1
|
Liu D, Wang L, Guo Y. Advances in and prospects of immunotherapy for prostate cancer. Cancer Lett 2024; 601:217155. [PMID: 39127338 DOI: 10.1016/j.canlet.2024.217155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Immunotherapy has shown promising therapeutic effects in hematological malignancies and certain solid tumors and has emerged as a critical and highly potential treatment modality for cancer. However, prostate cancer falls under the category of immune-resistant cold tumors, for which immunotherapy exhibits limited efficacy in patients with solid tumors. Thus, it is important to gain a deeper understanding of the tumor microenvironment in prostate cancer to facilitate immune system activation and overcome immune suppression to advance immunotherapy for prostate cancer. In this review, we discuss the immunosuppressive microenvironment of prostate cancer, which is characterized by the presence of few tumor-infiltrating lymphocytes, abundant immunosuppressive cells, low immunogenicity, and a noninflammatory phenotype, which significantly influences the efficacy of immunotherapy for prostate cancer. Immunotherapy is mainly achieved by activating the host immune system and overcoming immunosuppression. In this regard, we summarize the therapeutic advances in immune checkpoint blockade, immunogenic cell death, reversal of the immunosuppressive tumor microenvironment, tumor vaccines, immune adjuvants, chimeric antigen receptor T-cell therapy, and overcoming penetration barriers in prostate cancer, with the aim of providing novel research insights and approaches to enhance the effectiveness of immunotherapy for prostate cancer.
Collapse
Affiliation(s)
- Deng Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Li T, Wang Y, Jiang Y, Wu Z, Hu Z, Wang Z, Yang C. A case report of sustained remission after radiotherapy combined with ICI in NEPC with primary drug resistance to chemotherapy. Front Oncol 2024; 14:1360956. [PMID: 38737900 PMCID: PMC11082353 DOI: 10.3389/fonc.2024.1360956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Advanced prostate cancer (PCa) is usually treated initially with androgen deprivation therapy (ADT). Although they experience a period of disease regression, most patients progress to metastatic castration-resistant prostate cancer (mCRPC). Patients with mCRPC now have an unprecedented number of approved treatment options, including chemotherapies, hormone therapies, targeted therapies, etc. However, the improvement of overall survival (OS) in patients with mCRPC and its special subtype neuroendocrine prostate cancer (NEPC) is limited. In recent years, with the use of immune checkpoint inhibitors (ICIs), such as PD1/PDL1 and CTLA4 inhibitors, immunotherapy has once again become a promising treatment choice to stimulate antitumor immunity. However, the efficacy of NEPC receiving ICI has not been reported. Here, we describe a patient with mCRPC who developed primary resistance to current endocrine and chemotherapy regimens and progressed to mCRPC with NEPC as the main component, showing a significant and lasting response to PD1 monoclonal antibody combined with radiotherapy.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yanan Wang
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yueqiang Jiang
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Zixi Wu
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| |
Collapse
|
3
|
Han L, Meng Y, Jianguo Z. Research Progress of PD 1/PD L1 Inhibitors in the Treatment of Urological Tumors. Curr Cancer Drug Targets 2024; 24:1104-1115. [PMID: 38318829 DOI: 10.2174/0115680096278251240108152600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) offer significant advantages for the treatment of urologic tumors, enhancing the immune function of anti-tumor T cells by inhibiting PD-1 and PDL1 binding. They have been shown to be well tolerated and remarkably effective in clinical practice, offering hope to many patients who are not well treated with conventional drugs. Clinical trials in recent years have shown that anti-PD-1 and PD-L1 antibodies have good efficacy and safety in the treatment of urologic tumors. These antibodies can be applied to a variety of urologic tumors, such as bladder cancer, renal cell carcinoma, and prostate cancer. They have been approved for the first-line treatment or as an option for follow-up therapy. By blocking the PD-1/PD-L1 signaling pathway, ICIs can release immune functions that are suppressed by tumor cells and enhance T-cell killing, thereby inhibiting tumor growth and metastasis. This therapeutic approach has achieved encouraging efficacy and improved survival for many patients. Although ICIs have shown remarkable results in the treatment of urologic tumors, some problems remain, such as drug resistance and adverse effects in some patients. Therefore, further studies remain important to optimize treatment strategies and improve clinical response in patients. In conclusion, PD-1/PD-L1 signaling pathway blockers have important research advances for the treatment of urologic tumors. Their emergence brings new hope for patients who have poor outcomes with traditional drug therapy and provides new options for immunotherapy of urologic tumors. The purpose of this article is to review the research progress of PD-1 and PD-L1 signaling pathway blockers in urologic tumors in recent years.
