (M.P.)
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia;
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan 16150, Malaysia
| |
Collapse
|
22
|
Balasubramanian PK, Lee Y, Kim Y. Identification of Ligand‐binding Hotspot Residues of CDK4 Using Molecular Docking and Molecular Dynamics Simulation. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Yeongjoon Lee
- Department of Bioscience and BiotechnologyKonkuk University Seoul 05029 South Korea
| | - Yangmee Kim
- Department of Bioscience and BiotechnologyKonkuk University Seoul 05029 South Korea
| |
Collapse
|
23
|
Jia X, Wang X, Guo X, Ji J, Lou G, Zhao J, Zhou W, Guo M, Zhang M, Li C, Tai S, Yu S. MicroRNA-124: An emerging therapeutic target in cancer. Cancer Med 2019; 8:5638-5650. [PMID: 31389160 PMCID: PMC6745873 DOI: 10.1002/cam4.2489] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding single‐stranded RNAs, approximately 20‐24 nucleotides in length, known as powerful posttranscriptional regulators. miRNAs play important regulatory roles in cellular processes by changing messenger RNA expression and are widely involved in human diseases, including tumors. It has been reported in the literature that miRNAs have a precise role in cell proliferation, programmed cell death, differentiation, and expression of coding genes. MicroRNA‐124 (miR‐124) has reduced exparession in various human neoplasms and is believed to be related to the occurrence, development, and prognosis of malignant tumors. In our review, we focus on the specific molecular functions of miR‐124 and the downstream gene targets in major cancers, which provide preclinical evidence for the treatment of human cancer. Although some obstacles exist, miR‐124 is still attracting intensive research focus as a promising and effective anticancer weapon.
Collapse
Affiliation(s)
- Xinqi Jia
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjing Ji
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junjie Zhao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjia Zhou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mian Guo
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Maomao Zhang
- Key Laboratory of Myocardial Ischemia, Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Li
- Department of Orthopedics, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Niu J, Wang X, Liang C, Zhang YD, Liu FY, Li HY, Xie SQ, Sun H, Fang D. Suppression of epidermal growth factor receptor-mediated β-catenin nuclear accumulation enhances the anti-tumor activity of phosphoinositide 3-kinase inhibitor in breast cancer. Cell Biol Int 2019; 43:931-939. [PMID: 31124219 DOI: 10.1002/cbin.11183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) signaling is frequently deregulated in breast cancer and plays a critical role in tumor progression. However, resistance to PI3K inhibitors in breast cancer has emerged, which is due to the enhanced β-catenin nuclear accumulation. Until now, the mechanisms underlying PI3K inhibition-induced β-catenin nuclear accumulation remains largely unknown. In the present study, we found inhibition of PI3K with LY294002 promoted β-catenin nuclear accumulation in MCF-7 and MDA-MB-231 breast cancer cells. Combining PI3K inhibitor LY294002 with XAV-939, an inhibitor against β-catenin nuclear accumulation, produced an additive anti-proliferation effect against breast cancer cells. Subsequent experiments suggested β-catenin nuclear accumulation induced by PI3K inhibition depended on the feedback activation of epidermal growth factor receptor (EGFR) signaling pathway in breast cancer cells. Inhibition of EGFR phosphorylation with Gefitinib enhanced anti-proliferation effect of PI3K inhibitor LY294002 in MCF-7 and MDA-MB-231 cells. Taken together, our findings may elucidate a possible mechanism explaining the poor outcome of PI3K inhibitors in breast cancer treatment.
