1
|
Saini P, Holmes AG, Wei JJ, Parker JB, Chakravarti D. Engineered uterine primary myometrial cells with high-mobility group AT-hook 2 overexpression display a leiomyoma-like transcriptional and epigenomic phenotype. F&S SCIENCE 2024:S2666-335X(24)00043-0. [PMID: 39074663 DOI: 10.1016/j.xfss.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE To determine if engineered high-mobility group AT-hook 2 (HMGA2) overexpressing uterine primary myometrial cells recapitulate the transcriptional and epigenomic features of HMGA2-subtype leiomyomas. DESIGN Isolated primary, "normal" myometrial cells from three patients were engineered to overexpress HMGA2 to determine how HMGA2 establishes transcriptomic and epigenomic features of HMGA2-overexpressing leiomyoma. SETTING Academic research laboratory. PATIENT(S) Primary myometrial cells were isolated from normal myometrium obtained from three patients undergoing hysterectomy. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Determined genome-wide transcriptomic and epigenomic features of engineered HMGA2-overexpressing uterine primary myometrial cells. RESULT(S) Engineered HMGA2-V5-overexpressing primary myometrial cells approximated the HMGA2 expression level observed in HMGA2-overexpression subtype leiomyoma. High-mobility group AT-hook 2-V5 expression resulted in differential expression of 1,612 genes (false discovery rate [FDR] < 0.05) that were found to be enriched in pathways associated with leiomyoma formation, including extracellular matrix organization. Comparative gene expression analysis between HMGA2-V5 engineered primary cells and HMGA2-overexpression subtype leiomyoma revealed significant overlap of differentially expressed genes. Mechanistically, HMGA2-V5 overexpression resulted in 41,323 regions with differential H3K27ac deposition (FDR < 0.05) and 205,605 regions of altered chromatin accessibility (FDR < 0.05). Transcription factor binding site analysis implicated the AP-1 family of transcription factors. CONCLUSION(S) High-mobility group AT-hook 2 overexpression induces leiomyoma-like transcriptomic and epigenomic modulations in myometrial cells.
Collapse
Affiliation(s)
- Priyanka Saini
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Austin G Holmes
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jian-Jun Wei
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - J Brandon Parker
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Debabrata Chakravarti
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
2
|
A View on Uterine Leiomyoma Genesis through the Prism of Genetic, Epigenetic and Cellular Heterogeneity. Int J Mol Sci 2023; 24:ijms24065752. [PMID: 36982825 PMCID: PMC10056617 DOI: 10.3390/ijms24065752] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Uterine leiomyomas (ULs), frequent benign tumours of the female reproductive tract, are associated with a range of symptoms and significant morbidity. Despite extensive research, there is no consensus on essential points of UL initiation and development. The main reason for this is a pronounced inter- and intratumoral heterogeneity resulting from diverse and complicated mechanisms underlying UL pathobiology. In this review, we comprehensively analyse risk and protective factors for UL development, UL cellular composition, hormonal and paracrine signalling, epigenetic regulation and genetic abnormalities. We conclude the need to carefully update the concept of UL genesis in light of the current data. Staying within the framework of the existing hypotheses, we introduce a possible timeline for UL development and the associated key events—from potential prerequisites to the beginning of UL formation and the onset of driver and passenger changes.
