1
|
Fan Y, Liu C, Wang F, Li L, Guo Y, Zhou Q, Xiong L. Coumarins with Different Substituents from Leonurus japonicus Have Opposite Effects on Uterine Smooth Muscle. Int J Mol Sci 2024; 25:10162. [PMID: 39337649 PMCID: PMC11432705 DOI: 10.3390/ijms251810162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Leonurus japonicus Houtt is an exceptional medicinal herb used to treat obstetrical and gynecological diseases in traditional Chinese medicine, and it has significant effects on the treatment of dysmenorrhea and postpartum hemorrhage. This study investigated the effects of coumarins with diverse substituent groups from L. japonicus on isolated uterine smooth muscle and the preliminary mechanism of the most effective compound. Eight coumarins isolated from L. japonicus were assessed for their effects on the isolated uterine smooth muscle of nonpregnant rats in vitro. Coumarins 1 and 2 significantly promoted the contraction of rat uterine smooth muscle strips, whereas coumarins 3-5 showed remarkable relaxing effects against oxytocin (OT)-induced rat uterine smooth muscle contraction. Further mechanism investigations revealed that bergapten (coumarin 1) significantly increased the level of Ca2+ in uterine tissues by promoting extracellular Ca2+ influx and intracellular Ca2+ release, which were related to the activation of L-type Ca2+ channels and α-receptors. By contrast, osthole (coumarin 5), an α receptor antagonist, inhibited OT-induced uterine smooth muscle contraction by decreasing the level of Ca2+ in uterine tissues via inhibition of extracellular Ca2+ influx and intracellular Ca2+ release. This study demonstrates that the coumarins from L. japonicus are effective substances for regulating uterine smooth muscle contraction, but different coumarins with diverse substituent groups have different, even opposite effects. It can be inferred that coumarins are closely related to the efficacy of L. japonicus in the treatment of dysmenorrhea and postpartum hemorrhage.
Collapse
Affiliation(s)
- Yunqiu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenhao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Wang
- Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Lei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinmei Zhou
- Institute of Traditional Chinese Medicine Innovation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
2
|
Al-Habib OAM, Adam LN. Exploring the therapeutic potential of pomegranate juice for uterine relaxation. Expert Rev Endocrinol Metab 2024; 19:377-384. [PMID: 38525817 DOI: 10.1080/17446651.2024.2334218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/26/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The effects of pomegranate juice (PJ) and its components on uterine smooth muscle are unknown. Hence, this study unequivocally demonstrates that pomegranate juice (PJ) significantly impacts myometrial function, providing crucial insights into its relaxant properties and their potential therapeutic applications for uterine-related disorders. RESEARCH DESIGN AND METHODS Rat uterine smooth muscle horn strips were suspended in Krebs solution organ baths. Contractions were measured isometrically using a transducer (AD instrument Australia). The effects of PJ were evaluated on contractile activity elicited by potassium chloride (KCl 60 Mm) depolarization. Inhibitors of nitric oxide (L-NAME 3 X 10-4), guanylate cyclase (methylene blue 1 X 10-5), and Prostaglandin I2 (indomethacin 3 X 10-5), as well as Potassium Channels blockers, were determined. RESULTS The juice at concentrations from 1.5-5 mg/ml significantly decreased the rat uterine horn contraction induced by KCl. The NO, cGMP, and PGI2 inhibitors did not block the relaxation response. Furthermore, the PGI2 inhibitor significantly enhanced the relaxation effects; K+ channel blockers had no inhibitory effects on the relaxation responses. Contrarily, GLIB improved considerably relaxation. CONCLUSION Research suggests pomegranate juice's active ingredient may reduce uterine contractions and treat uterotonic disorders, potentially preventing preterm birth and dysmenorrhea. Further research is needed to determine its mechanism of action. TRIAL REGISTRATION Code: AEC-013.
