1
|
Neibart SS, Moningi S, Jethwa KR. Stereotactic Body Radiation Therapy for Locally Advanced Pancreatic Cancer. Clin Exp Gastroenterol 2024; 17:213-225. [PMID: 39050120 PMCID: PMC11268661 DOI: 10.2147/ceg.s341189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction For patients with locally advanced pancreatic cancer (LAPC), who are candidates for radiation therapy, dose-escalated radiation therapy (RT) offers unique benefits over traditional radiation techniques. In this review, we present a historical perspective of dose-escalated RT for LAPC. We also outline advances in SBRT delivery, one form of dose escalation and a framework for selecting patients for treatment with SBRT. Results Techniques for delivering SBRT to patients with LAPC have evolved considerably, now allowing for dose-escalation and superior respiratory motion management. At the same time, advancements in systemic therapy, particularly the use of induction multiagent chemotherapy, have called into question which patients would benefit most from radiation therapy. Multidisciplinary assessment of patients with LAPC is critical to guide management and select patients for local therapy. Results from ongoing trials will establish if there is a role of dose-escalated SBRT after induction chemotherapy for carefully selected patients. Conclusion Patients with LAPC have more therapeutic options than ever before. Careful selection for SBRT may enhance patient outcomes, pending the maturation of pivotal clinical trials.
Collapse
Affiliation(s)
- Shane S Neibart
- Department of Radiation Oncology, Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shalini Moningi
- Department of Radiation Oncology, Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Yang J, Qu X, Jiang F, Qiao HM, Zhao J, Zhang JR, Yan LJ, Zheng AJ, Ning P. Neoadjuvant chemotherapy may be the best neoadjuvant therapy modality for non-metastatic pancreatic cancer: a population based study. Front Oncol 2024; 14:1370009. [PMID: 38665957 PMCID: PMC11045179 DOI: 10.3389/fonc.2024.1370009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Objective Currently, there are no studies showing which neoadjuvant therapy modality can provide better prognosis for patients after pancreatic cancer surgery. This study explores the optimal neoadjuvant therapy model by comparing the survival differences between patients with non-metastatic pancreatic cancer (cT1-4N0-1M0) who received neoadjuvant chemotherapy (NACT) and neoadjuvant chemoradiotherapy (NARCT). Methods We retrospectively analyzed the clinical data of 723 patients with cT1-4N0-1M0 pancreatic cancer who received neoadjuvant therapy before surgery from the Surveillance, Epidemiology, and End Results (SEER) database. After propensity score matching (PSM), we compared the effects of NACT and NARCT on overall survival (OS) and cancer-specific survival (CSS) in patients with non-metastatic pancreatic cancer, and then performed subgroup analyze. Finally, we used univariate and multivariate Cox regression analysis to explore potential risk factors for OS and CSS in patients with non-metastatic pancreatic cancer treated with preoperative neoadjuvant therapy. Result Before PSM, mOS (30.0 months VS 26.0 months, P=0.122) and mCSS (30.0 months VS 26.0 months, P=0.117) were better in patients with non-metastatic pancreatic cancer treated with NACT compared with NARCT, but this was not statistically significant (P>0.05). After PSM, mOS (30.0 months VS 25.0 months, P=0.032) and mCSS (33.0 months VS 26.0 months, P=0.028) were better in patients with non-metastatic pancreatic cancer treated with NACT compared with NARCT, and this difference was statistically significant (P<0.05). Multivariate Cox regression analysis results showed that age, lymph node positivity, and NARCT were independent adverse prognostic factors for OS and CSS in patients with non-metastatic pancreatic cancer. Conclusion The study results show that compared with NARCT, NACT is the best preoperative neoadjuvant therapy mode for patients with non-metastatic pancreatic cancer. This result still needs to be confirmed by more prospective randomized controlled trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - An-jie Zheng
- Department of Oncology, Baoji Gaoxin Hospital, Baoji, China
| | - Peng Ning
- Department of Oncology, Baoji Gaoxin Hospital, Baoji, China
| |
Collapse
|
3
|