Collapse
|
3
|
Carbajo-García MC, García-Alcázar Z, Corachán A, Monleón J, Trelis A, Faus A, Pellicer A, Ferrero H. Histone deacetylase inhibition by suberoylanilide hydroxamic acid: a therapeutic approach to treat human uterine leiomyoma. Fertil Steril 2021; 117:433-443. [PMID: 34809976 DOI: 10.1016/j.fertnstert.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the effect of inhibition of histone deacetylases (HDACs) by suberoylanilide hydroxamic acid (SAHA) treatment of human uterine leiomyoma primary (HULP) cells in vitro on cell proliferation, cell cycle, extracellular matrix (ECM) formation, and transforming growth factor β3 (TGF-β3) signaling. DESIGN Prospective study comparing uterine leiomyoma (UL) vs. adjacent myometrium (MM) tissue and cells with or without SAHA treatment. SETTING Hospital and university laboratories. PATIENT(S) Women with UL without any hormone treatment. INTERVENTION(S) Myomectomy or hysterectomy surgery in women for leiomyoma disease. MAIN OUTCOME MEASURE(S) HDAC activity was assessed by enzyme-linked immunosorbent assay, and gene expression was assessed by quantitative real-time polymerase chain reaction. Effects of SAHA on HULP cells were analyzed by CellTiter (Promega, Madison, Wisconsin), Western blot, and quantitative real-time polymerase chain reaction. RESULT(S) The expression of HDAC genes (HDAC1, fold change [FC] = 1.65; HDAC3, FC = 2.08; HDAC6, FC = 2.42) and activity (0.56 vs. 0.10 optical density [OD]/h/mg) was significantly increased in UL vs. MM tissue. SAHA decreased HDAC activity in HULP cells but not in MM cells. Cell viability significantly decreased in HULP cells (81.68% at 5 μM SAHA, 73.46% at 10 μM SAHA), but not in MM cells. Proliferating cell nuclear antigen expression was significantly inhibited in SAHA-treated HULP cells (5 μM SAHA, FC = 0.556; 10 μM SAHA, FC = 0.622). Cell cycle markers, including C-MYC (5 μM SAHA, FC = 0.828) and CCND1 (5 μM SAHA, FC = 0.583; 10 μM SAHA, FC = 0.482), were significantly down-regulated after SAHA treatment. SAHA significantly inhibited ECM protein expression, including FIBRONECTIN (5 μM SAHA, FC = 0.815; 10 μM SAHA, FC = 0.673) and COLLAGEN I (5 μM SAHA, FC = 0.599; 10 μM SAHA, FC = 0.635), in HULP cells. TGFβ3 and MMP9 gene expression was also significantly down-regulated by 10 μM SAHA (TGFβ3, FC = 0.596; MMP9, FC = 0.677). CONCLUSION(S) SAHA treatment inhibits cell proliferation, cell cycle, ECM formation, and TGF-β3 signaling in HULP cells, suggesting that histone deacetylation may be useful for treatment of UL.
Collapse
Affiliation(s)
- María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | | | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | - Javier Monleón
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|
4
|
Molecular and Cellular Insights into the Development of Uterine Fibroids. Int J Mol Sci 2021; 22:ijms22168483. [PMID: 34445194 PMCID: PMC8395213 DOI: 10.3390/ijms22168483] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Uterine leiomyomas represent the most common benign gynecologic tumor. These hormone-dependent smooth-muscle formations occur with an estimated prevalence of ~70% among women of reproductive age and cause symptoms including pain, abnormal uterine bleeding, infertility, and recurrent abortion. Despite the prevalence and public health impact of uterine leiomyomas, available treatments remain limited. Among the potential causes of leiomyomas, early hormonal exposure during periods of development may result in developmental reprogramming via epigenetic changes that persist in adulthood, leading to disease onset or progression. Recent developments in unbiased high-throughput sequencing technology enable powerful approaches to detect driver mutations, yielding new insights into the genomic instability of leiomyomas. Current data also suggest that each leiomyoma originates from the clonal expansion of a single transformed somatic stem cell of the myometrium. In this review, we propose an integrated cellular and molecular view of the origins of leiomyomas, as well as paradigm-shifting studies that will lead to better understanding and the future development of non-surgical treatments for these highly frequent tumors.
Collapse
|
5
|
Zannotti A, Greco S, Pellegrino P, Giantomassi F, Delli Carpini G, Goteri G, Ciavattini A, Ciarmela P. Macrophages and Immune Responses in Uterine Fibroids. Cells 2021; 10:cells10050982. [PMID: 33922329 PMCID: PMC8146588 DOI: 10.3390/cells10050982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Uterine fibroids represent the most common benign tumors of the uterus. They are considered a typical fibrotic disorder. In fact, the extracellular matrix (ECM) proteins—above all, collagen 1A1, fibronectin and versican—are upregulated in this pathology. The uterine fibroids etiology has not yet been clarified, and this represents an important matter about their resolution. A model has been proposed according to which the formation of an altered ECM could be the result of an excessive wound healing, in turn driven by a dysregulated inflammation process. A lot of molecules act in the complex inflammatory response. Macrophages have a great flexibility since they can assume different phenotypes leading to the tissue repair process. The dysregulation of macrophage proliferation, accumulation and infiltration could lead to an uncontrolled tissue repair and to the consequent pathological fibrosis. In addition, molecules such as monocyte chemoattractant protein-1 (MCP-1), granulocyte macrophage-colony-stimulating factor (GM-CSF), transforming growth factor-beta (TGF-β), activin A and tumor necrosis factor-alfa (TNF-α) were demonstrated to play an important role in the macrophage action within the uncontrolled tissue repair that contributes to the pathological fibrosis that represents a typical feature of the uterine fibroids.
Collapse
Affiliation(s)
- Alessandro Zannotti
- Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (A.Z.); (G.D.C.); (A.C.)
