1
|
Sun T, Liu J, Chen CJ. Calibration algorithms for continuous glucose monitoring systems based on interstitial fluid sensing. Biosens Bioelectron 2024; 260:116450. [PMID: 38843770 DOI: 10.1016/j.bios.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Continuous glucose monitoring (CGM) is of great importance to the treatment and prevention of diabetes. As a proven commercial technology, electrochemical glucose sensor based on interstitial fluid (ISF) sensing has high sensitivity and wide detection range. Therefore, it has good promotion prospects in noninvasive or minimally-invasive CGM system. However, since there are concentration differences and time lag between glucose in plasma and ISF, the accuracy of this type of sensors are still limited. Typical calibration algorithms rely on simple linear regression which do not account for the variability of the sensitivity of sensors. To enhance the accuracy and stability of CGM based on ISF, optimization of calibration algorithm for sensors is indispensable. While there have been considerable researches on improving calibration algorithms for CGM, they have still received less attention. This article reviews the problem of typical calibration and presents the outstanding calibration algorithms in recent years. Finally, combined with existing research and emerging sensing technologies, this paper makes an outlook on the future calibration algorithms for CGM sensors.
Collapse
Affiliation(s)
- Tianyi Sun
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Jentsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Ching Jung Chen
- 3 Research Center for Materials Science and Opti-Electronic Technology, School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Xue Y, Guan S, Jia W. BGformer: An improved Informer model to enhance blood glucose prediction. J Biomed Inform 2024; 157:104715. [PMID: 39197731 DOI: 10.1016/j.jbi.2024.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Accurately predicting blood glucose levels is crucial in diabetes management to mitigate patients' risk of complications. However, blood glucose values exhibit instability, and existing prediction methods often struggle to capture their volatile nature, leading to inaccurate trend forecasts. To address these challenges, we propose a novel blood glucose level prediction model based on the Informer architecture: BGformer. Our model introduces a feature enhancement module and a microscale overlapping concerns mechanism. The feature enhancement module integrates periodic and trend feature extractors, enhancing the model's ability to capture relevant information from the data. By extending the feature extraction capacity of time series data, it provides richer feature representations for analysis. Meanwhile, the microscale overlapping concerns mechanism adopts a window-based strategy, computing attention scores only within specific windows. This approach reduces computational complexity while enhancing the model's capacity to capture local temporal dependencies. Furthermore, we introduce a dual attention enhancement module to augment the model's expressive capability. Through prediction experiments on blood glucose values from sixteen diabetic patients, our model outperformed eight benchmark models in terms of both MAE and RMSE metrics for future 60-minute and 90-minute predictions. Our proposed scheme significantly improves the model's dependency-capturing ability, resulting in more accurate blood glucose level predictions.
Collapse
Affiliation(s)
- Yuewei Xue
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, 264003, China
| | - Shaopeng Guan
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, 264003, China.
| | - Wanhai Jia
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, 264003, China
| |
Collapse
|
3
|
Jacobs PG, Herrero P, Facchinetti A, Vehi J, Kovatchev B, Breton MD, Cinar A, Nikita KS, Doyle FJ, Bondia J, Battelino T, Castle JR, Zarkogianni K, Narayan R, Mosquera-Lopez C. Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities. IEEE Rev Biomed Eng 2024; 17:19-41. [PMID: 37943654 DOI: 10.1109/rbme.2023.3331297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Artificial intelligence and machine learning are transforming many fields including medicine. In diabetes, robust biosensing technologies and automated insulin delivery therapies have created a substantial opportunity to improve health. While the number of manuscripts addressing the topic of applying machine learning to diabetes has grown in recent years, there has been a lack of consistency in the methods, metrics, and data used to train and evaluate these algorithms. This manuscript provides consensus guidelines for machine learning practitioners in the field of diabetes, including best practice recommended approaches and warnings about pitfalls to avoid. METHODS Algorithmic approaches are reviewed and benefits of different algorithms are discussed including importance of clinical accuracy, explainability, interpretability, and personalization. We review the most common features used in machine learning applications in diabetes glucose control and provide an open-source library of functions for calculating features, as well as a framework for specifying data sets using data sheets. A review of current data sets available for training algorithms is provided as well as an online repository of data sources. SIGNIFICANCE These consensus guidelines are designed to improve performance and translatability of new machine learning algorithms developed in the field of diabetes for engineers and data scientists.