Collapse
Affiliation(s)
- Omar A M Al-Habib
- Department of Biology, College of Science, University of Nawroz, Duhok, Kurdistan Region, Iraq
| | - Lina N Adam
- Department of Biology, College of Science, University of Zakho, Duhok, Kurdistan Region, Iraq
| |
Collapse
|
3
|
Khushboo M, Sanjeev S, Murthy MK, Sunitadevi M, Dinata R, Bhanushree B, Bidanchi RM, Nisa N, Lalrinzuali S, Manikandan B, Saeed AL, Abinash G, Pori B, Arati C, Roy VK, Gurusubramanian G. Dietary phytoestrogen diosgenin interrupts metabolism, physiology, and reproduction of Swiss albino mice: Possible mode of action as an emerging environmental contaminant, endocrine disruptor and reproductive toxicant. Food Chem Toxicol 2023; 176:113798. [PMID: 37146712 DOI: 10.1016/j.fct.2023.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Dietary phytoestrogens are the main source of environmental contamination due to their estrogen-mimicking and endocrine-disrupting effects, posing a threat to microbial, soil, plant, and animal health. Diosgenin, a phytosteroid saponin, is used in many traditional medicines, nutraceuticals, dietary supplements, contraceptives, and hormone replacement therapies against numerous diseases and disorders. It is important to be aware of the potential risks associated with diosgenin, as well as its potential to cause reproductive and endocrine toxicity. Due to the lack of research on the safety and probable adverse side effects of diosgenin, this work evaluated the endocrine-disrupting and reproductive toxicity of diosgenin in albino mice by following acute toxicity (OECD-423), repeated dose 90-day oral toxicity (OECD-468), and F1 extended one-generation reproductive toxicity (OECD-443) studies. Diosgenin was found to be slightly toxic, with LD50 for male and female mice being 546.26 and 538.72 mg/kg, respectively. Chronic exposure of diosgenin (10, 50, 100, and 200 mg/kg) generated oxidative stress, depleted antioxidant enzymes, disturbed homeostasis of the reproductive hormones, and interrupted steroidogenesis, germ cell apoptosis, gametogenesis, sperm quality, estrous cycle, and reproductive performance in the F0 and F1 offspring. Long-term oral exposure of diosgenin to the mice disturbed the endocrine and reproductive functions and generated transgenerational reproductive toxic effects in F0 and F1 offspring. These results suggest that diosgenin should be used carefully in food products and medical applications due to its potential endocrine-disrupting and reproductive toxic effects. The findings of this study provide a better understanding of the potential adverse effects of diosgenin and the need for appropriate risk assessment and management of its use.
Collapse
Affiliation(s)
- Maurya Khushboo
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Sanasam Sanjeev
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | | | - Maibam Sunitadevi
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Baishya Bhanushree
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | | | - Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Sailo Lalrinzuali
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Ahmed-Laskar Saeed
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Chettri Arati
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | | |
Collapse
|
4
|
Ni H, Liu J, Dai O, Feng R, Liu F, Cao XY, Peng C, Xiong L. Chemical composition and uterine smooth muscle relaxant activity of essential oils from 10 kinds of blood-activating and stasis-resolving Chinese medicinal herbs. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113713. [PMID: 33352237 DOI: 10.1016/j.jep.2020.113713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dysmenorrhea is one of the most common gynecological problems among menstruating females. Blood-activating and stasis-resolving herbs (BASRHs) have been employed to be the first choice for treating dysmenorrhea in China. Especially, the essential oils of some BASRHs have been confirmed to play important roles in the treatment of dysmenorrhea, but the constituents and uterine smooth muscle relaxant activity of some commonly used BASRH essential oils have not been fully assessed, and whether there are differences in the constituents and anti-dysmenorrhea effect among BASRH essential oils has not been evaluated. AIM OF THE STUDY This study aims to systematically investigate the chemical constituents of 10 BASRH essential oils and assess their uterine smooth muscle relaxant activity and the preliminary mechanism of the most effective essential oil. MATERIALS AND METHODS The chemical constituents of 10 BASRH essential oils were analyzed by Gas Chromatography-Mass Spectrometer. A rat model of dysmenorrhea in vitro was established to investigate the uterine smooth muscle relaxant activity of 10 kinds of essential oils. Rat isolated uterus strips were given different dose of 10 kinds of essential oils (0.04, 0.08, 0.16 mg/mL). The contractile responses were recorded with Power Lab recording system, and contractile tension, contractile frequency, and contractile activity were evaluated. The preliminary mechanism of the essential oil of the rhizomes of Curcuma phaeocaulis Valeton (CPEO) was assessed using a rat model of dysmenorrhea in vivo and in vitro, and rats were given the CPEO (15, 30, and 60 mg/kg) by gavage. The level of Ca2+ in uterine tissue of rats was determined by methyl thyme phenol blue colorimetric and Bradford methods. The effects of CPEO on extracellular Ca2+ influx and intracellular Ca2+ release were evaluated using the isolated uterus. RESULTS The results of Gas Chromatography-Mass Spectrometer analysis showed that more than 81 components (content: 1% max appearance) were identified. The main components of the 10 BASRH essential oils were found to be monoterpenoids, sesquiterpenoids, diterpenoids, aromatics, aliphatics, and phthalides. The study of in vitro smooth muscle relaxant activity demonstrated that all the essential oils except the essential oil of the roots of Cyathula officinalis K.C.Kuan markedly decrease the contractile activity, tension, and frequency (P < 0.05 or P < 0.01). Among these oils, CPEO has the most pronounced effect. Further in vivo studies indicated that CPEO can significantly decrease the level of Ca2+ in uterine tissue when compared with the model group (P < 0.05 or P < 0.01). In vitro studies indicated that CPEO can inhibit the extracellular Ca2+ influx and intracellular Ca2+ release in favor of uterine relaxation. CONCLUSIONS BASRH essential oils play an important role in inhibiting uterine smooth muscle contractions, and sesquiterpenoids and phthalides in BASRH essential oils are important active compounds for relaxing uterine smooth muscle. CPEO is a favorable candidate for developing anti-dysmenorrhea drugs.