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.G.); (P.P.)
| | - Stefania Greco
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.G.); (P.P.)
| | - Pamela Pellegrino
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.G.); (P.P.)
| | - Federica Giantomassi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy; (F.G.); (G.G.)
| | - Giovanni Delli Carpini
- Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (A.Z.); (G.D.C.); (A.C.)
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy; (F.G.); (G.G.)
| | - Andrea Ciavattini
- Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (A.Z.); (G.D.C.); (A.C.)
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.G.); (P.P.)
- Correspondence: ; Tel.:+39-071-220-6270
| |
Collapse
|
6
|
Uterine Stem Cells and Benign Gynecological Disorders: Role in Pathobiology and Therapeutic Implications. Stem Cell Rev Rep 2020; 17:803-820. [PMID: 33155150 DOI: 10.1007/s12015-020-10075-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Stem cells in the endometrium and myometrium possess an immense regenerative potential which is necessary to maintain the menstrual cycle and support pregnancy. These cells, as well as bone marrow stem cells, have also been implicated in the development of common benign gynecological disorders including leiomyomas, endometriosis and adenomyosis. Current evidence suggests the conversion of uterine stem cells to tumor initiating stem cells in leiomyomas, endometriosis stem cells, and adenomyosis stem cells, acquiring genetic and epigenetic alterations for the progression of each benign condition. In this comprehensive review, we aim to summarize the progress that has been made to characterize the involvement of stem cells in the pathogenesis of benign gynecologic conditions which, despite their enormous burden, are not yet fully understood. We focus on the stem cell characteristics and aberrations that contribute to the development of benign gynecological disorders and the possible clinical implications of what is known so far. Lastly, we discuss the role of uterine stem cells in the setting of regenerative medicine, particularly in the treatment of Asherman syndrome.Graphical abstract.
Collapse
|
7
|
Ali M, Shahin SM, Sabri NA, Al-Hendy A, Yang Q. Activation of β-Catenin Signaling and its Crosstalk With Estrogen and Histone Deacetylases in Human Uterine Fibroids. J Clin Endocrinol Metab 2020; 105:5639769. [PMID: 31761932 PMCID: PMC7064306 DOI: 10.1210/clinem/dgz227] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/23/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Uterine fibroids (UF) are the most common benign tumor of the myometrium (MM) in women of reproductive age. However, the mechanism underlying the pathogenesis of UF is largely unknown. OBJECTIVE To explore the link between nuclear β-catenin and UF phenotype and β-catenin crosstalk with estrogen and histone deacetylases (HDACs). DESIGN Protein/RNA levels of β-catenin (CTNNB1 gene), its responsive markers cyclin D1 and c-Myc, androgen receptor (AR), p27, and class-I HDACs were measured in matched UF/MM tissues or cell populations. The effects of chemical inhibition/activation and genetic knockdown of CTNNB1 on UF phenotype were measured. The anti-UF effect of 2 HDAC inhibitors was evaluated. MAIN OUTCOME MEASURE β-catenin nuclear translocation in response to β-catenin inhibition/activation, estrogen, and HDAC inhibitors in UF cells. RESULTS UF tissues/cells showed significantly higher expression of nuclear β-catenin, cyclin D1, c-Myc, and HDACs 1, 2, 3, and 8 than MM. Estradiol induced β-catenin nuclear translocation and consequently its responsive genes in both MM and UF cells, while an estrogen receptor antagonist reversed this induction effect. Treatment with β-catenin or HDAC inhibitors led to dose-dependent growth inhibition, while Wnt3a treatment increased proliferation compared with control. Chemical inhibition of β-catenin decreased cyclin D1 and c-Myc expression levels, while β-catenin activation increased expression of the same markers. Genetic knockdown of CTNNB1 resulted in a marked decrease in β-catenin, cyclin D1, c-Myc, and AR expression. Treatment of UF cells with HDAC inhibitors decreased nuclear β-catenin, cyclin D1, and c-Myc expression. Moreover, HDAC inhibitors induced apoptosis of UF cells and cell cycle arrest. CONCLUSION β-catenin nuclear translocation contributes to UF phenotype, and β-catenin signaling is modulated by estradiol and HDAC activity.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
- Clinical Pharmacy Department, Faculty of Pharmacy, ASU, Cairo, Egypt
| | | | - Nagwa Ali Sabri
- Clinical Pharmacy Department, Faculty of Pharmacy, ASU, Cairo, Egypt
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
- Correspondence: Dr Qiwei Yang, 1Department of Obstetrics and Gynecology, University of Illinois at Chicago, 909 S. Wolcott Ave, Chicago, IL 60612, USA. E-mail:
| |
Collapse
|
8
|
Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, Sausville EL, Lukow DA, Liu L, Chait AR, Galluzzo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019; 11:eaaw8412. [PMID: 31511426 PMCID: PMC7717492 DOI: 10.1126/scitranslmed.aaw8412] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Ninety-seven percent of drug-indication pairs that are tested in clinical trials in oncology never advance to receive U.S. Food and Drug Administration approval. While lack of efficacy and dose-limiting toxicities are the most common causes of trial failure, the reason(s) why so many new drugs encounter these problems is not well understood. Using CRISPR-Cas9 mutagenesis, we investigated a set of cancer drugs and drug targets in various stages of clinical testing. We show that-contrary to previous reports obtained predominantly with RNA interference and small-molecule inhibitors-the proteins ostensibly targeted by these drugs are nonessential for cancer cell proliferation. Moreover, the efficacy of each drug that we tested was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. By applying a genetic target-deconvolution strategy, we found that the mischaracterized anticancer agent OTS964 is actually a potent inhibitor of the cyclin-dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We suggest that stringent genetic validation of the mechanism of action of cancer drugs in the preclinical setting may decrease the number of therapies tested in human patients that fail to provide any clinical benefit.