Collapse
Affiliation(s)
- Lv Han
- Guizhou Medical University, Guiyang, 550000, China
| | - Yang Meng
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| | - Zhu Jianguo
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| |
Collapse
|
4
|
Abaza A, Sid Idris F, Anis Shaikh H, Vahora I, Moparthi KP, Al Rushaidi MT, Muddam MR, Obajeun OA, Jaramillo AP, Khan S. Programmed Cell Death Protein 1 (PD-1) and Programmed Cell Death Ligand 1 (PD-L1) Immunotherapy: A Promising Breakthrough in Cancer Therapeutics. Cureus 2023; 15:e44582. [PMID: 37667784 PMCID: PMC10475160 DOI: 10.7759/cureus.44582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/06/2023] Open
Abstract
The advent of immune checkpoint inhibitors has revolutionized cancer therapy by leveraging the body's immune system to combat malignancies effectively. Among these groundbreaking agents, programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors have emerged as pivotal therapeutic approaches. PD-L1, a key protein expressed on the surface of various cells, including cancer cells, plays a central role in immune regulation by interacting with the programmed cell death protein 1 (PD-1) receptor on T-cells leading to immune suppression. The substantial increase in PD-L1 expression on cancer cell surfaces has driven the exploration of PD-1/PD-L1 inhibitors as potential immunotherapeutic agents. These inhibitors are monoclonal antibodies designed to impede the PD-L1 and PD-1 interaction and disrupt the immunosuppressive signal, thereby reinvigorating the anti-tumor immune response mediated by activated T-cells. Clinical trials investigating PD-1/PD-L1 inhibitors have demonstrated remarkable efficacy in the treatment of diverse advanced or metastatic cancers, including leukemia, non-small cell lung (NSCLC), hepatocellular, melanoma, gastric, colorectal, and breast cancers, among others. Regulatory approvals have been granted for both monotherapy and combination therapy with other cancer treatments, encompassing chemotherapy and additional immune checkpoint inhibitors. While PD-1/PD-L1 inhibitors have exhibited significant success, they are not devoid of challenges. The emergence of intrinsic or acquired resistance, as well as immune-related adverse events, warrants thorough investigation and management. Consequently, researchers have embarked on combination trials to augment the therapeutic potential of PD-1/PD-L1 inhibitors and surmount resistance mechanisms.
Collapse
Affiliation(s)
- Abdelrahman Abaza
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Faten Sid Idris
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Humna Anis Shaikh
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ilma Vahora
- General Surgery, Saint George's University School of Medicine, Chicago, USA
| | - Kiran Prasad Moparthi
- College of Medicine, Sri Venkata Sai (SVS) Medical College, Mahabubnagar, IND
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Majdah T Al Rushaidi
- Psychology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Meghana Reddy Muddam
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- College of Medicine, Sri Venkata Sai (SVS) Medical College, Mahabubnagar, IND
| | - Omobolanle A Obajeun
- Paediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
5
|
Ashraf MU, Farwa U, Siddiqa M, Sarfraz A, Azeem N, Sarfraz Z. Has the Landscape of Immunotherapy for Prostate Cancer Changed? A Systematic Review and Post Hoc Analysis. Am J Mens Health 2023; 17:15579883231165140. [PMID: 37002863 PMCID: PMC10069001 DOI: 10.1177/15579883231165140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-causing death in the United States. As the most common malignancy in men, it is pertinent to explore whether novel immunotherapies may improve the quality of life and overall survival (OS) of patient populations. This systematic review and post hoc analysis curates a patient-by-patient pool of evidence adhering to PRISMA Statement 2020 guidelines. In total, 24 patients were analyzed for treatment history and associated variables including prostate-specific antigen (PSA) levels at diagnosis and post-treatment, Gleason score, secondary tumor locations, success/failure of therapy, and post-immunotherapy outcomes including OS. In total, 10 types of immunotherapies were identified with Pembrolizumab (among 8 patients) followed by IMM-101 (among 6 patients) being the most commonly administered. The mean OS for all patients was 27.8 months (24 patients) with the relatively highest mean OS reported with IMM-101 (56 months) followed by tumor-infiltrating lymphocytes (30 months). This research article provides critical insights into the evolving landscape of immunotherapies being tested for PCa and addresses gaps in oncological research to advance the understanding of PCa.
