1
|
Shinde P, Kiepas A, Zhang L, Sudhir S, Konstantopoulos K, Stamatos NM. Polysialylation controls immune function of myeloid cells in murine model of pneumococcal pneumonia. Cell Rep 2023; 42:112648. [PMID: 37339052 PMCID: PMC10592499 DOI: 10.1016/j.celrep.2023.112648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/13/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
Polysialic acid (polySia) is a post-translational modification of a select group of cell-surface proteins that guides cellular interactions. As the overall impact of changes in expression of this glycan on leukocytes during infection is not known, we evaluate the immune response of polySia-deficient ST8SiaIV-/- mice infected with Streptococcus pneumoniae (Spn). Compared with wild-type (WT) mice, ST8SiaIV-/- mice are less susceptible to infection and clear Spn from airways faster, with alveolar macrophages demonstrating greater viability and phagocytic activity. Leukocyte pulmonary recruitment, paradoxically, is diminished in infected ST8SiaIV-/- mice, corroborated by adoptive cell transfer, microfluidic migration experiments, and intravital microscopy, and possibly explained by dysregulated ERK1/2 signaling. PolySia is progressively lost from neutrophils and monocytes migrating from bone marrow to alveoli in Spn-infected WT mice, consistent with changing cellular functions. These data highlight multidimensional effects of polySia on leukocytes during an immune response and suggest therapeutic interventions for optimizing immunity.
Collapse
Affiliation(s)
- Prajakta Shinde
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lei Zhang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shreya Sudhir
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nicholas M Stamatos
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
The effects of female sexual hormones on the endothelial glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:89-137. [PMID: 37080682 DOI: 10.1016/bs.ctm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.
Collapse
|
3
|
Strubl S, Schubert U, Kühnle A, Rebl A, Ahmadvand N, Fischer S, Preissner KT, Galuska SP. Polysialic acid is released by human umbilical vein endothelial cells (HUVEC) in vitro. Cell Biosci 2018; 8:64. [PMID: 30555678 PMCID: PMC6288938 DOI: 10.1186/s13578-018-0262-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Background Sialic acids represent common terminal residues on numerous mammalian glycoconjugates, thereby influencing e.g. lumen formation in developing blood vessels. Interestingly, besides monosialylated also polysialylated glycoconjugates are produced by endothelial cells. Polysialic acid (polySia) is formed in several organs during embryonal and postnatal development influencing, for instance, cell migration processes. Furthermore, the function of cytokines like basic fibroblast growth factor (bFGF) is modulated by polySia. Results In this study, we demonstrated that human umbilical vein endothelial cells (HUVEC) also secrete polysialylated glycoconjugates. Furthermore, an interaction between polySia and vascular endothelial growth factor (VEGF) was observed. VEGF modulates like bFGF the migration of HUVEC. Since both growth factors interact with polySia, we examined, if polySia modulates the migration of HUVEC. To this end scratch assays were performed showing that the migration of HUVEC is stimulated, when polySia was degraded. Conclusions Since polySia can interact with bFGF as well as VEGF and the degradation of polySia resulted in an increased cell migration capacity in the applied scratch assay, we propose that polySia may trap these growth factors influencing their biological activity. Thus, polySia might also contribute to the fine regulation of physiological processes in endothelial cells.
Collapse
Affiliation(s)
- Sebastian Strubl
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.,2Department II of Internal Medicine, Center for Molecular Medicine Cologne, University Cologne, Kerpener Str. 62, 50931 Cologne, Germany
| | - Uwe Schubert
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Andrea Kühnle
- 3Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- 4Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Negah Ahmadvand
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.,Excellence Cluster Cardio Pulmonary System (ECCPS), Aulweg 130, 35392 Giessen, Germany
| | - Silvia Fischer
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Klaus T Preissner
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Sebastian P Galuska
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.,3Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
4
|
Blakemore J, Naftolin F. Aromatase: Contributions to Physiology and Disease in Women and Men. Physiology (Bethesda) 2017; 31:258-69. [PMID: 27252161 DOI: 10.1152/physiol.00054.2015] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aromatase (estrogen synthetase; EC 1.14.14.1) catalyzes the demethylation of androgens' carbon 19, producing phenolic 18-carbon estrogens. Aromatase is most widely known for its roles in reproduction and reproductive system diseases, and as a target for inhibitor therapy in estrogen-sensitive diseases including cancer, endometriosis, and leiomyoma (141, 143). However, all tissues contain estrogen receptor-expressing cells, the majority of genes have a complete or partial estrogen response element that regulates their expression (61), and there are plentiful nonreceptor effects of estrogens (79); therefore, the effect of aromatase through the provision of estrogen is almost universal in terms of health and disease. This review will provide a brief but comprehensive overview of the enzyme, its role in steroidogenesis, the problems that arise with its functional mutations and mishaps, the roles in human physiology of aromatase and its product estrogens, its current clinical roles, and the effects of aromatase inhibitors. While much of the story is that of the consequences of the formation of its product estrogens, we also will address alternative enzymatic roles of aromatase as a demethylase or nonenzymatic actions of this versatile molecule. Although this short review is meant to be thorough, it is by no means exhaustive; rather, it is meant to reflect the cutting-edge, exciting properties and possibilities of this ancient enzyme and its products.
