1
|
Suzuki M, Kohmura-Kobayashi Y, Ueda M, Furuta-Isomura N, Matsumoto M, Oda T, Kawai K, Itoh T, Matsuya M, Narumi M, Tamura N, Uchida T, Mochizuki K, Itoh H. Comparative Analysis of Gene Expression Profiles in the Adipose Tissue of Obese Adult Mice With Rapid Infantile Growth After Undernourishment In Utero. Front Endocrinol (Lausanne) 2022; 13:818064. [PMID: 35295992 PMCID: PMC8920555 DOI: 10.3389/fendo.2022.818064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid infantile growth (RG) markedly increases the risk of obesity and metabolic disorders in adulthood, particularly among neonates born small. To elucidate the molecular mechanisms by which RG following undernourishment in utero (UN) contributes to the deterioration of adult fat deposition, we developed a UN mouse model using maternal energy restriction, followed by RG achieved by adjustments to 4 pups per litter soon after birth. A high-fat diet (HFD) was fed to weaned pups treated or not (Veh) with tauroursodeoxycholic acid (TU). UN-RG pups showed the deterioration of diet-induced obesity and fat deposition, which was ameliorated by TU. We performed a microarray analysis of epididymal adipose tissue and two gene enrichment analyses (NN-Veh vs UN-RD-Veh and UN-RG-Veh vs UN-RG-TU). The results obtained identified 4 common gene ontologies (GO) terms of inflammatory pathways. In addition to the inflammatory characteristics of 4 GO terms, the results of heatmap and principal component analyses of the representative genes from 4 GO terms, genes of interest (GOI; Saa3, Ubd, S100a8, Hpx, Casp1, Agt, Ptgs2) selected from the 4 GO terms, and immunohistochemistry of macrophages collectively suggested the critical involvement of inflammation in the regulation of fat deposition in the responses to UN and TU. Therefore, the present results support the 'Developmental Origins of Metaflammation', the last word of which was recently proposed by the concept of metabolic disorders induced by low-grade systemic inflammation.
Collapse
Affiliation(s)
- Misako Suzuki
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukiko Kohmura-Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- *Correspondence: Yukiko Kohmura-Kobayashi,
| | - Megumi Ueda
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomi Furuta-Isomura
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masako Matsumoto
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Oda
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenta Kawai
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiya Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Madoka Matsuya
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Megumi Narumi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoaki Tamura
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiyuki Uchida
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Mochizuki
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
2
|
Insights into sympathetic nervous system and GPCR interplay in fetal programming of hypertension: a bridge for new pharmacological strategies. Drug Discov Today 2020; 25:739-747. [PMID: 32032706 DOI: 10.1016/j.drudis.2020.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death from noncommunicable diseases worldwide. In addition to the classical CVD risk factors related to lifestyle and/or genetic background, exposure to an adverse intrauterine environment compromises fetal development leading to low birth weight and increasing offspring susceptibility to develop CVDs later in life, particularly hypertension - a process known as fetal programming of hypertension (FPH). In FPH animal models, permanent alterations have been detected in gene expression, in the structure and function of heart and blood vessels, compromising cardiovascular physiology and favoring hypertension development. This review focuses on the role of the sympathetic nervous system and its interplay with G-protein-coupled receptors, emphasizing strategies that envisage the prevention and/or treatment of FPH through interventions in early life.
Collapse
|
3
|
Plasticity of histone modifications around Cidea and Cidec genes with secondary bile in the amelioration of developmentally-programmed hepatic steatosis. Sci Rep 2019; 9:17100. [PMID: 31745102 PMCID: PMC6863835 DOI: 10.1038/s41598-019-52943-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
We recently reported that a treatment with tauroursodeoxycholic acid (TUDCA), a secondary bile acid, improved developmentally-deteriorated hepatic steatosis in an undernourishment (UN, 40% caloric restriction) in utero mouse model after a postnatal high-fat diet (HFD). We performed a microarray analysis and focused on two genes (Cidea and Cidec) because they are enhancers of lipid droplet (LD) sizes in hepatocytes and showed the greatest up-regulation in expression by UN that were completely recovered by TUDCA, concomitant with parallel changes in LD sizes. TUDCA remodeled developmentally-induced histone modifications (dimethylation of H3K4, H3K27, or H3K36), but not DNA methylation, around the Cidea and Cidec genes in UN pups only. Changes in these histone modifications may contribute to the markedly down-regulated expression of Cidea and Cidec genes in UN pups, which was observed in the alleviation of hepatic fat deposition, even under HFD. These results provide an insight into the future of precision medicine for developmentally-programmed hepatic steatosis by targeting histone modifications.
Collapse
|
4
|
Itoh H, Kanayama N. Developmental Origins of Nonalcoholic Fatty Liver Disease (NAFLD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:29-39. [PMID: 29956192 DOI: 10.1007/978-981-10-5526-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Its prevalence is currently increasing not only in developed obese countries but also in developing countries. Recent findings from human cohorts and animal studies suggest that a nutritional imbalance in the early critical period is causatively associated with the incidence of NAFLD in later life. Based on the current theory of the developmental origins of health and disease (DOHaD), undernourishment and overnourishment in utero are both hypothesized to prime the predisposition for hepatic fat storage. Current knowledge on the developmental origins of NAFLD is introduced in this chapter.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.