Bouchart C, Navez J, Borbath I, Geboes K, Vandamme T, Closset J, Moretti L, Demetter P, Paesmans M, Van Laethem JL. Preoperative treatment with mFOLFIRINOX or Gemcitabine/Nab-paclitaxel +/- isotoxic high-dose stereotactic body Radiation Therapy (iHD-SBRT) for borderline resectable pancreatic adenocarcinoma (the STEREOPAC trial): study protocol for a randomised comparative multicenter phase II trial. BMC Cancer 2023; 23:891. [PMID: 37735634 PMCID: PMC10512504 DOI: 10.1186/s12885-023-11327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND For patients with pancreatic ductal adenocarcinoma (PDAC), surgical resection remains the only potentially curative treatment. Surgery is generally followed by postoperative chemotherapy associated with improved survival, yet neoadjuvant therapy is a rapidly emerging concept requiring to be explored and validated in terms of treatment options and oncological outcomes. In this context, stereotactic body radiation (SBRT) appears feasible and can be safely integrated into a neoadjuvant chemotherapy regimen of modified FOLFIRINOX (mFFX) with promising benefits in terms of R0 resection, local control and survival. However, the optimal therapeutic sequence is still not known, especially for borderline resectable PDAC, and the role of adding SBRT to chemotherapy in the neoadjuvant setting needs to be evaluated in randomised controlled trials. The aim of the STEREOPAC trial is to assess the impact and efficacy of adding isotoxic high-dose SBRT (iHD-SBRT) to neoadjuvant mFFX or Gemcitabine/Nab-Paclitaxel (Gem/Nab-P) in patients with borderline resectable PDAC. METHODS This is a randomised comparative multicentre phase II trial, planning to enrol patients (n = 256) diagnosed with a borderline resectable biopsy-confirmed PDAC. Patients will receive 4 cycles of mFFX (or 6 doses of Gem/Nab-P). After full disease restaging, non-progressive patients will be randomised for receiving either 4 additional mFFX cycles (or 6 doses of Gem/Nab-P) (Arm A), or 2 mFFX cycles (or 3 doses of Gem/Nab-P) + iHD-SBRT (35 to 55 Gy in 5 fractions) + 2 mFFX cycles (or 3 doses of Gem/Nab-P) (Arm B). Then curative surgery will be performed followed by adjuvant chemotherapy according to patient's condition. The co-primary endpoints are R0 resection and disease-free survival after the complete sequence strategy. The secondary endpoints include resection rate, overall survival, locoregional failure / distant metastasis free interval, pathologic complete response, toxicity, postoperative complications and quality of life assessment. DISCUSSION This trial will help define the best neoadjuvant treatment sequence for borderline resectable PDAC and aims to evaluate if a total neoadjuvant treatment integrating iHD-SBRT improves the patients' oncological outcomes. TRIAL REGISTRATION The study was registered at ClinicalTrails.gov (NCT05083247) on October 19th, 2021, and in the Clinical Trials Information System (CTIS) EU CT database (2022-501181-22-01) on July 2022.
Collapse
Affiliation(s)
- Christelle Bouchart
- Department of Radiation Oncology, Université Libre de Bruxelles (ULB), Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-biliary-pancreatic surgery, Hopital Universitaire de Bruxelles H.U.B. - CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ivan Borbath
- Department of Gastroenterology and Digestive Oncology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Karen Geboes
- Department of Gastroenterology, Digestive Oncology, UZ Gent, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Timon Vandamme
- Department of Oncology, UZ Antwerpen, Drie Eikenstraat 655, 2650 Antwerpen, Belgium
| | - Jean Closset
- Department of Hepato-biliary-pancreatic surgery, Hopital Universitaire de Bruxelles H.U.B. - CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Université Libre de Bruxelles (ULB), Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Pieter Demetter
- Department of Pathology, Université Libre de Bruxelles (ULB), Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Marianne Paesmans
- Information Management Unit, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B., Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
4
|
Hooshangnejad H, Miles D, Hill C, Narang A, Ding K, Han-Oh S. Inter-Breath-Hold Geometric and Dosimetric Variations in Organs at Risk during Pancreatic Stereotactic Body Radiotherapy: Implications for Adaptive Radiation Therapy. Cancers (Basel) 2023; 15:4332. [PMID: 37686608 PMCID: PMC10486406 DOI: 10.3390/cancers15174332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death, with nearly 60,000 cases each year and less than a 10% 5-year overall survival rate. Radiation therapy (RT) is highly beneficial as a local-regional anticancer treatment. As anatomical variation is of great concern, motion management techniques, such as DIBH, are commonly used to minimize OARs toxicities; however, the variability between DIBHs has not been well studied. Here, we present an unprecedented systematic analysis of patients' anatomical reproducibility over multiple DIBH motion-management technique uses for pancreatic cancer RT. We used data from 20 patients; four DIBH scans were available for each patient to design 80 SBRT plans. Our results demonstrated that (i) there is considerable variation in OAR geometry and dose between same-subject DIBH scans; (ii) the RT plan designed for one scan may not be directly applicable to another scan; (iii) the RT treatment designed using a DIBH simulation CT results in different dosimetry in the DIBH treatment delivery; and (iv) this confirms the importance of adaptive radiation therapy (ART), such as MR-Linacs, for pancreatic RT delivery. The ART treatment delivery technique can account for anatomical variation between referenced and scheduled plans, and thus avoid toxicities of OARs because of anatomical variations between DIBH patient setups.