Collapse
|
5
|
Abstract
Atherosclerosis is the main cause of death in men and women. This so-called "hardening of the arteries" results from advanced atherogenesis, the accumulation and death of subendothelial fat-laden macrophages (vascular plaque). The macrophages are attracted as the result of signals from injured vessels recruiting and activating cells to quell the injury by inflammation. Among the recruited cells are circulating monocytes that may be captured by the formation of neural cell adhesion molecule (nCAM) tethers between the monocytes and vascular endothelium; the tethers are dependent on electrostatic binding between distal segments of apposed nCAM molecules. The capture of monocytes is followed by their entry into the subendothelial area as macrophages, many of which will remain and become the fat-laden foam cells in vascular plaque. Neural cell adhesion molecules are subject to sialylation that blocks their electrostatic binding. We showed that estradiol-induced nCAM sialylases are present in vascular endothelial cells and tested whether sex steroid pretreatment of human vascular endothelium could inhibit the capture of monocytes. Using in vitro techniques, pretreatment of human arterial endothelial cells with estradiol, testosterone, dehydroepiandrosterone and dihydrotestosterone all induced sialylation of endothelial cells and, in a dose-response manner, reduced the capture of monocytes. Steroid hormones are protective against atherogenesis and its sequellae. Sex steroid depletion is associated with atherosclerosis. Based on this knowledge plus our results using sex steroid pretreatment of endothelial cells, we propose that the blockade of the initial step in atherogenesis by sex steroid-induced nCAM sialylation may be crucial to hormonal prevention of atherosclerosis.
Collapse
Affiliation(s)
- Frederick Naftolin
- Department of Obstetrics and Gynecology, New York University, New York, NY, USA
| | - Holly Mehr
- Department of Obstetrics and Gynecology, New York University, New York, NY, USA
| | - Ahmed Fadiel
- Department of Obstetrics and Gynecology, New York University, New York, NY, USA
| |
Collapse
|
6
|
Curatola AM, Huang K, Naftolin F. Dehydroepiandrosterone (DHEA) inhibition of monocyte binding by vascular endothelium is associated with sialylation of neural cell adhesion molecule. Reprod Sci 2012; 19:86-91. [PMID: 22228741 DOI: 10.1177/1933719111414210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Adhesion of monocytes to vascular endothelium is necessary for atheroma formation. This adhesion requires binding of endothelial neural cell adhesion molecule (NCAM) to monocyte NCAM. NCAM:NCAM binding is blocked by sialylation of NCAM (polysialylated NCAM; PSA-NCAM). Since estradiol (E2) and dihydrotestosterone (DHT) induced PSA-NCAM and decreased monocyte adhesion, in consideration of possible clinical applications we tested whether their prohormone dehydroepiandrosterone (DHEA) has similar effects. EXPERIMENTAL (1) DHEA was administered to cultured human coronary artery endothelial cells (HCAECs) from men and women. Monocyte binding was assessed using fluorescence-labeled monocytes. (2) HCEACs were incubated with E2, DHT, DHEA alone, or with trilostane, fulvestrant or flutamide. Expression of PSA-NCAM was assessed by immunohistochemistry and Western blotting. RESULTS Dehydroepiandrosterone inhibited monocyte adhesion to HCAECs by ≥50% (P < .01). Fulvestrant or flutamide blockade of DHEA's inhibition of monocyte binding appeared to be gender dependent. The DHEA-induced expression of PSA-NCAM was completely blocked by trilostane. CONCLUSIONS In these preliminary in vitro studies, DHEA increased PSA-NCAM expression and inhibited monocyte binding in an estrogen- and androgen receptor-dependent manner. Dehydroepiandrosteroneappears to act via its end metabolites, E2 and DHT. Dehydroepiandrosterone could furnish clinical prevention against atherogenesis and arteriosclerosis.