Collapse
|
4
|
Jacobs PG, Resalat N, Hilts W, Young GM, Leitschuh J, Pinsonault J, El Youssef J, Branigan D, Gabo V, Eom J, Ramsey K, Dodier R, Mosquera-Lopez C, Wilson LM, Castle JR. Integrating metabolic expenditure information from wearable fitness sensors into an AI-augmented automated insulin delivery system: a randomised clinical trial. Lancet Digit Health 2023; 5:e607-e617. [PMID: 37543512 PMCID: PMC10557965 DOI: 10.1016/s2589-7500(23)00112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 06/06/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Exercise can rapidly drop glucose in people with type 1 diabetes. Ubiquitous wearable fitness sensors are not integrated into automated insulin delivery (AID) systems. We hypothesised that an AID can automate insulin adjustments using real-time wearable fitness data to reduce hypoglycaemia during exercise and free-living conditions compared with an AID not automating use of fitness data. METHODS Our study population comprised of individuals (aged 21-50 years) with type 1 diabetes from from the Harold Schnitzer Diabetes Health Center clinic at Oregon Health and Science University, OR, USA, who were enrolled into a 76 h single-centre, two-arm randomised (4-block randomisation), non-blinded crossover study to use (1) an AID that detects exercise, prompts the user, and shuts off insulin during exercise using an exercise-aware adaptive proportional derivative (exAPD) algorithm or (2) an AID that automates insulin adjustments using fitness data in real-time through an exercise-aware model predictive control (exMPC) algorithm. Both algorithms ran on iPancreas comprising commercial glucose sensors, insulin pumps, and smartwatches. Participants executed 1 week run-in on usual therapy followed by exAPD or exMPC for one 12 h primary in-clinic session involving meals, exercise, and activities of daily living, and 2 free-living out-patient days. Primary outcome was time below range (<3·9 mmol/L) during the primary in-clinic session. Secondary outcome measures included mean glucose and time in range (3·9-10 mmol/L). This trial is registered with ClinicalTrials.gov, NCT04771403. FINDINGS Between April 13, 2021, and Oct 3, 2022, 27 participants (18 females) were enrolled into the study. There was no significant difference between exMPC (n=24) versus exAPD (n=22) in time below range (mean [SD] 1·3% [2·9] vs 2·5% [7·0]) or time in range (63·2% [23·9] vs 59·4% [23·1]) during the primary in-clinic session. In the 2 h period after start of in-clinic exercise, exMPC had significantly lower mean glucose (7·3 [1·6] vs 8·0 [1·7] mmol/L, p=0·023) and comparable time below range (1·4% [4·2] vs 4·9% [14·4]). Across the 76 h study, both algorithms achieved clinical time in range targets (71·2% [16] and 75·5% [11]) and time below range (1·0% [1·2] and 1·3% [2·2]), significantly lower than run-in period (2·4% [2·4], p=0·0004 vs exMPC; p=0·012 vs exAPD). No adverse events occurred. INTERPRETATION AIDs can integrate exercise data from smartwatches to inform insulin dosing and limit hypoglycaemia while improving glucose outcomes. Future AID systems that integrate exercise metrics from wearable fitness sensors may help people living with type 1 diabetes exercise safely by limiting hypoglycaemia. FUNDING JDRF Foundation and the Leona M and Harry B Helmsley Charitable Trust, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.