Collapse
Affiliation(s)
- Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Devin Miles
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Colin Hill
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Amol Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Sarah Han-Oh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| |
Collapse
|
5
|
Malhotra P, Palanisamy R, Caparros-Martin JA, Falasca M. Bile Acids and Microbiota Interplay in Pancreatic Cancer. Cancers (Basel) 2023; 15:3573. [PMID: 37509236 PMCID: PMC10377396 DOI: 10.3390/cancers15143573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence suggests the involvement of the microbiota, including oral, intra-tumoral and gut, in pancreatic cancer progression and response to therapy. The gut microbiota modulates the bile acid pool and is associated with maintaining host physiology. Studies have shown that the bile acid/gut microbiota axis is dysregulated in pancreatic cancer. Bile acid receptor expression and bile acid levels are dysregulated in pancreatic cancer as well. Studies have also shown that bile acids can cause pancreatic cell injury and facilitate cancer cell proliferation. The microbiota and its metabolites, including bile acids, are also altered in other conditions considered risk factors for pancreatic cancer development and can alter responses to chemotherapeutic treatments, thus affecting patient outcomes. Altogether, these findings suggest that the gut microbial and/or bile acid profiles could also serve as biomarkers for pancreatic cancer detection. This review will discuss the current knowledge on the interaction between gut microbiota interaction and bile acid metabolism in pancreatic cancer.
Collapse
Affiliation(s)
- Pratibha Malhotra
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Ranjith Palanisamy
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | | | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
6
|
Huang X, Hooshangnejad H, China D, Feng Z, Lee J, Bell MAL, Ding K. Ultrasound Imaging with Flexible Array Transducer for Pancreatic Cancer Radiation Therapy. Cancers (Basel) 2023; 15:3294. [PMID: 37444403 DOI: 10.3390/cancers15133294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Pancreatic cancer with less than 10% 3-year survival rate is one of deadliest cancer types and greatly benefits from enhanced radiotherapy. Organ motion monitoring helps spare the normal tissue from high radiation and, in turn, enables the dose escalation to the target that has been shown to improve the effectiveness of RT by doubling and tripling post-RT survival rate. The flexible array transducer is a novel and promising solution to address the limitation of conventional US probes. We proposed a novel shape estimation for flexible array transducer using two sequential algorithms: (i) an optical tracking-based system that uses the optical markers coordinates attached to the probe at specific positions to estimate the array shape in real-time and (ii) a fully automatic shape optimization algorithm that automatically searches for the optimal array shape that results in the highest quality reconstructed image. We conducted phantom and in vivo experiments to evaluate the estimated array shapes and the accuracy of reconstructed US images. The proposed method reconstructed US images with low full-width-at-half-maximum (FWHM) of the point scatters, correct aspect ratio of the cyst, and high-matching score with the ground truth. Our results demonstrated that the proposed methods reconstruct high-quality ultrasound images with significantly less defocusing and distortion compared with those without any correction. Specifically, the automatic optimization method reduced the array shape estimation error to less than half-wavelength of transmitted wave, resulting in a high-quality reconstructed image.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Debarghya China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ziwei Feng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Muyinatu A Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Kamel R, Dennis K, Doody J, Pantarotto J. Ablative vs. Non-Ablative Radiotherapy in Palliating Locally Advanced Pancreatic Cancer: A Single Institution Experience and a Systematic Review of the Literature. Cancers (Basel) 2023; 15:cancers15113016. [PMID: 37296977 DOI: 10.3390/cancers15113016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
We studied the dose-local control (LC) relationship in ablative vs. non-ablative radiotherapy in a non-radical treatment setting of "locally advanced pancreatic cancer (LAPC)" by comparing our patients (n = 89) treated with SBRT on the CyberKnife unit vs. conventional radiation between January 2005 and January 2021, and by reviewing the literature. A systematic search was performed leveraging Medline for references on SBRT use in pancreatic cancer without date terms or language restrictions. A total of 3702 references were identified and the search was then repeated in Embase and the Cochrane database. Ultimately, 12 studies were eligible for inclusion, which either compared SBRT to conventional radiation, or SBRT use in dose escalation for primary LAPC in a non-neoadjuvant setting. Our cohort's median overall survival was 152 days (CI 95%, 118-185); including 371 days (CI 95%, 230-511) vs. 126 days (CI 95%, 90-161) favoring SBRT, p = 0.004. The median time to local progression was 170 days (48-923) for SBRT vs. 107 days (27-489) for the non-ablative group. In our SBRT patients, no local progressions were seen with BED10 > 60 Gy. Even when palliating LAPC, SBRT should be considered as an alternative to conventional radiation, especially in patients with a low disease burden. BED10 ≥ 60-70 Gy offers better local control without increasing toxicity rates. Less local progression may provide a better quality of life to those patients who already have a short life expectancy.