Collapse
Affiliation(s)
- Hong Ni
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Juan Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ou Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Rui Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Fei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiao-Yu Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Kiyama R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. J Nutr Biochem 2020; 86:108486. [PMID: 32827666 DOI: 10.1016/j.jnutbio.2020.108486] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/01/2020] [Accepted: 08/05/2020] [Indexed: 12/30/2022]
Abstract
Ginger (Zingiber officinale Roscoe) has been used as a food, spice, supplement and flavoring agent and in traditional medicines due to its beneficial characteristics such as pungency, aroma, nutrients and pharmacological activity. Ginger and ginger extracts were reported to have numerous effects, such as those on diabetes and metabolic syndrome, cholesterol levels and lipid metabolism, and inflammation, revealed by epidemiological studies. To understand the beneficial characteristics of ginger, especially its physiological and pharmacological activities at the molecular level, the biological effects of ginger constituents, such as monoterpenes (cineole, citral, limonene and α/β-pinenes), sesquiterpenes (β-elemene, farnesene and zerumbone), phenolics (gingerols, [6]-shogaol, [6]-paradol and zingerone) and diarylheptanoids (curcumin), and the associated signaling pathways are summarized. Ginger constituents are involved in biological activities, such as apoptosis, cell cycle/DNA damage, chromatin/epigenetic regulation, cytoskeletal regulation and adhesion, immunology and inflammation, and neuroscience, and exert their effects through specific signaling pathways associated with cell functions/mechanisms such as autophagy, cellular metabolism, mitogen-activated protein kinase and other signaling, and development/differentiation. Estrogens, such as phytoestrogens, are one of the most important bioactive materials in nature, and the molecular mechanisms of estrogen actions and the assays to detect them have been discussed. The molecular mechanisms of estrogen actions induced by ginger constituents and related applications, such as the chemoprevention of cancers, and the improvement of menopausal syndromes, osteoporosis, endometriosis, prostatic hyperplasia, polycystic ovary syndrome and Alzheimer's disease, were summarized by a comprehensive search of references to understand more about their health benefits and associated health risks.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo Univ., 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| |
Collapse
|
6
|
Bafor EE, Kupittayanant S. Medicinal plants and their agents that affect uterine contractility. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Sukwan C, Wray S, Kupittayanant S. The effects of Ginseng Java root extract on uterine contractility in nonpregnant rats. Physiol Rep 2014; 2:2/12/e12230. [PMID: 25472610 PMCID: PMC4332211 DOI: 10.14814/phy2.12230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ginseng Java or Talinum paniculatum (Jacq.) Geartn has long been used in herbal recipes because of its various therapeutic properties. Ginseng Java is believed to be beneficial to the female reproductive system by inducing lactation and restoring uterine functions after the postpartum period. There are, however, no scientific data on verifying the effects on the uterus to support its therapeutic relevance. Therefore, the purpose of this study was to investigate the effects of Ginseng Java root extract and its possible mechanism(s) of action on uterine contractility. Female virgin rats were humanely killed by CO2 asphyxia and uteri removed. Isometric force was measured in strips of longitudinal myometrium. The effects of Ginseng Java root extract at its IC50 concentration (0.23 mg/mL) on spontaneous, oxytocin‐induced (10 nmol/L), and depolarized (KCl 40 mmol/L) contraction were investigated. After establishing regular phasic contractions, the application of Java root extract significantly inhibited spontaneous uterine contractility (n =5). The extract also significantly inhibited the contraction induced by high KCl solution (n =5) and oxytocin (n =5). The extract also inhibited oxytocin‐induced contraction in the absence of external Ca entry (n =7) and the tonic force induced by oxytocin in the presence of high KCl solution. Taken together, the data demonstrate a potent and consistent ability of extract from Ginseng Java root to reduce myometrial contractility. The tocolytic effects were demonstrated on both spontaneous and agonist‐induced contractions. The fact that force was inhibited in depolarized conditions suggests that the possible mechanisms may be blockade of Ca influx via L‐type Ca channels. The data in Ca‐free solutions suggest that the extract also reduces IP3‐induced Ca release from the internal store. These tocolytic effects do not support the use of ginseng to help with postpartum contractility, but instead suggest it may be helpful in reducing inappropriate uterine contractions, such as in threatened preterm delivery. The data demonstrate a potent and consistent ability of extract from Ginseng Java root to reduce myometrial contractility. The tocolytic effects were demonstrated on both spontaneous and agonist‐induced contractions.