Collapse
Affiliation(s)
- Anna-Maria Curatola
- Department of Obstetrics and Gynecology, New York University, New York, NY, USA
| | | | | |
Collapse
|
7
|
Arevalo MA, Diz-Chaves Y, Santos-Galindo M, Bellini MJ, Garcia-Segura LM. Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J Neuroendocrinol 2012; 24:183-90. [PMID: 21564348 DOI: 10.1111/j.1365-2826.2011.02156.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroinflammation comprises a feature of many neurological disorders that is accompanied by the activation of glial cells and the release of pro-inflammatory cytokines and chemokines. Such activation is a normal response oriented to protect neural tissue and it is mainly regulated by microglia and astroglia. However, excessive and chronic activation of glia may lead to neurotoxicity and may be harmful for neural tissue. The ovarian hormone oestradiol exerts protective actions in the central nervous system that, at least in part, are mediated by a reduction of reactive gliosis. Several selective oestrogen receptor modulators may also exert neuroprotective effects by controlling glial inflammatory responses. Thus, tamoxifen and raloxifene decrease the inflammatory response caused by lipopolysaccharide, a bacterial endotoxin, in mouse and rat microglia cells in vitro. Tamoxifen and raloxifene are also able to reduce microglia activation in the brain of male and female rats in vivo after the peripheral administration of lipopolysaccharide. In addition, tamoxifen decreases the microglia inflammatory response induced by irradiation. Furthermore, treatment with tamoxifen and raloxifene resulted in a significant reduction of the number of reactive astrocytes in the hippocampus of young, middle-aged and older female rats after a stab wound injury. Tamoxifen, raloxifene and the new selective oestrogen receptor modulators ospemifene and bazedoxifene decrease the expression and release of interleukine-6 and interferon-γ inducible protein-10 in cultured astrocytes exposed to lipopolysaccharide. Ospemifene and bazedoxifene exert anti-inflammatory effects in astrocytes by a mechanism involving classical oestrogen receptors and the inhibition of nuclear factor-kappa B p65 transactivation. These data suggest that oestrogenic compounds are candidates to counteract brain inflammation under neurodegenerative conditions by targeting the production and release of pro-inflammatory molecules by glial cells.
Collapse
|
8
|
Park JH, Daheron L, Kantarci S, Lee BS, Teixeira JM. Human endometrial cells express elevated levels of pluripotent factors and are more amenable to reprogramming into induced pluripotent stem cells. Endocrinology 2011; 152:1080-9. [PMID: 21209016 PMCID: PMC3198966 DOI: 10.1210/en.2010-1072] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human endometrium is a tissue with remarkable plasticity and regenerative capacity. Additionally, endometrial cells can be retrieved using minimally invasive procedures, which makes them an ideal source for reprogramming into a pluripotent state. Endometrial cells were obtained from donors in their fifth decade and reprogrammed into induced pluripotent stem (iPS) cells using retroviral transduction with SOX2, OCT4, KLF4, and MYC. The human endometrial cells displayed accelerated expression of endogenous NANOG and OCT4 during reprogramming compared with neonatal skin fibroblasts. As a result, iPS cell colonies that could be subcultured and propagated were established as early as 12 d after transduction rather than the usually reported 3-4 wk for other cell types. After 3 wk of reprogramming, the human endometrial cells also yielded significantly higher numbers of iPS colonies in comparison with the neonatal skin fibroblasts. Although the efficiency of iPS colony formation varied depending on the donor, the basal level of endogenous expression of the defined factors was positively correlated with reprogramming efficiency. The reprogramming resulted in an average colony-forming efficiency of 0.49 ± 0.10%, with a range from 0.31-0.66%, compared with the neonatal skin fibroblasts, resulting in an average efficiency of 0.03 ± 0.00% per transduction, with a range from 0.02-0.03%. Our studies show that the human endometrium expresses elevated levels of pluripotent factors, which with additional defined factors, results in significantly more efficient and accelerated generation of induced pluripotent stem cells compared with conventional somatic cells.
Collapse
Affiliation(s)
- Joo Hyun Park
- Vincent Center of Reproductive Biology/Their 931, Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|