Collapse
Affiliation(s)
| | - Ume Farwa
- University Medical and Dental College, Faisalabad, Pakistan
| | - Maryam Siddiqa
- University Medical and Dental College, Faisalabad, Pakistan
| | | | - Nishwa Azeem
- Schwarzman College, Tsinghua University, Beijing, China
| | | |
Collapse
|
6
|
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol 2022; 13:964442. [PMID: 36177034 PMCID: PMC9513184 DOI: 10.3389/fimmu.2022.964442] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death protein-1 (PD-1) is a checkpoint receptor expressed on the surface of various immune cells. PD-L1, the natural receptor for PD-1, is mainly expressed in tumor cells. Studies have indicated that PD-1 and PD-L1 are closely associated with the progression of human cancers and are promising biomarkers for cancer therapy. Moreover, the interaction of PD-1 and PD-L1 is one of the important mechanism by which human tumors generate immune escape. This article provides a review on the role of PD-L1/PD-1, mechanisms of immune response and resistance, as well as immune-related adverse events in the treatment of anti-PD-1/PD-L1 immunotherapy in human cancers. Moreover, we summarized a large number of clinical trials to successfully reveal that PD-1/PD-L1 Immune-checkpoint inhibitors have manifested promising therapeutic effects, which have been evaluated from different perspectives, including overall survival, objective effective rate and medium progression-free survival. Finally, we pointed out the current problems faced by PD-1/PD-L1 Immune-checkpoint inhibitors and its future prospects. Although PD-1/PD-L1 immune checkpoint inhibitors have been widely used in the treatment of human cancers, tough challenges still remain. Combination therapy and predictive models based on integrated biomarker determination theory may be the future directions for the application of PD-1/PD-L1 Immune-checkpoint inhibitors in treating human cancers.
Collapse
Affiliation(s)
- Qing Tang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Chen
- Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojuan Li
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunqin Long
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Shi
- Department of Cerebrovascular Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wanyin Wu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Sumei Wang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| |
Collapse
|
7
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
8
|
Kageyama T, Soga N, Sekito S, Kato S, Ogura Y, Kojima T, Kanai M, Inoue T. Dramatic response to pembrolizumab after pseudoprogression in a patient with advanced metastatic castration‐resistant prostate cancer. IJU Case Rep 2022; 5:442-445. [DOI: 10.1002/iju5.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Takumi Kageyama
- Department of Nephro‐Urologic Surgery and Andrology Mie University Graduate School of Medicine Tsu Mie Japan
- Department of Urology Aichi Cancer Center Hospital Nagoya Aichi Japan
- Department of Urology Suzuka General Hospital Suzuka Mie Japan
| | - Norihito Soga
- Department of Urology Aichi Cancer Center Hospital Nagoya Aichi Japan
| | - Sho Sekito
- Department of Urology Aichi Cancer Center Hospital Nagoya Aichi Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics Aichi Cancer Center Hospital Nagoya Aichi Japan
| | - Yuji Ogura
- Department of Urology Aichi Cancer Center Hospital Nagoya Aichi Japan
| | - Takahiro Kojima
- Department of Urology Aichi Cancer Center Hospital Nagoya Aichi Japan
| | - Masahiro Kanai
- Department of Urology Suzuka General Hospital Suzuka Mie Japan
| | - Takahiro Inoue
- Department of Nephro‐Urologic Surgery and Andrology Mie University Graduate School of Medicine Tsu Mie Japan
| |
Collapse
|
9
|
The Role of Histology-Agnostic Drugs in the Treatment of Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2022; 23:ijms23158535. [PMID: 35955671 PMCID: PMC9369092 DOI: 10.3390/ijms23158535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
Precision medicine has opened up a new era in the development of anti-cancer agents that is focused on identifying biomarkers predictive of treatment response regardless of tumor histology. Since 2017, the Food and Drug Administration has approved six drugs with histology-agnostic indications: pembrolizumab (both for tumors with the mismatch-repair deficiency (dMMR)/high microsatellite instability (MSI-H) phenotype and for those with the high tumor mutational burden (TMB-H) phenotype), dostarlimab (for dMMR tumors), larotrectinib and entrectinib (for tumors harboring neurotrophic tyrosine receptor kinase (NTRK) fusions), and the combination of dabrafenib plus trametinib (for BRAF V600E-mutated tumors). The genomic alterations targeted by these antineoplastic agents are rare in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, only a small number of mCRPC patients were enrolled in the clinical trials that led to the approval of the above-mentioned drugs. Therefore, we critically reviewed the literature on the efficacy of histology-agnostic drugs in mCRPC patients. Although the available evidence derives from retrospective studies and case reports, our results confirmed the efficacy of pembrolizumab in dMMR/MSI-H mCRPC. In contrast, few data are available for dostarlimab, larotrectinib, entrectinib, and dabrafenib-trametinib in this subset of patients. Large, multi-institutional registries aimed at collecting real-world data are needed to better comprehend the role of tissue-agnostic drugs in mCRPC patients.