Collapse
Affiliation(s)
- Catthareeya Sukwan
- Agricultural Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Susan Wray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, U.K
| | - Sajeera Kupittayanant
- School of Physiology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
8
|
Singh P, Khosa RL, Srivastava S, Mishra G, Jha KK, Srivastava S, Sangeeta, Verma RK, Tahseen MA. Pharmacognostical study and establishment of quality parameters of aerial parts of Costus speciosus-a well known tropical folklore medicine. Asian Pac J Trop Biomed 2014; 4:486-91. [PMID: 25182951 DOI: 10.12980/apjtb.4.2014c1103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To evaluate the diagnostic pharmacognostical characters of Costus speciosus (aerial parts) along with their physico-chemical parameters and fluorosence analysis. METHOD The pharmacognostical characters were determined in terms of macroscopy, microscopy, powder microscopy, leaf constant, fluorescence analysis and preliminary phytochemical investigation. RESULTS The findings of macroscopy revealed that leaves elliptic to oblong or oblong-lancoelate, thick, spirally arranged, with stem clasping sheaths up to 4 cm, flowers large, white, cone-like terminal spikes, with bright red bracts. Transverse section of leaflet showed the presence of cuticularised epidermis with polygonal cells on adaxial surface and bluntly angled cells on abaxial surface of lamina, mesophyll cells differentiated in to single layered palisade cells on each surface and 2-3 layered spongy parenchyma, unicellular and uniseriate multicellular covering trichomes, paracytic stomata and vascular bundles surrounded by sclerenchymatous multicellular sheath. Preliminary phytochemical screening exhibited the presence of various phytochemical groups like alkaloids, glycosides, steroids, phenolic constituents. Further, the leaf constants, powder microscopy and fluorescence characteristics indicated outstanding results from this investigation. CONCLUSIONS Various pharmacognostical and physico-chemical parameters have pivotal roles in identification, authentication and establishment of quality parameters of the species.
Collapse
Affiliation(s)
- Pradeep Singh
- Department of Pharmacognosy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Ratan Lal Khosa
- Department of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Delhi Road, Meerut, Uttar Pradesh, India
| | - Shruti Srivastava
- Department of Pharmacognosy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Garima Mishra
- Department of Pharmacognosy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Keshri Kishor Jha
- Department of Pharmacognosy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Sourabh Srivastava
- Department of Pharmacognosy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Sangeeta
- Department of Pharmacognosy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Ramesh Kumar Verma
- Department of Pharmacognosy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Mohd Adil Tahseen
- Department of Pharmacognosy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| |
Collapse
|
9
|
Kupittayanant S, Munglue P, Lijuan W, Promprom W, Budhaklala N, Wray S. Finding new agents in medicinal plants to act on the myometrium. Exp Physiol 2014; 99:530-7. [DOI: 10.1113/expphysiol.2013.072884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sajeera Kupittayanant
- Institute of Science; Suranaree University of Technology; Muang District Nakhon Ratchasima Thailand
| | - Phukphon Munglue
- Faculty of Science; Ubon Ratchathani Rajabhat University; Muang District Ubon Ratchathani Thailand
| | - Wanwisa Lijuan
- Faculty of Science and Technology; Thepsatri Rajabhat University; Muang Lop Buri Lobburi Thailand
| | - Wilawan Promprom
- Faculty of Science; Mahasarakham University; Kantrawichai Mahasarakham Thailand
| | - Nopparat Budhaklala
- Faculty of Science; Rajamangala University of Technology Thanyaburi; Thanyaburi Pathum Thani Thailand
| | - Susan Wray
- Department of Cellular and Molecular Physiology; Institute of Translational Medicine; University of Liverpool; Liverpool UK
| |
Collapse
|
10
|
