1
|
Tanzhu G, Chen L, Ning J, Xue W, Wang C, Xiao G, Yang J, Zhou R. Metastatic brain tumors: from development to cutting-edge treatment. MedComm (Beijing) 2025; 6:e70020. [PMID: 39712454 PMCID: PMC11661909 DOI: 10.1002/mco2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 12/24/2024] Open
Abstract
Metastatic brain tumors, also called brain metastasis (BM), represent a challenging complication of advanced tumors. Tumors that commonly metastasize to the brain include lung cancer and breast cancer. In recent years, the prognosis for BM patients has improved, and significant advancements have been made in both clinical and preclinical research. This review focuses on BM originating from lung cancer and breast cancer. We briefly overview the history and epidemiology of BM, as well as the current diagnostic and treatment paradigms. Additionally, we summarize multiomics evidence on the mechanisms of tumor occurrence and development in the era of artificial intelligence and discuss the role of the tumor microenvironment. Preclinically, we introduce the establishment of BM models, detailed molecular mechanisms, and cutting-edge treatment methods. BM is primarily treated with a comprehensive approach, including local treatments such as surgery and radiotherapy. For lung cancer, targeted therapy and immunotherapy have shown efficacy, while in breast cancer, monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates are effective in BM. Multiomics approaches assist in clinical diagnosis and treatment, revealing the complex mechanisms of BM. Moreover, preclinical agents often need to cross the blood-brain barrier to achieve high intracranial concentrations, including small-molecule inhibitors, nanoparticles, and peptide drugs. Addressing BM is imperative.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Liu Chen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jiaoyang Ning
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Wenxiang Xue
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunJilinChina
| | - Ce Wang
- Department of RadiologyChina‐Japan Friendship HospitalBeijingChina
| | - Gang Xiao
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jie Yang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
| | - Rongrong Zhou
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Xiangya Lung Cancer CenterXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
2
|
Giannoudis A, Sokol ES, Bhogal T, Ramkissoon SH, Razis ED, Bartsch R, Shaw JA, McGregor K, Clark A, Huang RSP, Palmieri C. Breast cancer brain metastases genomic profiling identifies alterations targetable by immune-checkpoint and PARP inhibitors. NPJ Precis Oncol 2024; 8:282. [PMID: 39706915 DOI: 10.1038/s41698-024-00761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
Understanding the genomic landscape of breast cancer brain metastases (BCBMs) is key to developing targeted treatments. In this study, targetable genomic profiling was performed on 822 BCBMs, 11,988 local breast cancer (BC) biopsies and 15,516 non-central nervous system (N-CNS) metastases (all unpaired samples) collected during the course of routine clinical care by Foundation Medicine Inc (Boston, MA). Clinically relevant genomic alterations were significantly enriched in BCBMs compared to local BCs and N-CNS metastases. Homologous recombination deficiency as measured by BRCA1/2 alteration prevalence and loss-of-heterozygosity and immune checkpoint inhibitor (ICI) biomarkers [Tumor mutation burden (TMB)-High, Microsatellite instability (MSI)-High, PD-L1/L2)] were significantly more prevalent in BCBM than local BC and N-CNS. High PD-L1 protein expression was observed in ER-negative/HER2-negative BCBMs (48.3% vs 50.0% in local BCs, 21.4% in N-CNS). Our data highlights that a high proportion of BCBMs are potentially amenable to treatment with targeted therapeutic agents including PARP inhibitors and ICIs.