Collapse
|
10
|
Shimizu K, Sano T, Mizuno K, Sunada T, Makita N, Hagimoto H, Goto T, Sawada A, Fujimoto M, Ichioka K, Ogawa O, Kobayashi T, Akamatsu S. A case of microsatellite instability-high clinically advanced castration-resistant prostate cancer showing a remarkable response to pembrolizumab sustained over at least 18 months. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006194. [PMID: 35487690 PMCID: PMC9235847 DOI: 10.1101/mcs.a006194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 12/02/2022] Open
Abstract
Defective DNA mismatch repair genes can lead to microsatellite instability (MSI)-high status in prostate cancer (PC). Accumulation of replication errors in DNA leads to the production of abundant neoantigens, which could be targets for immune checkpoint inhibitors (CPIs). However, the incidence of MSI-high PC is low, and not all patients show a satisfactory therapeutic response to CPIs. Here, we present the case of a patient with MSI-high castration-resistant PC who showed a remarkable and durable response to pembrolizumab. The patient was resistant to abiraterone, docetaxel, and cabazitaxel and was suffering from multiple tumor-associated or treatment-related complications, such as urinary tract infection, infective endocarditis, and uncontrollable prostatic hemorrhage. Soon after the start of pembrolizumab therapy, the patient showed a dramatic decrease in prostate-specific antigen from 35.67 ng/mL to an undetectable level and a remarkable reduction in the size of a massive prostate mass and lymph node metastases, with an absence of treatment-related complications. Specimens from the transurethral resection of prostate cancer during cabazitaxel treatment for control of prostate bleeding and also that from the prostate biopsy at initial diagnosis revealed MSI-high status. Immunohistochemistry showed loss of MSH2 and MSH6, and whole-exome sequencing revealed an approximate tumor mutation burden of 61 mutations/Mb as well as biallelic loss of MSH2. Pembrolizumab could show a significant effect even in a heavily treated patient with MSI-high advanced PC. Accumulation of detailed clinical and genomic information of cases of MSI-high PC treated with pembrolizumab is necessary for optimal patient selection.
Collapse
Affiliation(s)
| | | | - Kei Mizuno
- Kyoto University Graduate School of Medicine
| | | | | | | | | | | | | | | | - Osamu Ogawa
- Kyoto University Graduate School of Medicine
| | | | | |
Collapse
|
11
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Ascani S, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Gandhi J, Nicoli D, Farnetti E, Piana S, Tafuni A, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review (Part 6): Correlation of PD-L1 Expression with the Status of Mismatch Repair System, BRCA, PTEN, and Other Genes. Biomedicines 2022; 10:236. [PMID: 35203446 PMCID: PMC8868626 DOI: 10.3390/biomedicines10020236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Pembrolizumab (anti-PD-1) is allowed in selected metastatic castration-resistant prostate cancer (PC) patients showing microsatellite instability/mismatch repair system deficiency (MSI-H/dMMR). BRCA1/2 loss-of-function is linked to hereditary PCs and homologous recombination DNA-repair system deficiency: poly-ADP-ribose-polymerase inhibitors can be administered to BRCA-mutated PC patients. Recently, docetaxel-refractory metastatic castration-resistant PC patients with BRCA1/2 or ATM somatic mutations had higher response rates to pembrolizumab. PTEN regulates cell cycle/proliferation/apoptosis through pathways including the AKT/mTOR, which upregulates PD-L1 expression in PC. Our systematic literature review (PRISMA guidelines) investigated the potential correlations between PD-L1 and MMR/MSI/BRCA/PTEN statuses in PC, discussing few other relevant genes. Excluding selection biases, 74/677 (11%) PCs showed dMMR/MSI; 8/67 (12%) of dMMR/MSI cases were PD-L1+. dMMR-PCs included ductal (3%) and acinar (14%) PCs (all cases tested for MSI were acinar-PCs). In total, 15/39 (39%) PCs harbored BRCA1/2 aberrations: limited data are available for PD-L1 expression in these patients. 13/137 (10%) PTEN- PCs were PD-L1+; 10/29 (35%) PD-L1+ PCs showed PTEN negativity. SPOP mutations may increase PD-L1 levels, while the potential correlation between PD-L1 and ERG expression in PC should be clarified. Further research should verify how the efficacy of PD-1 inhibitors in metastatic castration-resistant PCs is related to dMMR/MSI, DNA-damage repair genes defects, or PD-L1 expression.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asuncion 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Davide Nicoli
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Enrico Farnetti
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Simonetta Piana
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
12
|