Collapse
Affiliation(s)
- Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Christopher J Giuliano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Ann Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kristen M John
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Hofstra University, Hempstead, NY 11549, USA
| | - Connor Abramowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- New York Institute of Technology, Glen Head, NY 11545, USA
| | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Syosset High School, Syosset, NY 11791, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Luwei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Clara Tucker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
9
|
Liang MR, Zeng Y, Zeng SY, Zhang JW, Yang BC, Zhang ZY, Liu FY, Luo Y, Zou Y, Wang F, Huang OP. The Expression of MBD6 Is Associated with Tumor Size in Uterine Leiomyomas. Genet Test Mol Biomarkers 2019; 23:523-532. [PMID: 31313936 DOI: 10.1089/gtmb.2019.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Uterine leiomyoma (UL) is the most common benign smooth muscle tumor of the uterus in reproductive women. Prior studies indicated that methyl-CpG-binding domain proteins (MBDs) may be involved in the pathogenesis of UL. Materials and Methods: In this study, UL tissues and paired adjacent myometrium were collected from a total of 51 patients. The expression of MBD mRNAs and their cognate proteins were analyzed via quantitative polymerase chain reaction assays and western blotting, respectively. The relationships between the MBD expression levels and the patients' clinicopathologic variables were assessed using Student's t test, nonparametric tests, or Pearson χ2 methods. Results: Our results show that both the mRNA and protein levels of MBD2 were significantly decreased in ULs compared to the adjacent myometrium. In addition, MBD6 protein expression was also decreased significantly in UL samples when compared to the adjacent myometrium. There was, however, no significant difference on the mRNA expression of MBD6 between these two groups. Neither the mRNA nor the protein levels of the other MBD members (MBD1, MBD3, MBD4, MBD5, and MeCP2) showed any significant differences between ULs and the adjacent myometria. The decreased expression of the MBD6 protein was correlated with the tumor size of ULs. Conclusions: These results suggest that the dysregulated expression of MBD2 and MBD6 in ULs may play a role in their development; however, a larger sample size together with cellular functional assays should be carried out to further elucidate the precise role of MBD6 in ULs.
Collapse
Affiliation(s)
- Mei-Rong Liang
- 1Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,2Department of Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China.,3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Yang Zeng
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Si-Yuan Zeng
- 2Department of Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Jun-Wen Zhang
- 1Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Bi-Cheng Yang
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Zi-Yu Zhang
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Fa-Ying Liu
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Yong Luo
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Yang Zou
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Feng Wang
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Ou-Ping Huang
- 1Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China.,4Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
10
|
Sant'Anna GDS, Brum IS, Branchini G, Pizzolato LS, Capp E, Corleta HVE. Ovarian steroid hormones modulate the expression of progesterone receptors and histone acetylation patterns in uterine leiomyoma cells. Gynecol Endocrinol 2017; 33:629-633. [PMID: 28300476 DOI: 10.1080/09513590.2017.1301924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Uterine leiomyomas are the most common benign smooth muscle cell tumors in women. Estrogen (E2), progesterone (P4) and environmental factors play important roles in the development of these tumors. New treatments, such as mifepristone, have been proposed. We evaluated the gene expression of total (PRT) and B (PRB) progesterone receptors, and the histone acetyltransferase (HAT) and deacetylase (HDAC) activity after treatment with E2, P4 and mifepristone (RU486) in primary cell cultures from uterine leiomyoma and normal myometrium. Compared to myometrium, uterine leiomyoma cells showed an increase in PRT mRNA expression when treated with E2, and increase in PRB mRNA expression when treated with E2 and P4. Treatment with mifepristone had no significant impact on mRNA expression in these cells. The HDAC activity was higher in uterine leiomyoma compared to myometrial cells after treatment with E2 and E2 + P4 + mifepristone. HAT activity was barely detectable. Our results suggest that ovarian steroid hormones modulate PR, and mifepristone was unable to decrease PRT and PRB mRNA. The higher activity of HDAC leiomyoma cells could be involved in transcriptional repression of genes implicated in normal myometrium cell function, contributing to the maintenance and growth of uterine leiomyoma.