Collapse
Affiliation(s)
- Peter G Jacobs
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Center for Health and Healing, Oregon Health and Science University, Portland, OR, USA.
| | - Navid Resalat
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Center for Health and Healing, Oregon Health and Science University, Portland, OR, USA
| | - Wade Hilts
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Center for Health and Healing, Oregon Health and Science University, Portland, OR, USA
| | - Gavin M Young
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Center for Health and Healing, Oregon Health and Science University, Portland, OR, USA
| | - Joseph Leitschuh
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Center for Health and Healing, Oregon Health and Science University, Portland, OR, USA
| | - Joseph Pinsonault
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Center for Health and Healing, Oregon Health and Science University, Portland, OR, USA
| | - Joseph El Youssef
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, OR, USA
| | - Deborah Branigan
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, OR, USA
| | - Virginia Gabo
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, OR, USA
| | - Jae Eom
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, OR, USA
| | - Katrina Ramsey
- Oregon Clinical and Translational Research Institute Biostatistics and Design Program, Oregon Health and Science University, Portland, OR, USA
| | - Robert Dodier
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Center for Health and Healing, Oregon Health and Science University, Portland, OR, USA
| | - Clara Mosquera-Lopez
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Center for Health and Healing, Oregon Health and Science University, Portland, OR, USA
| | - Leah M Wilson
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, OR, USA
| | - Jessica R Castle
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
5
|
Kumari R, Anand PK, Shin J. Improving the Accuracy of Continuous Blood Glucose Measurement Using Personalized Calibration and Machine Learning. Diagnostics (Basel) 2023; 13:2514. [PMID: 37568877 PMCID: PMC10416969 DOI: 10.3390/diagnostics13152514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Despite tremendous developments in continuous blood glucose measurement (CBGM) sensors, they are still not accurate for all patients with diabetes. As glucose concentration in the blood is <1% of the total blood volume, it is challenging to accurately measure glucose levels in the interstitial fluid using CBGM sensors due to within-patient and between-patient variations. To address this issue, we developed a novel data-driven approach to accurately predict CBGM values using personalized calibration and machine learning. First, we scientifically divided measured blood glucose into smaller groups, namely, hypoglycemia (<80 mg/dL), nondiabetic (81-115 mg/dL), prediabetes (116-150 mg/dL), diabetes (151-181 mg/dL), severe diabetes (181-250 mg/dL), and critical diabetes (>250 mg/dL). Second, we separately trained each group using different machine learning models based on patients' personalized parameters, such as physical activity, posture, heart rate, breath rate, skin temperature, and food intake. Lastly, we used multilayer perceptron (MLP) for the D1NAMO dataset (training to test ratio: 70:30) and grid search for hyperparameter optimization to predict accurate blood glucose concentrations. We successfully applied our proposed approach in nine patients with type 1 diabetes and observed that the mean absolute relative difference (MARD) decreased from 17.8% to 8.3%.
Collapse
Affiliation(s)
- Ranjita Kumari
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Gyeonggi, Suwon 16419, Republic of Korea;
| | - Pradeep Kumar Anand
- Clinical Research Group, Samsung Healthcare, Gangdong-gu, Seoul 05340, Republic of Korea;
| | - Jitae Shin
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Gyeonggi, Suwon 16419, Republic of Korea;
| |
Collapse
|
6
|
Zou Y, Chu Z, Guo J, Liu S, Ma X, Guo J. Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective. Biosens Bioelectron 2023; 225:115103. [PMID: 36724658 DOI: 10.1016/j.bios.2023.115103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/25/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Diabetes and its complications are seriously threatening the health and well-being of hundreds of millions of people. Glucose levels are essential indicators of the health conditions of diabetics. Over the past decade, concerted efforts in various fields have led to significant advances in glucose monitoring technology. In particular, the rapid development of continuous glucose monitoring (CGM) based on electrochemical sensing principles has great potential to overcome the limitations of self-monitoring blood glucose (SMBG) in continuously tracking glucose trends, evaluating diabetes treatment options, and improving the quality of life of diabetics. However, the applications of minimally invasive electrochemical CGM sensors are still limited owing to the following aspects: i) invasiveness, ii) short lifespan, iii) biocompatibility, and iv) calibration and prediction. In recent years, the performance of minimally invasive electrochemical CGM systems (CGMSs) has been significantly improved owing to breakthrough developments in new materials and key technologies. In this review, we summarize the history of commercial CGMSs, the development of sensing principles, and the research progress of minimally invasive electrochemical CGM sensors in reducing the invasiveness of implanted probes, maintaining enzyme activity, and improving the biocompatibility of the sensor interface. In addition, this review also introduces calibration algorithms and prediction algorithms applied to CGMSs and describes the application of machine learning algorithms for glucose prediction.