Zucali PA, Lin CC, Carthon BC, Bauer TM, Tucci M, Italiano A, Iacovelli R, Su WC, Massard C, Saleh M, Daniele G, Greystoke A, Gutierrez M, Pant S, Shen YC, Perrino M, Meng R, Abbadessa G, Lee H, Dong Y, Chiron M, Wang R, Loumagne L, Lépine L, de Bono J. Targeting CD38 and PD-1 with isatuximab plus cemiplimab in patients with advanced solid malignancies: results from a phase I/II open-label, multicenter study. J Immunother Cancer 2022; 10:jitc-2021-003697. [PMID: 35058326 PMCID: PMC8783811 DOI: 10.1136/jitc-2021-003697] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background Preclinical data suggest that concurrent treatment of anti-CD38 and antiprogrammed death 1 (PD-1)/programmed death ligand 1 (PD-L1) antibodies substantially reduce primary tumor growth by reversing T-cell exhaustion and thus enhancing anti-PD-1/PD-L1 efficacy. Methods This phase I/II study enrolled patients with metastatic castration-resistant prostate cancer (mCRPC) or advanced non-small cell lung cancer (NSCLC). The primary objectives of phase I were to investigate the safety and tolerability of isatuximab (anti-CD38 monoclonal antibody)+cemiplimab (anti-PD-1 monoclonal antibody, Isa+Cemi) in patients with mCRPC (naïve to anti-PD-1/PD-L1 therapy) or NSCLC (progressed on anti-PD-1/PD-L1-containing therapy). Phase II used Simon’s two-stage design with response rate as the primary endpoint. An interim analysis was planned after the first 24 (mCRPC) and 20 (NSCLC) patients receiving Isa+Cemi were enrolled in phase II. Safety, immunogenicity, pharmacokinetics, pharmacodynamics, and antitumor activity were assessed, including CD38, PD-L1, and tumor-infiltrating lymphocytes in the tumor microenvironment (TME), and peripheral immune cell phenotyping. Results Isa+Cemi demonstrated a manageable safety profile with no new safety signals. All patients experienced ≥1 treatment-emergent adverse event. Grade≥3 events occurred in 13 (54.2%) patients with mCRPC and 12 (60.0%) patients with NSCLC. Based on PCWG3 criteria, assessment of best overall response with Isa+Cemi in mCRPC revealed no complete responses (CRs), one (4.2%) unconfirmed partial response (PR), and five (20.8%) patients with stable disease (SD). Per RECIST V.1.1, patients with NSCLC receiving Isa+Cemi achieved no CR or PR, and 13 (65%) achieved SD. In post-therapy biopsies obtained from patients with mCRPC or NSCLC, Isa+Cemi treatment resulted in a reduction in median CD38+ tumor-infiltrating immune cells from 40% to 3%, with no consistent modulation of PD-L1 on tumor cells or T regulatory cells in the TME. The combination triggered a significant increase in peripheral activated and cytolytic T cells but, interestingly, decreased natural killer cells. Conclusions The present study suggests that CD38 and PD-1 modulation by Isa+Cemi has a manageable safety profile, reduces CD38+ immune cells in the TME, and activates peripheral T cells; however, such CD38 inhibition was not associated with significant antitumor activity. A lack of efficacy was observed in these small cohorts of patients with mCRPC or NSCLC. Trial registration numbers NCT03367819.
Collapse
Affiliation(s)
- Paolo Andrea Zucali
- Department of Biomedical Sciences, IRCCS Istituto Clinico Humanitas, Rozzano, Italy
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Bradley C Carthon
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Todd M Bauer
- Drug Development, Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Medical Oncology, Tennessee Oncology, Nashville, Tennessee, USA
| | - Marcello Tucci
- Medical Oncology, Cardinal Massaia Hospital of Asti, Asti, Italy
| | | | - Roberto Iacovelli
- Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Wu-Chou Su
- Division of Oncology, Department of Internal Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Christophe Massard
- DITEP, University Paris-Saclay, Faculty of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
- DITEP, Institut Gustave-Roussy, Villejuif, France
| | - Mansoor Saleh
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gennaro Daniele
- Early Phase Trials Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Alastair Greystoke
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Martin Gutierrez
- Gastrointestinal Medical Oncology, Thoracic Medical Oncology, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ying-Chun Shen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Matteo Perrino
- Department of Biomedical Sciences, IRCCS Istituto Clinico Humanitas, Rozzano, Italy
| | - Robin Meng
- Oncology Early Development, Sanofi Genzyme, Cambridge, Massachusetts, USA
| | - Giovanni Abbadessa
- Oncology Early Development, Sanofi Genzyme, Cambridge, Massachusetts, USA
| | - Helen Lee
- Oncology Early Development, Sanofi Genzyme, Cambridge, Massachusetts, USA
| | - Yingwen Dong
- Biostatistics Oncology Late Phase, Sanofi, Cambridge, Massachusetts, USA
| | - Marielle Chiron
- Research and Development, Sanofi-Aventis, Vitry-sur-Seine, France
| | - Rui Wang
- Precision Medicine, Sanofi Genzyme, Cambridge, Massachusetts, USA
| | | | - Lucie Lépine
- Pharmacokinetics, Excelya on behalf of Sanofi, Alfortville, France
| | - Johann de Bono
- Experimental Cancer Medicine, The Institute of Cancer Research, London, UK
- Experimental Cancer Medicine, Royal Marsden Hospital NHS Trust, London, UK
| |
Collapse
|
13
|