Collapse
Affiliation(s)
- Randa Kamel
- Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Kristopher Dennis
- Department of Radiation Oncology, The Ottawa Hospital, Smyth Road 501, Ottawa, ON K1H 8L6, Canada
| | - Janice Doody
- Department of Radiation Oncology, The Ottawa Hospital, Smyth Road 501, Ottawa, ON K1H 8L6, Canada
| | - Jason Pantarotto
- Department of Radiation Oncology, The Ottawa Hospital, Smyth Road 501, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
8
|
Liu X, Tao Y, Yang B, Pang T, Yu L, Li W, Feng S, Liu R, Li J, Liu Z, Qiu J. A novel X-Ray and γ-Ray combination strategy for potential dose escalation in patients with locally advanced pancreatic cancer. Med Phys 2023; 50:1855-1864. [PMID: 36458937 DOI: 10.1002/mp.16142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Treatment of locally advanced pancreatic cancer (LAPC) has long been calling for advances in technology of radiotherapy. Patients who received radiotherapy still had high risks of local recurrence, while suffering from gastrointestinal side effects. Based on the inherent characteristics of the x-ray and γ-Ray radiation techniques, here we proposed and investigated an unexplored radiation therapy. PURPOSE To investigate the potential clinical benefit of a novel x-ray and γ-Ray combination radiation technique in patients with LAPC. METHODS Retrospective intensity-modulated radiotherapy (IMRT) treatment plans of 10 LAPC patients were randomly selected to compare with dual-modality plans. The prescribed dose to PGTV was 60.2 Gy. The PGTV dose was further escalated in dual-modality plan while maintaining clinically tolerable dose to organs at risk (OARs). Dosimetric comparisons were made and analyzed for three treatment plans (tomotherapy, standard dual-modality plan, escalated dual-modality plan) to assess the ability to increase dose to target volume while minimizing dose in adjacent OARs. Finally, radiobiological models were utilized for comparison. RESULTS All strategies resulted in dosimetrically acceptable plans. Dual-modality plans were present with similar conformity index (CI) and significantly lower gradient index (GI) compared with tomotherapy (3.64 ± 0.37 vs. 4.14 ± 0.61, p = 0.002; 3.64 ± 0.42 vs. 4.14 ± 0.61, p = 0.003). Dmean of PGTV (65.46 ± 3.13 vs. 61.56 ± 1.00, p = 0.009; 77.98 ± 5.86 vs. 61.56 ± 1.00, p < 0.001) and PCTV (55.04 ± 2.14 vs. 53.93 ± 1.67, p = 0.016; 58.24 ± 3.24 vs. 53.93 ± 1.67, p = 0.001) were significantly higher, while Dmean of the stomach was reduced in both dual-modality plans (17.98 ± 10.23 vs. 19.34 ± 9.75, p = 0.024; 17.62 ± 9.92 vs. 19.34 ± 9.75, p = 0.040). The lower V30Gy in the liver (4.83 ± 5.87 vs. 6.23 ± 6.68, p = 0.015; 4.90 ± 5.93 vs. 6.23 ± 6.68, p = 0.016) and lower V45Gy of the small intestine (3.35 ± 3.30 vs. 4.06 ± 3.87, p = 0.052) were found in dual-modality plans. Meanwhile, radiobiological models demonstrated higher probability of tumor control (29.27% ± 9.61% vs. 18.34% ± 4.70%, p < 0.001; 44.67% ± 18.16% vs. 18.34% ± 4.70%, p = 0.001) and lower probability of small intestine complication (2.16% ± 2.30% vs. 1.25% ± 2.72%, p = 0.048) in favor of dual-modality strategy. CONCLUSIONS A novel dual-modality strategy of x-ray and γ-Ray combination radiation appears reliable for target dose escalation and normal tissue dose reduction. This strategy might be beneficial for local tumor control and the protection of normal organs in patients with LAPC.
Collapse
Affiliation(s)
- Xia Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinjie Tao
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingtian Pang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lang Yu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbo Li
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siqi Feng
- Our United Corporation, Xi'an, Shaanxi, China
| | - Renqing Liu
- Our United Corporation, Xi'an, Shaanxi, China
| | - Jinsheng Li
- Our United Corporation, Xi'an, Shaanxi, China
| | - Zhikai Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Qiu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Zhu X, Liu W, Cao Y, Ju X, Zhao X, Jiang L, Ye Y, Zhang H. Effect of stereotactic body radiotherapy dose escalation plus pembrolizumab and trametinib versus stereotactic body radiotherapy dose escalation plus gemcitabine for locally recurrent pancreatic cancer after surgical resection on survival outcomes: A secondary analysis of an open-label, randomised, controlled, phase 2 trial. EClinicalMedicine 2023; 55:101764. [PMID: 36471691 PMCID: PMC9718952 DOI: 10.1016/j.eclinm.2022.101764] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND There are a lack of studies about whether radiation dose escalation synergizes with immunotherapy and targeted therapy in pancreatic cancer. In this study, we performed a secondary analysis to investigate whether a high radiation dose rather than a low dose plus pembrolizumab and trametinib provided improved survival compared with gemcitabine in post-operative locally recurrent pancreatic cancer. METHODS In this open-label, randomised, controlled, phase 2 trial, eligible patients with pancreatic ductal adenocarcinoma characterized