Collapse
Affiliation(s)
- Yuanyuan Zou
- University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Zhengkang Chu
- School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, 611731, Chengdu, China; Chongqing Medical University, 400016, Chongqing, China
| | - Shan Liu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Jinhong Guo
- Chongqing Medical University, 400016, Chongqing, China; School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
7
|
Mosquera-Lopez C, Ramsey KL, Roquemen-Echeverri V, Jacobs PG. Modeling risk of hypoglycemia during and following physical activity in people with type 1 diabetes using explainable mixed-effects machine learning. Comput Biol Med 2023; 155:106670. [PMID: 36803791 DOI: 10.1016/j.compbiomed.2023.106670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Physical activity (PA) can cause increased hypoglycemia (glucose <70 mg/dL) risk in people with type 1 diabetes (T1D). We modeled the probability of hypoglycemia during and up to 24 h following PA and identified key factors associated with hypoglycemia risk. METHODS We leveraged a free-living dataset from Tidepool comprised of glucose measurements, insulin doses, and PA data from 50 individuals with T1D (6448 sessions) for training and validating machine learning models. We also used data from the T1Dexi pilot study that contains glucose management and PA data from 20 individuals with T1D (139 session) for assessing the accuracy of the best performing model on an independent test dataset. We used mixed-effects logistic regression (MELR) and mixed-effects random forest (MERF) to model hypoglycemia risk around PA. We identified risk factors associated with hypoglycemia using odds ratio and partial dependence analysis for the MELR and MERF models, respectively. Prediction accuracy was measured using the area under the receiver operating characteristic curve (AUROC). RESULTS The analysis identified risk factors significantly associated with hypoglycemia during and following PA in both MELR and MERF models including glucose and body exposure to insulin at the start of PA, low blood glucose index 24 h prior to PA, and PA intensity and timing. Both models showed overall hypoglycemia risk peaking 1 h after PA and again 5-10 h after PA, which is consistent with the hypoglycemia risk pattern observed in the training dataset. Time following PA impacted hypoglycemia risk differently across different PA types. Accuracy of hypoglycemia prediction using the fixed effects of the MERF model was highest when predicting hypoglycemia during the first hour following the start of PA (AUROCVALIDATION = 0.83 and AUROCTESTING = 0.86) and decreased when predicting hypoglycemia in the 24 h after PA (AUROCVALIDATION = 0.66 and AUROCTESTING = 0.68). CONCLUSION Hypoglycemia risk after the start of PA can be modeled using mixed-effects machine learning to identify key risk factors that may be used within decision support and insulin delivery systems. We published the population-level MERF model online for others to use.
Collapse
Affiliation(s)
- Clara Mosquera-Lopez
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.