Palicelli A, Bonacini M, Croci S, Bisagni A, Zanetti E, De Biase D, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Ascani S, De Leo A, Gandhi J, Tafuni A, Melli B. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 7: PD-L1 Expression in Liquid Biopsy. J Pers Med 2021; 11:1312. [PMID: 34945784 PMCID: PMC8709072 DOI: 10.3390/jpm11121312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy is an accessible, non-invasive diagnostic tool for advanced prostate cancer (PC) patients, potentially representing a real-time monitoring test for tumor evolution and response to treatment through the analysis of circulating tumor cells (CTCs) and exosomes. We performed a systematic literature review (PRISMA guidelines) to describe the current knowledge about PD-L1 expression in liquid biopsies of PC patients: 101/159 (64%) cases revealed a variable number of PD-L1+ CTCs. Outcome correlations should be investigated in larger series. Nuclear PD-L1 expression by CTCs was occasionally associated with worse prognosis. Treatment (abiraterone, enzalutamide, radiotherapy, checkpoint-inhibitors) influenced PD-L1+ CTC levels. Discordance in PD-L1 status was detected between primary vs. metastatic PC tissue biopsies and CTCs vs. corresponding tumor tissues. PD-L1 is also released by PC cells through soluble exosomes, which could inhibit the T cell function, causing immune evasion. PD-L1+ PC-CTC monitoring and genomic profiling may better characterize the ongoing aggressive PC forms compared to PD-L1 evaluation on primary tumor biopsies/prostatectomy specimens (sometimes sampled a long time before recurrence/progression). Myeloid-derived suppressor cells and dendritic cells (DCs), which may have immune-suppressive effects in tumor microenvironment, have been found in PC patients circulation, sometimes expressing PD-L1. Occasionally, their levels correlated to clinical outcome. Enzalutamide-progressing castration-resistant PC patients revealed increased PD-1+ T cells and circulating PD-L1/2+ DCs.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Alessandro Tafuni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
14
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Nicoli D, Farnetti E, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 5: Epigenetic Regulation of PD-L1. Int J Mol Sci 2021; 22:12314. [PMID: 34830196 PMCID: PMC8619683 DOI: 10.3390/ijms222212314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alterations (including DNA methylation or miRNAs) influence oncogene/oncosuppressor gene expression without changing the DNA sequence. Prostate cancer (PC) displays a complex genetic and epigenetic regulation of cell-growth pathways and tumor progression. We performed a systematic literature review (following PRISMA guidelines) focused on the epigenetic regulation of PD-L1 expression in PC. In PC cell lines, CpG island methylation of the CD274 promoter negatively regulated PD-L1 expression. Histone modifiers also influence the PD-L1 transcription rate: the deletion or silencing of the histone modifiers MLL3/MML1 can positively regulate PD-L1 expression. Epigenetic drugs (EDs) may be promising in reprogramming tumor cells, reversing epigenetic modifications, and cancer immune evasion. EDs promoting a chromatin-inactive transcriptional state (such as bromodomain or p300/CBP inhibitors) downregulated PD-L1, while EDs favoring a chromatin-active state (i.e., histone deacetylase inhibitors) increased PD-L1 expression. miRNAs can regulate PD-L1 at a post-transcriptional level. miR-195/miR-16 were negatively associated with PD-L1 expression and positively correlated to longer biochemical recurrence-free survival; they also enhanced the radiotherapy efficacy in PC cell lines. miR-197 and miR-200a-c positively correlated to PD-L1 mRNA levels and inversely correlated to the methylation of PD-L1 promoter in a large series. miR-570, miR-34a and miR-513 may also be involved in epigenetic regulation.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Davide Nicoli
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Enrico Farnetti
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
15
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Copelli V, Bernardelli G, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 3: PD-L1, Intracellular Signaling Pathways and Tumor Microenvironment. Int J Mol Sci 2021; 22:12330. [PMID: 34830209 PMCID: PMC8618001 DOI: 10.3390/ijms222212330] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) includes immune (T, B, NK, dendritic), stromal, mesenchymal, endothelial, adipocytic cells, extracellular matrix, and cytokines/chemokines/soluble factors regulating various intracellular signaling pathways (ISP) in tumor cells. TME influences the survival/progression of prostate cancer (PC), enabling tumor cell immune-evasion also through the activation of the PD-1/PD-L1 axis. We have performed a systematic literature review according to the PRISMA guidelines, to investigate how the PD-1/PD-L1 pathway is influenced by TME and ISPs. Tumor immune-escape mechanisms include suppression/exhaustion of tumor infiltrating cytotoxic T lymphocytes, inhibition of tumor suppressive NK cells, increase