by mutant KRAS and positive immunohistochemical staining of PD-L1 and documented post-operative local recurrence were randomly assigned using an interactive voice or web response system, without stratification, to receive stereotactic body radiation therapy (SBRT) with doses ranging from 35 to 40Gy in five fractions, pembrolizumab 200 mg every three weeks and oral trametinib 2 mg once daily (SBRT + K + M) or SBRT and gemcitabine (1000 mg/m2) on day 1 and 8 of each 21-day cycle (SBRT + G) until disease progression in our hospital in China. Those had radiotherapy, immunotherapy or targeted therapy were excluded. Patients and investigators were not masked to the assignment. In each arm, patients were stratified based on biologically effective dose (BED10; α/β = 10) of 60-65Gy and BED10 ≥65Gy. The primary endpoint was overall survival (OS) and the secondary endpoint was progression-free survival (PFS). All patients received their assigned treatment and were included in the efficacy and safety analyses. This study is registered with ClinicalTrials.gov, NCT02704156. FINDINGS Between Oct 10, 2016, and Oct 28, 2017, 147 of 170 randomly assigned participants were eligible for inclusion in this analysis. In BED10 of 60-65Gy group, 34 and 29 patients had SBRT + G and SBRT + K + M, respectively. While there were 42 and 42 patients with SBRT + G and SBRT + K + M in BED10 ≥65Gy group. Patients in the SBRT + K + M group had longer OS compared with the SBRT + G group, but this did not reach statistical significance (median: 15.1 vs. 12.4 months, HR 0.67 [95%CI 0.43-1.04]; p = 0.071). For BED10 of 60-65Gy, OS was similar between patients in the SBRT + K + M and SBRT + G groups (median, 13.6 vs. 12.4 months; HR 0.69 [95% CI 0.41-1.16]; p = 0.16). For BED10 of ≥65Gy, PFS was prolonged with SBRT + K + M versus SBRT + G (median: 8.6 vs. 5.0 months, HR 0.48 [95% CI 0.31-0.77]; p = 0.0021). For BED10 of 60-65Gy, there was no significant difference in PFS between the two groups (PFS: median, 7.9 vs. 4.3 months; HR 0.69 [95% CI 0.42-1.15]; p = 0.16). In BED10 of 60-65Gy group, 7 (20.6%) and 8 patients (27.6%) with SBRT + G and SBRT + K + M had grade 3 or 4 adverse events (p = 0.52). In BED10 ≥65Gy group, 8 (19.0%) and 12 patients (28.6%) with SBRT + G and SBRT + K + M had grade 3 or 4 adverse events (p = 0.31). No treatment-related death occurred. INTERPRETATION Dose escalation of SBRT may improve PFS with pembrolizumab and trametnib versus gemcitabine for patients with post-operative locally recurrent pancreatic cancer. However, benefits of PFS did not translate into longer OS. This may be ascribed to small sample size and post-hoc analysis that was not powered to determine the significance. Therefore, synergy of high dose of SBRT with immunotherapy and targeted therapy required further investigations in phase 3 trials. FUNDING Shanghai Shenkang Centre and Changhai Hospital.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
- Corresponding author. 168 Changhai Road, Shanghai, 200433, China.
| | - Wenyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xiaoping Ju
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xianzhi Zhao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Lingong Jiang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yusheng Ye
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Manderlier M, Navez J, Hein M, Engelholm JL, Closset J, Bali MA, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Isotoxic High-Dose Stereotactic Body Radiotherapy (iHD-SBRT) Versus Conventional Chemoradiotherapy for Localized Pancreatic Cancer: A Single Cancer Center Evaluation. Cancers (Basel) 2022; 14:cancers14235730. [PMID: 36497212 PMCID: PMC9741086 DOI: 10.3390/cancers14235730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Given the lack of direct comparative evidence, we aimed to compare the oncological outcomes of localized pancreatic ductal adenocarcinoma (PDAC) treated in the same tertiary cancer center with isotoxic high-dose stereotactic body radiotherapy (iHD-SBRT) or conventional chemoradiotherapy (CRT). Biopsy-proven borderline/locally advanced patients treated with iHD-SBRT (35 Gy in 5 fractions with a simultaneous integrated boost up to 53 Gy) or CRT (45−60 Gy in 25−30 fractions) were retrospectively included from January 2006 to January 2021. The median overall survival (mOS) was evaluated trough uni- and multivariate analyses. The progression free survival (PFS) and the 1-year local control (1-yLC) were also reported. Eighty-two patients were included. The median follow-up was 19.7 months. The mOS was in favour of the iHD-SBRT group (22.5 vs. 15.9 months, p < 0.001), including after multivariate analysis (HR 0.39 [CI95% 0.18−0.83], p = 0.014). The median PFS and the 1-yLC were also significantly better for iHD-SBRT (median PFS: 16.7 vs. 11.5 months, p = 0.011; 1-yLC: 75.8 vs. 39.3%, p = 0.004). In conclusion, iHD-SBRT is a promising RT option and may offer an improvement in OS in comparison to CRT for localized PDAC. Further validation is required to confirm the exact role of iHD-SBRT and the optimal therapeutic sequence for the treatment of localized PDAC.