Collapse
Affiliation(s)
- A Giannoudis
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - E S Sokol
- Foundation Medicine, Inc., Boston, MA, USA
| | - T Bhogal
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | | | - E D Razis
- Hygeia Hospital, 3rd Oncology Department, Marousi, Athens, Greece
| | - R Bartsch
- Medical University of Vienna, Department of Medicine I, Division of Oncology, Vienna, Austria
| | - J A Shaw
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - K McGregor
- Foundation Medicine, Inc., Boston, MA, USA
| | | | | | - C Palmieri
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
3
|
Nicolò E, Gianni C, Curigliano G, Reduzzi C, Cristofanilli M. Modeling the management of patients with human epidermal growth factor receptor 2-positive breast cancer with liquid biopsy: the future of precision medicine. Curr Opin Oncol 2024; 36:503-513. [PMID: 39011731 DOI: 10.1097/cco.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW In the evolving landscape of human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) management, liquid biopsy offers unprecedented opportunities for guiding clinical decisions. Here, we review the most recent findings on liquid biopsy applications in HER2-positive BC and its potential role in addressing challenges specific to this BC subtype. RECENT FINDINGS Recent studies have highlighted the significance of liquid biopsy analytes, primarily circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), in stratifying patients' prognosis, predicting treatment response, and monitoring tumor evolution in both early and advanced stages of BC. Liquid biopsy holds promise in studying minimal residual disease to detect and potentially treat disease recurrence before it manifests clinically. Additionally, liquid biopsy may have significant implication in the management of brain metastasis, a major challenge in HER2-positive BC, and could redefine parameters for determining HER2 positivity. Combining ctDNA and CTCs is crucial for a comprehensive understanding of HER2-positive tumors, as they provide complementary insights. SUMMARY Research efforts are needed to address analytical challenges, validate, and broaden the application of liquid biopsy in HER2-positive BC. This effort will ultimately facilitate its integration into clinical practice, optimizing the care of patients with HER2-positive tumors.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
4
|
Shan KS, Dalal S, Thaw Dar NN, McLish O, Salzberg M, Pico BA. Molecular Targeting of the Fibroblast Growth Factor Receptor Pathway across Various Cancers. Int J Mol Sci 2024; 25:849. [PMID: 38255923 PMCID: PMC10815772 DOI: 10.3390/ijms25020849] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (S.D.); (N.N.T.D.); (O.M.); (M.S.)
| | | | | | | | | | | |
Collapse
|
5
|
Saridogan T, Akcakanat A, Zhao M, Evans KW, Yuca E, Scott S, Kirby BP, Zheng X, Ha MJ, Chen H, Ng PKS, DiPeri TP, Mills GB, Rodon Ahnert J, Damodaran S, Meric-Bernstam F. Efficacy of futibatinib, an irreversible fibroblast growth factor receptor inhibitor, in FGFR-altered breast cancer. Sci Rep 2023; 13:20223. [PMID: 37980453 PMCID: PMC10657448 DOI: 10.1038/s41598-023-46586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib's efficacy in breast cancer models. Nine breast cancer patient-derived xenografts (PDXs) with various FGFR1-4 alterations and expression levels were treated with futibatinib. Antitumor efficacy was evaluated by change in tumor volume and time to tumor doubling. Alterations indicating sensitization to futibatinib in vivo were further characterized in vitro. FGFR gene expression between patient tumors and matching PDXs was significantly correlated; however, overall PDXs had higher FGFR3-4 expression. Futibatinib inhibited tumor growth in 3 of 9 PDXs, with tumor stabilization in an FGFR2-amplified model and prolonged regression (> 110 days) in an FGFR2 Y375C mutant/amplified model. FGFR2 overexpression and, to a greater extent, FGFR2 Y375C expression in MCF10A cells enhanced cell growth and sensitivity to futibatinib. Per institutional and public databases, FGFR2 mutations and amplifications had a population frequency of 1.1%-2.6% and 1.5%-2.5%, respectively, in breast cancer patients. FGFR2 alterations in breast cancer may represent infrequent but highly promising targets for futibatinib.
Collapse
Affiliation(s)
- Turcin Saridogan
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Basic Oncology, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Stephen Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Bryce P Kirby
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Jin Ha
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patrick K S Ng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Timothy P DiPeri
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Precision Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Senthil Damodaran
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA.