in immune-suppressive immune cells (regulatory T, M2 macrophagic, myeloid-derived suppressor, dendritic, stromal, and adipocytic cells). IFN-γ (the most investigated factor), TGF-β, TNF-α, IL-6, IL-17, IL-15, IL-27, complement factor C5a, and other soluble molecules secreted by TME components (and sometimes increased in patients' serum), as well as and hypoxia, influenced the regulation of PD-L1. Experimental studies using human and mouse PC cell lines (derived from either androgen-sensitive or androgen-resistant tumors) revealed that the intracellular ERK/MEK, Akt-mTOR, NF-kB, WNT and JAK/STAT pathways were involved in PD-L1 upregulation in PC. Blocking the PD-1/PD-L1 signaling by using immunotherapy drugs can prevent tumor immune-escape, increasing the anti-tumor activity of immune cells.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Centre, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Valerio Copelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Giuditta Bernardelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
16
|
Palicelli A, Bonacini M, Croci S, Magi-Galluzzi C, Cañete-Portillo S, Chaux A, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Athanazio D, Gandhi J, Cavazza A, Santandrea G, Tafuni A, Zanelli M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 1: Focus on Immunohistochemical Results with Discussion of Pre-Analytical and Interpretation Variables. Cells 2021; 10:3166. [PMID: 34831389 PMCID: PMC8625301 DOI: 10.3390/cells10113166] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy targeting the PD-1-PD-L1 axis yielded good results in treating different immunologically ''hot'' tumors. A phase II study revealed good therapeutic activity of pembrolizumab in selected prostatic carcinoma (PC)-patients. We performed a systematic literature review (PRISMA guidelines), which analyzes the immunohistochemical expression of PD-L1 in human PC samples and highlights the pre-analytical and interpretation variables. Interestingly, 29% acinar PCs, 7% ductal PCs, and 46% neuroendocrine carcinomas/tumors were PD-L1+ on immunohistochemistry. Different scoring methods or cut-off criteria were applied on variable specimen-types, evaluating tumors showing different clinic-pathologic features. The positivity rate of different PD-L1 antibody clones in tumor cells ranged from 3% (SP142) to 50% (ABM4E54), excluding the single case tested for RM-320. The most tested clone was E1L3N, followed by 22C3 (most used for pembrolizumab eligibility), SP263, SP142, and 28-8, which gave the positivity rates of 35%, 11-41% (depending on different scoring systems), 6%, 3%, and 15%, respectively. Other clones were tested in <200 cases. The PD-L1 positivity rate was usually higher in tumors than benign tissues. It was higher in non-tissue microarray specimens (41-50% vs. 15%), as PC cells frequently showed heterogenous or focal PD-L1-staining. PD-L1 was expressed by immune or stromal cells in 12% and 69% cases, respectively. Tumor heterogeneity, inter-institutional preanalytics, and inter-observer interpretation variability may account for result biases.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Cristina Magi-Galluzzi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies Norte University, Asunción 1614, Paraguay;
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | | | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| |
Collapse
|
17
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 4: Experimental Treatments in Pre-Clinical Studies (Cell Lines and Mouse Models). Int J Mol Sci 2021; 22:12297. [PMID: 34830179 PMCID: PMC8618402 DOI: 10.3390/ijms222212297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
In prostate cancer (PC), the PD-1/PD-L1 axis regulates various signaling pathways and it is influenced by extracellular factors. Pre-clinical experimental studies investigating the effects of various treatments (alone or combined) may discover how to overcome the immunotherapy-resistance in PC-patients. We performed a systematic literature review (PRISMA guidelines) to delineate the landscape of pre-clinical studies (including cell lines and mouse models) that tested treatments with effects on PD-L1 signaling in PC. NF-kB, MEK, JAK, or STAT inhibitors on human/mouse, primary/metastatic PC-cell lines variably down-modulated PD-L1-expression, reducing chemoresistance and tumor cell migration. If PC-cells were co-cultured with NK, CD8+ T-cells or CAR-T cells, the immune cell cytotoxicity increased when PD-L1 was downregulated (opposite effects for PD-L1 upregulation). In mouse models, radiotherapy, CDK4/6-inhibitors, and RB deletion induced PD-L1-upregulation, causing PC-immune-evasion. Epigenetic drugs may reduce PD-L1 expression. In some PC experimental models, blocking only the PD-1/PD-L1 pathway had limited efficacy in reducing the tumor growth. Anti-tumor effects could be increased by combining the PD-1/PD-L1 blockade with other approaches (inhibitors of tyrosine kinase, PI3K/mTOR or JAK/STAT3 pathways, p300/CBP; anti-RANKL and/or anti-CTLA-4 antibodies; cytokines; nitroxoline; DNA/cell vaccines; radiotherapy/Radium-223).