| | - Naohiro Kanayama
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| |
Collapse
|
5
|
Itoh H, Muramatsu-Kato K, Ferdous UJ, Kohmura-Kobayashi Y, Kanayama N. Undernourishment in utero and hepatic steatosis in later life: A potential issue in Japanese people. Congenit Anom (Kyoto) 2017; 57:178-183. [PMID: 27859643 DOI: 10.1111/cga.12200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. The prevalence of NAFLD in Japan has nearly doubled in the last 10-15 years. Increasing evidence supports undernourishment in utero being causatively connected with the risk of NAFLD in later life. Low body mass index (BMI) has been common among Japanese women of childbearing age for several decades due to their strong desire to be thin. It is plausible that insufficient maternal energy intake by pregnant Japanese women may underlie the rapid increase in the prevalence of NAFLD in Japan. In order to clarify the mechanisms by which undernourishment in utero primes adult hepatic steatosis, we developed a mouse model of fetal undernourishment with a hepatic fat deposit-prone phenotype on an obesogenic high fat diet in later life. We found that endoplasmic reticulum (ER) stress response parameters were activated concomitantly with the deterioration of hepatic steatosis and also that the alleviation of ER stress with the chemical chaperone, tauroursodeoxycholic acid (TUDCA), significantly improved hepatic steatosis. Therefore, undernourishment in utero may program the future integration of ER stress in the liver on an obesogenic diet in later life and also induce the deterioration of hepatic steatosis. These results also provide an insight into interventions for the potential high-risk population of NAFLD, such as those born small or exposed to maternal undernourishment during the fetal period, with the alleviation of ER stress by dietary supplements and/or specific food including chaperones.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keiko Muramatsu-Kato
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Urmi J Ferdous
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukiko Kohmura-Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naohiro Kanayama
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
6
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
7
|
Undernourishment in utero Primes Hepatic Steatosis in Adult Mice Offspring on an Obesogenic Diet; Involvement of Endoplasmic Reticulum Stress. Sci Rep 2015; 5:16867. [PMID: 26581663 PMCID: PMC4652266 DOI: 10.1038/srep16867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/21/2015] [Indexed: 01/29/2023] Open
Abstract
In order to investigate the possible involvement of endoplasmic reticulum (ER) stress in the developmental origins of hepatic steatosis associated with undernourishment in utero, we herein employed a fetal undernourishment mouse model by maternal caloric restriction in three cohorts; cohort 1) assessment of hepatic steatosis and the ER stress response at 9 weeks of age (wks) before a high fat diet (HFD), cohort 2) assessment of hepatic steatosis and the ER stress response on a HFD at 17 wks, cohort 3) assessment of hepatic steatosis and the ER stress response at 22 wks on a HFD after the alleviation of ER stress with a chemical chaperone, tauroursodeoxycholic acid (TUDCA), from 17 wks to 22 wks. Undernourishment in utero significantly deteriorated hepatic steatosis and led to the significant integration of the ER stress response on a HFD at 17 wks. The alleviation of ER stress by the TUDCA treatment significantly improved the parameters of hepatic steatosis in pups with undernourishment in utero, but not in those with normal nourishment in utero at 22 wks. These results suggest the pivotal involvement of the integration of ER stress in the developmental origins of hepatic steatosis in association with undernourishment in utero.
Collapse
|
8
|
Kohmura YK, Kanayama N, Muramatsu K, Tamura N, Yaguchi C, Uchida T, Suzuki K, Sugihara K, Aoe S, Sasaki T, Suganami T, Ogawa Y, Itoh H. Association between body weight at weaning and remodeling in the subcutaneous adipose tissue of obese adult mice with undernourishment in utero. Reprod Sci 2013; 20:813-27. [PMID: 23296035 DOI: 10.1177/1933719112466300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapid growth in infancy considerably increases the risk of obesity and metabolic disorders in adulthood especially among neonates born small. To investigate the mechanism involved, we developed an animal model of undernourishment in utero by maternal caloric restriction, in which the Z scores of body weight at weaning (19.5 days) positively correlated with parameters of obesity, metabolic disorders, and remodeling of subcutaneous adipose tissue, such as numbers of macrophages in adipose tissue, the ratio of inflammatory M1 to anti-inflammatory M2 macrophages, estimated by gene expression of specific antigens, and the relative ratio of small adipocytes less than 30 μm in diameter, on a high-fat diet at 17 weeks of age. To our knowledge, this is the first report of a possible connection between infantile body weight and adipose tissue remodeling in obesity after undernourishment in utero.
Collapse
Affiliation(s)
- Yukiko Kobayashi Kohmura
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Itoh H, Yura S, Sagawa N, Kanayama N, Konihi I. Neonatal exposure to leptin reduces glucose tolerance in adult mice. Acta Physiol (Oxf) 2011; 202:159-64. [PMID: 21352506 DOI: 10.1111/j.1748-1716.2011.02268.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to evaluate the effect of leptin treatment in mouse neonates on glucose metabolism in adulthood. METHODS Leptin was administered subcutaneously to normally nourished neonates, from 5.5 to 10.5 days of age, to mimic the premature surge observed in neonates undernourished in utero. At 15-16 weeks of age, we measured blood glucose or insulin levels after the intraperitoneal administration of glucose or insulin. RESULTS After the intraperitoneal administration of glucose, the levels of blood glucose, but not insulin, in adult mice that received the neonatal leptin treatment were significantly higher than that of those which received vehicle control. After the intraperitoneal administration of insulin, the levels of blood glucose in adult mice that underwent neonatal leptin treatment were significantly higher than that of those which received vehicle control. CONCLUSION These findings suggest that the premature leptin surge plays an essential role, as a programming signal during the early neonatal period, as well as in the developmental origins of impaired insulin sensitivity.
Collapse
Affiliation(s)
- H Itoh
- Department of Gynecology and Obstetrics, Hamamatsu University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|