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Liu B, Liu L, Ran J, Xie N, Li J, Xiao H, Yang X, Tian C, Wu H, Lu J, Gao J, Hu X, Cao M, Shui Z, Hu ZY, Ouyang Q. A randomized trial of eribulin monotherapy versus eribulin plus anlotinib in patients with locally recurrent or metastatic breast cancer. ESMO Open 2023; 8:101563. [PMID: 37285718 DOI: 10.1016/j.esmoop.2023.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Eribulin mesylate is a novel, nontaxane, microtubule dynamics inhibitor. In this study, we assessed the efficacy and safety of eribulin versus eribulin plus the oral small-molecule tyrosine kinase inhibitor anlotinib in patients with locally recurrent or metastatic breast cancer. PATIENTS AND METHODS In this single-center, open-label, phase II clinical study (NCT05206656) conducted in a Chinese hospital, patients with human epidermal growth factor receptor 2 (HER2)-negative, locally recurrent or metastatic breast cancer previously treated with anthracycline- or taxane-based chemotherapy were randomized (1 : 1) to receive eribulin alone or in combination with anlotinib. The primary efficacy endpoint was investigator-assessed progression-free survival (PFS). RESULTS From June 2020 to April 2022, a total of 80 patients were randomly assigned to either eribulin monotherapy or eribulin plus anlotinib combination therapy, with 40 patients in each group. The data cut-off was 10 August 2022. The median PFS was 3.5 months [95% confidence interval (CI) 2.8-5.5 months] for eribulin and 5.1 months (95% CI 4.5-6.9 months) for eribulin plus anlotinib (hazard ratio = 0.56, 95% CI 0.32-0.98; P = 0.04). The objective response rates were 32.5% versus 52.5% (P = 0.07), respectively, and disease control rates were 67.5% versus 92.5% (P = 0.01), respectively. Patients <50 years of age, with an Eastern Cooperative Oncology Group performance status score of 0, visceral metastasis, number of treatment lines of four or more, hormone receptor negative (triple-negative), and HER2 low expression appeared to benefit more from combined treatment. The most common adverse events in both groups were leukopenia (n = 28, 70.0%, patients in the eribulin monotherapy group versus n = 35, 87.5%, patients in the combination therapy group), aspartate aminotransferase elevations (n = 28, 70.0%, versus n = 35, 87.5%), neutropenia (n = 25, 62.5%, versus n = 31, 77.5%), and alanine aminotransferase elevations (n = 25, 62.5%, versus n = 30, 75.0%). CONCLUSION Eribulin plus anlotinib can be considered an alternative treatment option for HER2-negative locally advanced or metastatic breast cancer.
Collapse
Affiliation(s)
- B Liu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - L Liu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - J Ran
- Department of Biostatistics and Bioinformatics, Rollins School of Public Heath, Emory University, Atlanta, USA
| | - N Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - J Li
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - H Xiao
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - X Yang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - C Tian
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - H Wu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - J Lu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - J Gao
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - X Hu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - M Cao
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Z Shui
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Z-Y Hu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Q Ouyang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.
| |
Collapse
|
7
|
Yang Y, Zhang J, Li JY, Xu L, Wang SN, Zhang JQ, Xun Z, Xia Y, Cao JB, Liu Y, Shi LY, Li W, Shi YL, He YG, Gu DJ, Yu ZY, Chen K, Lan J. The ctDNA-based postoperative molecular residual disease status in different subtypes of early-stage breast cancer. Gland Surg 2022; 11:1924-1935. [PMID: 36654951 PMCID: PMC9840987 DOI: 10.21037/gs-22-634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Background Breast cancer is a highly heterogeneous disease. Early-stage, non-metastatic breast cancer is considered curable after definitive treatment. Early detection of tumor recurrence and metastasis through sensitive biomarkers is helpful for guiding clinical decision-making and early intervention in second-line treatment, which could improve patient prognosis and survival. Methods In this real-world study, we retrospectively analyzed 82 patients with stages I to III breast cancer who had been analyzed by molecular residual disease (MRD) assay. A total of 82 tumor tissues and 224 peripheral blood samples were collected and detected by next-generation sequencing (NGS) based on a 1,021-gene panel in this study. Results MRD positivity was detected in 18 of 82 patients (22.0%). The hormone receptor-/human epidermal growth factor receptor 2+ (HR-/HER2+) subgroup had the highest postoperative MRD detection rate at 30.8% (4/13). The BRCA2 and SLX4 genes were significantly enriched in all patients in the MRD positive group and FGFR1 amplification was significantly enriched in the MRD negative group with HR+/HER2-. The number of single nucleotide variants (SNVs) in tissue samples of MRD-positive patients was higher than that of MRD-negative patients (11.94 vs. 8.50 SNVs/sample). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that there was a similar biological function of the tumor-mutated genes in the 2 MRD status groups. Conclusions This real-world study confirmed that patient samples of primary tumor tissue with different MRD status and molecular subtypes had differential genetic features, which may be used to predict patients at high risk for recurrence.