| | - Katrina L Ramsey
- Biostatistics and Design Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Valentina Roquemen-Echeverri
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Peter G Jacobs
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
8
|
Zhu T, Li K, Herrero P, Georgiou P. Personalized Blood Glucose Prediction for Type 1 Diabetes Using Evidential Deep Learning and Meta-Learning. IEEE Trans Biomed Eng 2023; 70:193-204. [PMID: 35776825 DOI: 10.1109/tbme.2022.3187703] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The availability of large amounts of data from continuous glucose monitoring (CGM), together with the latest advances in deep learning techniques, have opened the door to a new paradigm of algorithm design for personalized blood glucose (BG) prediction in type 1 diabetes (T1D) with superior performance. However, there are several challenges that prevent the widespread implementation of deep learning algorithms in actual clinical settings, including unclear prediction confidence and limited training data for new T1D subjects. To this end, we propose a novel deep learning framework, Fast-adaptive and Confident Neural Network (FCNN), to meet these clinical challenges. In particular, an attention-based recurrent neural network is used to learn representations from CGM input and forward a weighted sum of hidden states to an evidential output layer, aiming to compute personalized BG predictions with theoretically supported model confidence. The model-agnostic meta-learning is employed to enable fast adaptation for a new T1D subject with limited training data. The proposed framework has been validated on three clinical datasets. In particular, for a dataset including 12 subjects with T1D, FCNN achieved a root mean square error of 18.64±2.60 mg/dL and 31.07±3.62 mg/dL for 30 and 60-minute prediction horizons, respectively, which outperformed all the considered baseline methods with significant improvements. These results indicate that FCNN is a viable and effective approach for predicting BG levels in T1D. The well-trained models can be implemented in smartphone apps to improve glycemic control by enabling proactive actions through real-time glucose alerts.
Collapse
|
9
|
Castle JR, Wilson LM, Tyler NS, Espinoza AZ, Mosquera-Lopez CM, Kushner T, Young GM, Pinsonault J, Dodier RH, Hilts WW, Oganessian SM, Branigan DL, Gabo VB, Eom JH, Ramsey K, Youssef JE, Cafazzo JA, Winters-Stone K, Jacobs PG. Assessment of a Decision Support System for Adults with Type 1 Diabetes on Multiple Daily Insulin Injections. Diabetes Technol Ther 2022; 24:892-897. [PMID: 35920839 PMCID: PMC9700374 DOI: 10.1089/dia.2022.0252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Introduction: DailyDose is a decision support system designed to provide real-time dosing advice and weekly insulin dose adjustments for adults living with type 1 diabetes using multiple daily insulin injections. Materials and Methods: Twenty-five adults were enrolled in this single-arm study. All participants used Dexcom G6 for continuous glucose monitoring, InPen for short-acting insulin doses, and Clipsulin to track long-acting insulin doses. Participants used DailyDose on an iPhone for 8 weeks. The primary endpoint was % time in range (TIR) comparing the 2-week baseline to the final 2-week period of DailyDose use. Results: There were no significant differences between TIR or other glycemic metrics between the baseline period compared to final 2-week period of DailyDose use. TIR significantly improved by 6.3% when more than half of recommendations were accepted and followed compared with 50% or fewer recommendations (95% CI 2.5%-10.1%, P = 0.001). Conclusions: Use of DailyDose did not improve glycemic outcomes compared to the baseline period. In a post hoc analysis, accepting and following recommendations from DailyDose was associated with improved TIR. Clinical Trial Registration Number: NCT04428645.