Salleh N, Ahmad VN. In-VITRo effect of Ficus deltoidea on the contraction of isolated rat's uteri is mediated via multiple receptors binding and is dependent on extracellular calcium. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:359. [PMID: 24330515 PMCID: PMC3866927 DOI: 10.1186/1472-6882-13-359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/05/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ficus deltoidea, is a perennial herb that is used to assist labor, firm the uterus post-delivery and to prevent postpartum bleeding. In view of its claimed uterotonic action, the mechanisms underlying plant's effect on uterine contraction were investigated. METHODS Adult female SD rats were injected with 2 mg/kg 17β-oestradiol (E2) to synchronize their oestrous cycle. A day after injection, uteri were removed for in-vitro contraction studies. The dose dependent effect of Ficus deltoidea aqeous extract (FDA) on the tension produced by the isolated rat's uteri was determined. The effects of atropine (2×10(-8) M), atosiban (0.5 IU), THG113.31 (10 μM), oxodipine (0.25 mM), EDTA (1 mM), 2-amino-ethoxy-diphenylborate (2-APB) (40 mM) and thapsigargin (1 mM) on the maximum force of contraction (Emax) achieved following 2 mg/ml FDA administration were also investigated. RESULTS FDA induced in-vitro contraction of the isolated rat's uteri in a dose-dependent manner. Administration of atropine, atosiban and THG113.31 reduced the Emax with atosiban having the greatest effect. The Emax was also reduced following oxodipine and EDTA administration. There was no significant change observed following 2-APB administration. Thapsigargin, however, augmented Emax. CONCLUSIONS FDA-induced contraction of the isolated rat's uteri is mediated via multiple uterotonin receptors (muscarinic, oxytocin and prostaglandin F2α) and was dependent on the extracellular Ca2+. Contraction, however, was not dependent on the Ca2+ release from the internal stores. This in-vitro study provides the first scientific evidence on the claimed effect of Ficus Deltoidea on uterine contraction.
Collapse
Affiliation(s)
- Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Vivi Noryati Ahmad
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
11
|
Munglue P, Eumkep G, Wray S, Kupittayanant S. The effects of watermelon (Citrullus lanatus) extracts and L-citrulline on rat uterine contractility. Reprod Sci 2012; 20:437-48. [PMID: 22991380 DOI: 10.1177/1933719112459223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In uterine smooth muscle, the effects of watermelon and its citrulline content are unknown. The aims of this study were therefore, to determine the effects of watermelon extract and citrulline on the myometrium and to investigate their mechanisms of action. The effects of extracts of watermelon flesh and rind and L-citrulline (64 μmol/L) were evaluated on 3 types of contractile activity; spontaneous, those elicited by potassium chloride (KCl) depolarization, or oxytocin (10 nmol/L) application in isolated rat uterus. Inhibitors of nitric oxide (NO) and its mechanisms of action, N ω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 100 μmol/L), LY83583 (1 μmol/L), and tetraethylamonium chloride (5 mmol/L), as well as Ca signaling pathways, were determined. Both flesh and rind extracts significantly decreased the force produced by all 3 mechanisms, in a dose-dependent manner. The extracts could also significantly decrease the force under conditions of sustained high Ca levels (depolarization and agonist) and when the force was produced only by sarcoplasmic reticulum (SR) Ca release. L-citrulline produced the same effects on force as watermelon extracts. With submaximal doses of extract, the additive effects of L-citrulline were found. The inhibitory effects of extracts and L-citrulline were reversed upon the addition of NO inhibitors, and pretreatment of tissues with these inhibitors prevented the actions of both extracts and L-citrulline. Thus, these data show that watermelon and citrulline are potent tocolytics, decreasing the force produced by calcium entry and SR release and arising by different pathways, including oxytocin stimulation. Their major mechanism is to stimulate the NO-cyclic guanosine monophosphate (cGMP) relaxant pathway.
Collapse
Affiliation(s)
- Phukphon Munglue
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | | | | |
Collapse
|
12
|
Development of standardization parameters of Costus speciosus rhizomes with special reference to its pharmacognostical and HPTLC studies. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60174-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|