Collapse
Affiliation(s)
- Yang Yang
- Medical College of Soochow University, Suzhou, China
| | - Jie Zhang
- Department of Gynecology & Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiao-Yang Li
- Department of Ultrasound, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lu Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Si-Ning Wang
- Medical College of Soochow University, Suzhou, China
| | - Jun-Qi Zhang
- Medical College of Soochow University, Suzhou, China
| | - Zhou Xun
- Medical College of Soochow University, Suzhou, China
| | - Yu Xia
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Bo Cao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Liu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Yan Shi
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Yuan-Ge He
- Geneplus-Beijing Institute, Beijing, China
| | - De-Jian Gu
- Geneplus-Beijing Institute, Beijing, China
| | - Zheng-Yuan Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Lan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Zhang L, Li H, Wang T, Wang R, Cheng L, Wang G. Real-World Study: A Powerful Tool for Malignant Tumor Research in General Surgery. Cancers (Basel) 2022; 14:5408. [PMID: 36358825 PMCID: PMC9656785 DOI: 10.3390/cancers14215408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 03/01/2024] Open
Abstract
Real-world study (RWS) is a method to draw conclusions by collecting and analyzing real-world data under a real clinical background. Compared with traditional randomized controlled trials (RCTs), RWSs are favored by clinicians because of their low cost and good extrapolation. In recent years, RWS has made remarkable achievements in the field of general surgery, especially in the drug treatment of advanced malignant tumors. Therefore, to further understand the main contents of the existing RWS and the application prospect of RWS in the future, this paper systematically reviews the clinical application of RWS in malignant tumors in general surgery in the past three years.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - He Li
- Department of Centric Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - TianFu Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - RuiXin Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| |
Collapse
|
9
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
10
|
PNSA, a Novel C-Terminal Inhibitor of HSP90, Reverses Epithelial-Mesenchymal Transition and Suppresses Metastasis of Breast Cancer Cells In Vitro. Mar Drugs 2021; 19:md19020117. [PMID: 33672529 PMCID: PMC7923764 DOI: 10.3390/md19020117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Metastasis accounts for the vast majority of deaths in breast cancer, and novel and effective treatments to inhibit cancer metastasis remain urgently developed. The expression level of heat shock protein 90 (HSP90) in invasive breast cancer tissue is higher than in adjacent non-cancerous tissue. In the present study, we investigated the inhibitory effect of penisuloxazin A (PNSA), a novel C- terminal inhibitor of HSP90, on metastasis of breast cancer cells and related mechanism in vitro. We found that PNSA obviously affected adhesion, migration, and invasion of triple-negative breast cancer (TNBC) MDA-MB-231 cells and Trastuzumab-resistant JIMT-1 cells. Furthermore, PNSA was capable of reversing epithelial-mesenchymal transformation (EMT) of MDA-MB-231 cells with change of cell morphology. PNSA increases E-cadherin expression followed by decreasing amounts of N-cadherin, vimentin, and matrix metalloproteinases9 (MMP9) and proteolytic activity of matrix metalloproteinases2 (MMP2) and MMP9. Comparatively, the N-terminal inhibitor of HSP90 17-allyl-17-demethoxygeldanamycin (17-AAG) had no effect on EMT of MDA-MB-231 cells. PNSA was uncovered to reduce the stability of epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) proteins and thereby inhibiting their downstream signaling transductions by inhibition of HSP90. In addition, PNSA reduced the expression of programmed cell death-ligand 1 (PD-L1) to promote natural killer (NK) cells to kill breast cancer cells with a dose far less than that of cytotoxicity to NK cell itself, implying the potential of PNSA to enhance immune surveillance against metastasis in vivo. All these results indicate that PNSA is a promising anti-metastasis agent worthy of being studied in the future.