Collapse
Affiliation(s)
- Jessica R. Castle
- Department of Medicine, Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Leah M. Wilson
- Department of Medicine, Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Nichole S. Tyler
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| | - Alejandro Z. Espinoza
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| | - Clara M. Mosquera-Lopez
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| | - Taisa Kushner
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| | - Gavin M. Young
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph Pinsonault
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert H. Dodier
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| | - Wade W. Hilts
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| | - Sos M. Oganessian
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| | - Deborah L. Branigan
- Department of Medicine, Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Virginia B. Gabo
- Department of Medicine, Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Jae H. Eom
- Department of Medicine, Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Katrina Ramsey
- Biostatistics & Design Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph El Youssef
- Department of Medicine, Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph A. Cafazzo
- Centre for Global eHealth Innovation, Techna Institute, University Health Network, Toronto, Canada
- Dalla Lana School of Public Health, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
| | - Kerri Winters-Stone
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Peter G. Jacobs
- Department of Biomedical Engineering, Artificial Intelligence for Medical Systems Lab, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Shahid A, Lewis DM. Large-Scale Data Analysis for Glucose Variability Outcomes with Open-Source Automated Insulin Delivery Systems. Nutrients 2022; 14:nu14091906. [PMID: 35565875 PMCID: PMC9101219 DOI: 10.3390/nu14091906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Open-source automated insulin delivery (AID) technologies use the latest continuous glucose monitors (CGM), insulin pumps, and algorithms to automate insulin delivery for effective diabetes management. Early community-wide adoption of open-source AID, such as OpenAPS, has motivated clinical and research communities to understand and evaluate glucose-related outcomes of such user-driven innovation. Initial OpenAPS studies include retrospective studies assessing high-level outcomes of average glucose levels and HbA1c, without in-depth analysis of glucose variability (GV). The OpenAPS Data Commons dataset, donated to by open-source AID users with insulin-requiring diabetes, is the largest freely available diabetes-related dataset with over 46,070 days’ worth of data and over 10 million CGM data points, alongside insulin dosing and algorithmic decision data. This paper first reviews the development toward the latest open-source AID and the performance of clinically approved GV metrics. We evaluate the GV outcomes using large-scale data analytics for the n = 122 version of the OpenAPS Data Commons. We describe the data cleaning processes, methods for measuring GV, and the results of data analysis based on individual self-reported demographics. Furthermore, we highlight the lessons learned from the GV outcomes and the analysis of a rich and complex diabetes dataset and additional research questions that emerged from this work to guide future research. This paper affirms previous studies’ findings of the efficacy of open-source AID.
Collapse
Affiliation(s)
- Arsalan Shahid
- CeADAR—Ireland’s Centre for Applied AI, University College Dublin, D04 V2N9 Dublin, Ireland
- Correspondence:
| | | |
Collapse
|
11
|
Tyler NS, Mosquera-Lopez C, Young GM, El Youssef J, Castle JR, Jacobs PG. Quantifying the impact of physical activity on future glucose trends using machine learning. iScience 2022; 25:103888. [PMID: 35252806 PMCID: PMC8889374 DOI: 10.1016/j.isci.2022.103888] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 01/21/2023] Open
Abstract
Prevention of hypoglycemia (glucose <70 mg/dL) during aerobic exercise is a major challenge in type 1 diabetes. Providing predictions of glycemic changes during and following exercise can help people with type 1 diabetes avoid hypoglycemia. A unique dataset representing 320 days and 50,000 + time points of glycemic measurements was collected in adults with type 1 diabetes who participated in a 4-arm crossover study evaluating insulin-pump therapies, whereby each participant performed eight identically designed in-clinic exercise studies. We demonstrate that even under highly controlled conditions, there is considerable intra-participant and inter-participant variability in glucose outcomes during and following exercise. Participants with higher aerobic fitness exhibited significantly lower minimum glucose and steeper glucose declines during exercise. Adaptive, personalized machine learning (ML) algorithms were designed to predict exercise-related glucose changes. These algorithms achieved high accuracy in predicting the minimum glucose and hypoglycemia during and following exercise sessions, for all fitness levels.
Collapse
Affiliation(s)
- Nichole S. Tyler
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering Oregon Health & Science University Portland, OR 97232, USA
| | - Clara Mosquera-Lopez
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering Oregon Health & Science University Portland, OR 97232, USA
| | - Gavin M. Young
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering Oregon Health & Science University Portland, OR 97232, USA
| | - Joseph El Youssef
- Harold Schnitzer Diabetes Health Center, Division of Endocrinology Oregon Health & Science University Portland, OR 97239, USA
| | - Jessica R. Castle
- Harold Schnitzer Diabetes Health Center, Division of Endocrinology Oregon Health & Science University Portland, OR 97239, USA
| | - Peter G. Jacobs
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering Oregon Health & Science University Portland, OR 97232, USA
| |
Collapse
|