Collapse
Affiliation(s)
- Martin Manderlier
- Department of Radiation Oncology, HUB Institut Jules Bordet, Université Libre de Bruxelles, Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, CHU de Charleroi, Boulevard Zoé Drion 1, 6000 Charleroi, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hôpital Universitaire Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Matthieu Hein
- Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jean-Luc Engelholm
- Department of Radiology, Institut Jules Bordet, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Department of Radiology, Hopitaux Iris Sud, 1190 Brussels, Belgium
| | - Jean Closset
- Department of Hepato-Biliary-Pancreatic Surgery, Hôpital Universitaire Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maria Antonietta Bali
- Department of Radiology, Institut Jules Bordet, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, HUB Institut Jules Bordet, Université Libre de Bruxelles, Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, HUB Institut Jules Bordet, Université Libre de Bruxelles, Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, HUB Institut Jules Bordet, Université Libre de Bruxelles, Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
11
|
Hooshangnejad H, Youssefian S, Narang A, Shin EJ, Rao AD, Han-Oh S, McNutt T, Lee J, Hu C, Wong J, Ding K. Finite Element-Based Personalized Simulation of Duodenal Hydrogel Spacer: Spacer Location Dependent Duodenal Sparing and a Decision Support System for Spacer-Enabled Pancreatic Cancer Radiation Therapy. Front Oncol 2022; 12:833231. [PMID: 35402281 PMCID: PMC8987290 DOI: 10.3389/fonc.2022.833231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Pancreatic cancer is the fourth leading cause of cancer-related death, with a very low 5-year overall survival rate (OS). Radiation therapy (RT) together with dose escalation significantly increases the OS at 2 and 3 years. However, dose escalation is very limited due to the proximity of the duodenum. Hydrogel spacers are an effective way to reduce duodenal toxicity, but the complexity of the anatomy and the procedure makes the success and effectiveness of the spacer procedure highly uncertain. To provide a preoperative simulation of hydrogel spacers, we presented a patient-specific spacer simulator algorithm and used it to create a decision support system (DSS) to provide a preoperative optimal spacer location to maximize the spacer benefits. Materials and Methods Our study was divided into three phases. In the validation phase, we evaluated the patient-specific spacer simulator algorithm (FEMOSSA) for the duodenal spacer using the dice similarity coefficient (DSC), overlap volume histogram (OVH), and radial nearest neighbor distance (RNND). For the simulation phase, we simulated four virtual spacer scenarios based on the location of the spacer in para-duodenal space. Next, stereotactic body radiation therapy (SBRT) plans were designed and dosimetrically analyzed. Finally, in the prediction phase, using the result of the simulation phase, we created a Bayesian DSS to predict the optimal spacer location and biological effective dose (BED). Results A realistic simulation of the spacer was achieved, reflected in a statistically significant increase in average target and duodenal DSC for the simulated spacer. Moreover, the small difference in average mean and 5th-percentile RNNDs (0.5 and 2.1 mm) and OVH thresholds (average of less than 0.75 mm) showed that the simulation attained similar separation as the real spacer. We found a spacer-location-independent decrease in duodenal V20Gy, a highly spacer-location-dependent change in V33Gy, and a strong correlation between L1cc and V33Gy. Finally, the Bayesian DSS predicted the change in BED with a root mean squared error of 3.6 Gys. Conclusions A duodenal spacer simulator platform was developed and used to systematically study the dosimetric effect of spacer location. Further, L1cc is an informative anatomical feedback to guide the DSS to indicate the spacer efficacy, optimum location, and expected improvement.
Collapse
Affiliation(s)
- Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sina Youssefian
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Amol Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eun Ji Shin
- Department of Gastroenterology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Avani Dholakia Rao
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sarah Han-Oh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd McNutt
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Chen Hu
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- *Correspondence: Kai Ding,
| |
Collapse
|
12
|
Chen Z, Zhang S, Dong S, Xu H, Zhou W. Association of the Microbiota and Pancreatic Cancer: Opportunities and Limitations. Front Immunol 2022; 13:844401. [PMID: 35309293 PMCID: PMC8928443 DOI: 10.3389/fimmu.2022.844401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The human body is thoroughly colonized by a wide variety of microorganisms, termed microbiota. Pancreatic cancer, one of the most aggressive forms of cancer, is no exception. The microbiota of pancreatic cancer largely influences and even dominates the occurrence, development and outcome of pancreatic cancer in many ways. Studies have shown that microbiota could change the malignant phenotype and prognosis of pancreatic cancer by stimulating persistent inflammation, regulating the antitumor immune system, changing the tumor microenvironment and affecting cellular metabolism. This is why the association of the microbiota with pancreatic cancer is an emerging area of research that warrants further exploration. Herein, we investigated the potential microbial markers of pancreatic cancer, related research models, the mechanism of action of microbiota in pancreatic cancer, and pancreatic cancer-microbiota-related treatment.