Collapse
|
11
|
Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z. Nanomedicine of tyrosine kinase inhibitors. Theranostics 2021; 11:1546-1567. [PMID: 33408767 PMCID: PMC7778595 DOI: 10.7150/thno.48662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Recent progress in nanomedicine and targeted therapy brings new breeze into the field of therapeutic applications of tyrosine kinase inhibitors (TKIs). These drugs are known for many side effects due to non-targeted mechanism of action that negatively impact quality of patients' lives or that are responsible for failure of the drugs in clinical trials. Some nanocarrier properties provide improvement of drug efficacy, reduce the incidence of adverse events, enhance drug bioavailability, helps to overcome the blood-brain barrier, increase drug stability or allow for specific delivery of TKIs to the diseased cells. Moreover, nanotechnology can bring new perspectives into combination therapy, which can be highly efficient in connection with TKIs. Lastly, nanotechnology in combination with TKIs can be utilized in the field of theranostics, i.e. for simultaneous therapeutic and diagnostic purposes. The review provides a comprehensive overview of advantages and future prospects of conjunction of nanotransporters with TKIs as a highly promising approach to anticancer therapy.
Collapse
Affiliation(s)
- Veronika Smidova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zita Goliasova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, Prague 5 CZ-15006, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
12
|
Pellerino A, Internò V, Mo F, Franchino F, Soffietti R, Rudà R. Management of Brain and Leptomeningeal Metastases from Breast Cancer. Int J Mol Sci 2020; 21:E8534. [PMID: 33198331 PMCID: PMC7698162 DOI: 10.3390/ijms21228534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The management of breast cancer (BC) has rapidly evolved in the last 20 years. The improvement of systemic therapy allows a remarkable control of extracranial disease. However, brain (BM) and leptomeningeal metastases (LM) are frequent complications of advanced BC and represent a challenging issue for clinicians. Some prognostic scales designed for metastatic BC have been employed to select fit patients for adequate therapy and enrollment in clinical trials. Different systemic drugs, such as targeted therapies with either monoclonal antibodies or small tyrosine kinase molecules, or modified chemotherapeutic agents are under investigation. Major aims are to improve the penetration of active drugs through the blood-brain barrier (BBB) or brain-tumor barrier (BTB), and establish the best sequence and timing of radiotherapy and systemic therapy to avoid neurocognitive impairment. Moreover, pharmacologic prevention is a new concept driven by the efficacy of targeted agents on macrometastases from specific molecular subgroups. This review aims to provide an overview of the clinical and molecular factors involved in the selection of patients for local and/or systemic therapy, as well as the results of clinical trials on advanced BC. Moreover, insight on promising therapeutic options and potential directions of future therapeutic targets against BBB and microenvironment are discussed.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Francesca Mo
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
- Department of Neurology, Castelfranco Veneto and Treviso Hospital, 31100 Treviso, Italy
| |
Collapse
|
13
|
Santolla MF, Maggiolini M. The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives. Cancers (Basel) 2020; 12:E3029. [PMID: 33081025 PMCID: PMC7603197 DOI: 10.3390/cancers12103029] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges in the treatment of breast cancer is the heterogeneous nature of the disease. With multiple subtypes of breast cancer identified, there is an unmet clinical need for the development of therapies particularly for the less tractable subtypes. Several transduction mechanisms are involved in the progression of breast cancer, therefore making the assessment of the molecular landscape that characterizes each patient intricate. Over the last decade, numerous studies have focused on the development of tyrosine kinase inhibitors (TKIs) to target the main pathways dysregulated in breast cancer, however their effectiveness is often limited either by resistance to treatments or the appearance of adverse effects. In this context, the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging transduction pathway and therapeutic target to be fully investigated among the diverse anti-cancer settings in breast cancer. Here, we have recapitulated previous studies dealing with FGFR molecular aberrations, such as the gene amplification, point mutations, and chromosomal translocations that occur in breast cancer. Furthermore, alterations in the FGF/FGFR signaling across the different subtypes of breast cancer have been described. Next, we discussed the functional interplay between the FGF/FGFR axis and important components of the breast tumor microenvironment. Lastly, we pointed out the therapeutic usefulness of FGF/FGFR inhibitors, as revealed by preclinical and clinical models of breast cancer.
Collapse
Affiliation(s)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|