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
18
|
Palicelli A, Bonacini M, Croci S, Magi-Galluzzi C, Cañete-Portillo S, Chaux A, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Zanelli M, Bonasoni MP, De Marco L, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Santandrea G, Gelli MC, Tafuni A, Ragazzi M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 2: Clinic-Pathologic Correlations. Cells 2021; 10:3165. [PMID: 34831388 PMCID: PMC8618408 DOI: 10.3390/cells10113165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Many studies have investigated the potential prognostic and predictive role of PD-L1 in prostatic carcinoma (PC). We performed a systematic literature review (PRISMA guidelines) to critically evaluate human tissue-based studies (immunohistochemistry, molecular analysis, etc.), experimental research (cell lines, mouse models), and clinical trials. Despite some controversial results and study limitations, PD-L1 expression by tumor cells may be related to clinic-pathologic features of adverse outcome, including advanced tumor stage (high pT, presence of lymph node, and distant metastases), positivity of surgical margins, high Grade Group, and castration resistance. Different PD-L1 positivity rates may be observed in matched primary PCs and various metastatic sites of the same patients. Over-fixation, type/duration of decalcification, and PD-L1 antibody clone may influence the immunohistochemical analysis of PD-L1 on bone metastases. PD-L1 seemed expressed more frequently by castration-resistant PCs (49%) as compared to hormone-sensitive PCs (17%). Some series found that PD-L1 positivity was associated with decreased time to castration resistance. Treatment with ipilimumab, cyclophosphamide/GVAX/degarelix, or degarelix alone may increase PD-L1 expression. Correlation of PD-L1 positivity with overall survival and outcomes related to tumor recurrence were rarely investigated; the few analyzed series produced conflicting results and sometimes showed limitations. Further studies are required. The testing and scoring of PD-L1 should be standardized.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Cristina Magi-Galluzzi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Loredana De Marco
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Maria Carolina Gelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| |
Collapse
|
19
|
Antognelli C, Mandarano M, Prosperi E, Sidoni A, Talesa VN. Glyoxalase-1-Dependent Methylglyoxal Depletion Sustains PD-L1 Expression in Metastatic Prostate Cancer Cells: A Novel Mechanism in Cancer Immunosurveillance Escape and a Potential Novel Target to Overcome PD-L1 Blockade Resistance. Cancers (Basel) 2021; 13:cancers13122965. [PMID: 34199263 PMCID: PMC8232032 DOI: 10.3390/cancers13122965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Metastatic prostate cancer (mPCa) is a well-known lethal condition. One of the mechanisms through which PCa cells become so aggressive is the avoidance of immune surveillance that further fosters cell growth, invasion, and migration. PD-L1/PD-1 axis plays a crucial role in inhibiting cytotoxic T cells and maintaining an immunosuppressive cancer microenvironment. Hence, targeting PD-L1/PD-1 axis represents a potential way to control mPCa. Unfortunately, mPCa patients do not respond to PD-L1/PD-1 axis blockade, focusing the research to understand the possible underpinning mechanisms. Our results provide a novel pathway taking part in cancer immunosurveillance escape and in the above-mentioned immunotherapy resistance, which provides the basis for additional studies aimed at developing novel therapeutic opportunities, possibly also in combination with antibodies blocking PD-L1/PD-1 axis. Abstract Metastatic prostate cancer (mPCa) is a disease for which to date there is not curative therapy. Even the recent and attractive immunotherapeutic approaches targeting PD-L1, an immune checkpoint protein which helps cancer cells to escape from immunosurveillance, have proved ineffective. A better understanding of the molecular mechanisms contributing to keep an immunosuppressive microenvironment associated with tumor progression and refractoriness to PD-L1 inhibitors is urgently needed. In the present study, by using gene silencing and specific activators or scavengers, we demonstrated, in mPCa cell models, that methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs), especially 5-hydro-5-methylimidazolone (MG-H1), and its metabolizing enzyme, glyoxalase 1 (Glo1), contribute to maintain an immunosuppressive microenvironment through MG-H1-mediated PD-L1 up-regulation and to promote cancer progression. Moreover, our findings suggest that this novel mechanism might be responsible, at least in part, of mPCa resistance to PD-L1 inhibitors, such as atezolizumab, and that targeting it may sensitize cells to this PD-L1 inhibitor. These findings provide novel insights into the mechanisms of mPCa immunosurveillance escape and help in providing the basis to foster in vivo research toward novel therapeutic strategies for immunotherapy of mPCa.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
- Correspondence: ; Tel.: +39-075-585-8354
| | - Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (M.M.); (E.P.); (A.S.)
| | - Enrico Prosperi
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (M.M.); (E.P.); (A.S.)
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (M.M.); (E.P.); (A.S.)
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
| |
Collapse
|
20
|
Adenocarcinoma of the Prostate: Future Directions for Translational Science. Prostate Cancer 2021. [DOI: 10.36255/exonpublications.prostatecancer.translationalscience.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
21
|
Derlin T, Krischke E, Ross TL, Bengel FM. Deepening of response to prostate-specific membrane antigen ligand-targeted radioligand therapy beyond end of treatment. Eur J Nucl Med Mol Imaging 2021; 48:3343-3344. [PMID: 33796886 PMCID: PMC8426232 DOI: 10.1007/s00259-021-05335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/23/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Elke Krischke
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|