Collapse
Affiliation(s)
- Zhou Chen
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shaofeng Zhang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Shi Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Xu
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Bouchart C, Engelholm JL, Closset J, Navez J, Loi P, Gökburun Y, De Grez T, Mans L, Hendlisz A, Bali MA, Eisendrath P, Van Gestel D, Hein M, Moretti L, Van Laethem JL. Isotoxic high-dose stereotactic body radiotherapy integrated in a total multimodal neoadjuvant strategy for the treatment of localized pancreatic ductal adenocarcinoma. Ther Adv Med Oncol 2021; 13:17588359211045860. [PMID: 34691244 PMCID: PMC8529314 DOI: 10.1177/17588359211045860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Our aim was to evaluate the feasibility and safety of isotoxic high-dose (iHD) stereotactic body radiation therapy (SBRT) in a total neoadjuvant sequence for the treatment of localized pancreatic adenocarcinoma. MATERIALS AND METHODS Biopsy-proven borderline resectable/locally advanced pancreatic cancer (BR/LAPC) patients were included in this observational prospective analysis from August 2017 to April 2020 without excluding tumours showing a radiological direct gastrointestinal (GI) invasion. An induction chemotherapy by modified fluorouracil, irinotecan and oxaliplatin was performed for a median of six cycles. In case of non-progression, an isotoxic high-dose stereotactic body radiotherapy (iHD-SBRT) was delivered in 5 fractions followed by a surgical exploration. The primary endpoint was acute/late gastrointestinal grade ⩾3 toxicity. Secondary endpoints were overall survival (OS), progression-free survival (PFS) and local control (LC). RESULTS A total of 39 consecutive patients (21 BR and 18 LAPC) were included: 34 patients (87.2%, 18 BR and 16 LAPC) completed the planned neoadjuvant sequence. After iHD-SBRT, 19 patients [55.9% overall, 13/18 BR (72.2%) and 6/16 LAPC (37.5%)] underwent an oncological resection among the 25 patients surgically explored (73.5%). The median follow up was 18.2 months. The rates of acute and late GI grade 3 toxicity were, respectively, 2.9% and 4.2%. The median OS and PFS from diagnosis were, respectively, 24.5 and 15.6 months. The resected patients had improved median OS and PFS in comparison with the non-resected patients (OS: 32.3 versus 18.2 months, p = 0.02; PFS: 24.1 versus 7.1 months, p < 0.001). There was no survival difference between the BR and LAPC patients. The 1-year LC from SBRT was 74.1% and the median locoregional PFS was not reached for both BR and LAPC patients. CONCLUSIONS iHD-SBRT displays an excellent toxicity profile, also for potentially high-risk patients with radiological direct GI invasion at diagnosis and can be easily integrated in a total neoadjuvant strategy. The oncological outcomes are promising and emphasise the need for further exploration of iHD-SBRT in phase II/III trials.
Collapse
Affiliation(s)
- Christelle Bouchart
- Department of Radiation-Oncology, Institut
Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo, 121,
Brussels 1000, Belgium
| | - Jean-Luc Engelholm
- Department of Radiology, Institut Jules Bordet,
Université Libre de Bruxelles, Brussels, Belgium
| | - Jean Closset
- Department of Hepato-Biliary-Pancreatic
Surgery, Hopital Erasme, Université Libre de Bruxelles, Brussels,
Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic
Surgery, Hopital Erasme, Université Libre de Bruxelles, Brussels,
Belgium
| | - Patrizia Loi
- Department of Hepato-Biliary-Pancreatic
Surgery, Hopital Erasme, Université Libre de Bruxelles, Brussels,
Belgium
| | - Yeter Gökburun
- Department of Gastroenterology, CHR Namur,
Namur, Belgium
| | | | - Laura Mans
- Department of Gastroenterology, Hepatology and
Digestive Oncology, Hopital Erasme, Université Libre de Bruxelles, Brussels,
Belgium
| | - Alain Hendlisz
- Department of Medical Oncology, Institut Jules
Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Antonietta Bali
- Department of Radiology, Institut Jules
Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Eisendrath
- Department of Gastroenterology, CHU St Pierre,
Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation-Oncology, Institut
Jules Bordet,Université Libre de Bruxelles, Brussels, Belgium
| | - Matthieu Hein
- Sleep Laboratory, Hopital Erasme, Université
Libre de Bruxelles, Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation-Oncology, Institut
Jules Bordet,Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and
Digestive Oncology, Hopital Erasme, Université Libre de Bruxelles, Brussels,
Belgium
| |
Collapse
|
14
|
Kunovsky L, Dite P, Jabandziev P, Dolina J, Vaculova J, Blaho M, Bojkova M, Dvorackova J, Uvirova M, Kala Z, Trna J. Helicobacter pylori infection and other bacteria in pancreatic cancer and autoimmune pancreatitis. World J Gastrointest Oncol 2021; 13:835-844. [PMID: 34457189 PMCID: PMC8371525 DOI: 10.4251/wjgo.v13.i8.835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is an infectious agent influencing as much as 50% of the world’s population. It is the causative agent for several diseases, most especially gastric and duodenal peptic ulcer, gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma of the stomach. A number of other, extragastric manifestations also are associated with H. pylori infection. These include neurological disorders, such as Alzheimer’s disease, demyelinating multiple sclerosis and Parkinson’s disease. There is also evidence for a relationship between H. pylori infection and such dermatological diseases as psoriasis and rosacea as well as a connection with infection and open-angle glaucoma. Generally little is known about the relationship