Collapse
Affiliation(s)
- Jie Niu
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, N. Jinming Ave, 475004 Kaifeng, China
| | - Xiao Wang
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, N. Jinming Ave, 475004 Kaifeng, China
| | - Chao Liang
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, N. Jinming Ave, 475004 Kaifeng, China
| | - Yi-Dan Zhang
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, N. Jinming Ave, 475004 Kaifeng, China
| | - Fan-Ye Liu
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, N. Jinming Ave, 475004 Kaifeng, China
| | - Hai-Ying Li
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, N. Jinming Ave, 475004 Kaifeng, China
| | - Song-Qiang Xie
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, N. Jinming Ave, 475004 Kaifeng, China.,School of Pharmacy, Institute of Chemical Biology, Henan University, N. Jinming Ave, 475004 Kaifeng, China
| | - Hua Sun
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, N. Jinming Ave, 475004 Kaifeng, China
| | - Dong Fang
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, N. Jinming Ave, 475004 Kaifeng, China
| |
Collapse
|
25
|
Wong KK, Lawrie CH, Green TM. Oncogenic Roles and Inhibitors of DNMT1, DNMT3A, and DNMT3B in Acute Myeloid Leukaemia. Biomark Insights 2019; 14:1177271919846454. [PMID: 31105426 PMCID: PMC6509988 DOI: 10.1177/1177271919846454] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
Epigenetic alteration has been proposed to give rise to numerous classic hallmarks of cancer. Impaired DNA methylation plays a central role in the onset and progression of several types of malignancies, and DNA methylation is mediated by DNA methyltransferases (DNMTs) consisting of DNMT1, DNMT3A, and DNMT3B. DNMTs are frequently implicated in the pathogenesis and aggressiveness of acute myeloid leukaemia (AML) patients. In this review, we describe and discuss the oncogenic roles of DNMT1, DNMT3A, and DNMT3B in AML. The clinical response predictive roles of DNMTs in clinical trials utilising hypomethylating agents (azacitidine and decitabine) in AML patients are presented. Novel hypomethylating agent (guadecitabine) and experimental DNMT inhibitors in AML are also discussed. In summary, hypermethylation of tumour suppressors mediated by DNMT1 or DNMT3B contributes to the progression and severity of AML (except MLL-AF9 and inv(16)(p13;q22) AML for DNMT3B), while mutation affecting DNMT3A represents an early genetic lesion in the pathogenesis of AML. In clinical trials of AML patients, expression of DNMTs is downregulated by hypomethylating agents while the clinical response predictive roles of DNMT biomarkers remain unresolved. Finally, nucleoside hypomethylating agents have continued to show enhanced responses in clinical trials of AML patients, and novel non-nucleoside DNMT inhibitors have demonstrated cytotoxicity against AML cells in pre-clinical settings.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Charles H Lawrie
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Oncology Department, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
26
|
Zheng GD, Hu PJ, Chao YX, Zhou Y, Yang XJ, Chen BZ, Yu XY, Cai Y. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating PARP-2/SIRT1/AMPK signaling pathway. Food Sci Nutr 2019; 7:1104-1112. [PMID: 30918653 PMCID: PMC6418462 DOI: 10.1002/fsn3.953] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/29/2018] [Accepted: 01/06/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Nobiletin, a major polymethoxyflavones (PMFs) from citri reticulatae pericarpium (CRP), can inhibit several forms of cancer proliferation. However, the effects of nobiletin on nasopharyngeal carcinoma (NPC) C666-1 cells remain largely unknown. MATERIALS AND METHODS Cell counting kit 8 (CCK8) assay was used to measure cell vitality. Flow cytometry was performed to measure the apoptosis rate. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were applied to determine the expression of mRNA and protein, respectively. RESULTS We showed that the proliferation rate of C666-1 cells was inhibited and the apoptosis rate was raised after treating with nobiletin. Moreover, nobiletin inhibited the expression of poly(ADP-ribose)polymerase-2 (PARP-2), and the tumor suppression effect of nobiletin on C666-1 is associated with PARP-2-dependent pathway. CONCLUSION We demonstrated for the first time that nobiletin inhibited the growth of C666-1 cells, which may be relative to its regulation on PARP-2/SIRT1/AMPK signaling pathway. Our result implied that nobiletin may serve as a strategy to treat nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Guo Dong Zheng
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ping Jun Hu
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ying Xin Chao
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ying Zhou
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Xiu Juan Yang
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Bai Zhong Chen
- Guangdong Xinbaotang Biological Technology Co, LtdJiangmenChina
| | - Xi Yong Yu
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| |
Collapse
|
27
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|