between H. pylori infection and diseases of the pancreas. Most evidence about H. pylori and its potential role in the development of pancreatic diseases concerns pancreatic adenocarcinoma and autoimmune forms of chronic pancreatitis. There is data (albeit not fully consistent) indicating modestly increased pancreatic cancer risk in H. pylori-positive patients. The pathogenetic mechanism of this increase is not yet fully elucidated, but several theories have been proposed. Reduction of antral D-cells in H. pylori-positive patients causes a suppression of somatostatin secretion that, in turn, stimulates increased secretin secretion. That stimulates pancreatic growth and thus increases the risk of carcinogenesis. Alternatively, H. pylori, as a part of microbiome dysbiosis and the so-called oncobiome, is proven to be associated with pancreatic adenocarcinoma development via the promotion of cellular proliferation. The role of H. pylori in the inflammation characteristic of autoimmune pancreatitis seems to be explained by a mechanism of molecular mimicry among several proteins (mostly enzymes) of H. pylori and pancreatic tissue. Patients with autoimmune pancreatitis often show positivity for antibodies against H. pylori proteins. H. pylori, as a part of microbiome dysbiosis, also is viewed as a potential trigger of autoimmune inflammation of the pancreas. It is precisely these relationships (and associated equivocal conclusions) that constitute a center of attention among pancreatologists, immunologists and pathologists. In order to obtain clear and valid results, more studies on sufficiently large cohorts of patients are needed. The topic is itself sufficiently significant to draw the interest of clinicians and inspire further systematic research. Next-generation sequencing could play an important role in investigating the microbiome as a potential diagnostic and prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Lumir Kunovsky
- Department of Surgery, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Petr Dite
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
- Department of Gastroenterology and Internal Medicine, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | - Petr Jabandziev
- Department of Pediatrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 61300, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Jiri Dolina
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Jitka Vaculova
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Martin Blaho
- Department of Gastroenterology and Internal Medicine, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | - Martina Bojkova
- Department of Gastroenterology and Internal Medicine, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | - Jana Dvorackova
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | | | - Zdenek Kala
- Department of Surgery, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Jan Trna
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic
- Department of Internal Medicine, Hospital Boskovice, Boskovice 68001, Czech Republic
| |
Collapse
|
15
|
Zhu X, Cao Y, Lu M, Zhao X, Jiang L, Ye Y, Ju X, Zhang H. Stereotactic body radiation therapy with sequential S-1 for patients with locally advanced pancreatic cancer and poor performance status: An open-label, single-arm, phase 2 trial. Radiother Oncol 2021; 162:178-184. [PMID: 34274393 DOI: 10.1016/j.radonc.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The optimal treatment for a particularly neglected group of patients with locally advanced pancreatic cancer (LAPC) and poor performance status, who are usually excluded from most clinical trials, is required. Therefore, we aim to investigate the efficacy and safety of stereotactic body radiation therapy (SBRT) with sequential S-1 for those patients. METHODS Eligible patients had histologically and radiographically confirmed LAPC and ECOG performance status of 2 or more points determined by two independent physicians. Radiation doses ranged from 35-40 Gy/5f. S-1 was taken orally, twice daily, at a dose of 80 mg/m2 for 28 days, followed by a 14-day interval, which repeated for 6 cycles and was initiated one month after SBRT. The primary endpoint was 1-year overall survival (OS). The secondary endpoints were OS, progression free survival (PFS), treatment-related toxicity and quality of life. The study was registered at ClinicalTrials.gov: NCT02704143. RESULTS Sixty-three patients were enrolled. At the time of data cut-off, all patients died. No patients were lost to follow-up. Median follow-up was 15.8 months (95%CI 12.9-18.7 months). One-year OS was noted in 46 of 63 patients (73.0%, 95%CI 67.4%-78.6%). The median OS and PFS was 14.4 (95%CI 13.2-15.6 months) and 10.1 months (95%CI 9.7-10.5 months) respectively. Eighteen patients (28.6%) had grade 3 toxicity. According to Quality of Life Questionnaire-Core 30, significant improvements of abdominal pain were found, and patients with poorer baseline global health status had greater improvement of health status and pain relief after treatment. CONCLUSIONS SBRT with sequential S-1 shows promising efficacy and acceptable toxicity in poor performance status patients with LAPC.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, China
| | - Mingzhi Lu
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, China
| | - Xianzhi Zhao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, China
| | - Lingong Jiang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, China
| | - Yusheng Ye
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, China
| | - Xiaoping Ju
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, China
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, China.
| |
Collapse
|