Collapse
Affiliation(s)
- Gabriela Dos Santos Sant'Anna
- a Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina da Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
- b Laboratório de biologia molecular endócrino e tumoral , Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
- c Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Ilma Simoni Brum
- b Laboratório de biologia molecular endócrino e tumoral , Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
- c Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Gisele Branchini
- b Laboratório de biologia molecular endócrino e tumoral , Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
- c Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
- d Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre , Brazil , and
| | - Lolita Schneider Pizzolato
- b Laboratório de biologia molecular endócrino e tumoral , Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
- c Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Edison Capp
- b Laboratório de biologia molecular endócrino e tumoral , Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
- c Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
- e Departamento de Ginecologia e Obstetrícia , Faculdade de Medicina da UFRGS , Porto Alegre , Brazil
| | - Helena von Eye Corleta
- a Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina da Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
- b Laboratório de biologia molecular endócrino e tumoral , Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
- c Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
- e Departamento de Ginecologia e Obstetrícia , Faculdade de Medicina da UFRGS , Porto Alegre , Brazil
| |
Collapse
|
11
|
PATHOGENETIC ASPECTS OF STATINS’ APPLICABILITY IN COMBINATION TREATMENT OF PATIENTS WITH UTERINE FIBROIDS AND EXTRAGENITAL PATHOLOGIES. WORLD OF MEDICINE AND BIOLOGY 2017. [DOI: 10.26724/2079-8334-2017-3-61-22-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Mas A, Stone L, O'Connor PM, Yang Q, Kleven D, Simon C, Walker CL, Al-Hendy A. Developmental Exposure to Endocrine Disruptors Expands Murine Myometrial Stem Cell Compartment as a Prerequisite to Leiomyoma Tumorigenesis. Stem Cells 2016; 35:666-678. [PMID: 27739139 DOI: 10.1002/stem.2519] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/29/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022]
Abstract
Despite the high prevalence and major negative impact of uterine fibroids (UFs) on women's health, their pathogenesis remains largely unknown. While tumor-initiating cells have been previously isolated from UFs, the cell of origin for these tumors in normal myometrium has not been identified. We isolated cells with Stro1/CD44 surface markers from normal myometrium expressing stem cell markers Oct-4/c-kit/nanog that exhibited the properties of myometrial stem/progenitor-like cells (MSCs). Using a murine model for UFs, we showed that the cervix was a hypoxic "niche" and primary site (96%) for fibroid development in these animals. The pool size of these MSCs also responded to environmental cues, contracting with age and expanding in response to developmental environmental exposures that promote fibroid development. Translating these findings to women, the number of MSCs in unaffected human myometrium correlated with risk for developing UFs. Caucasian (CC) women with fibroids had increased numbers of MSCs relative to CC women without fibroids, and African-American (AA) women at highest risk for these tumors had the highest number of MSCs: AA-with fibroids > CC-with fibroids > AA-without fibroids > CC-without fibroids. These data identify Stro1+ /CD44+ MSCs as MSC/progenitor cell for UFs, and a target for ethnic and environmental factors that increase UF risk. Stem Cells 2017;35:666-678.
Collapse
Affiliation(s)
- Aymara Mas
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia, USA
| | - Leyland Stone
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia, USA
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia, USA
| | - Daniel Kleven
- Department of Pathology, Augusta University, Augusta, Georgia, USA
| | - Carlos Simon
- Department of Pediatrics, Obstetrics and Gynecology, Valencia University, INCLIVA, Valencia, Spain
| | - Cheryl L Walker
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
13
|
Resveratrol inhibits proliferation of myometrial and leiomyoma cells and decreases extracellular matrix-associated protein expression. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Yang Q, Mas A, Diamond MP, Al-Hendy A. The Mechanism and Function of Epigenetics in Uterine Leiomyoma Development. Reprod Sci 2016; 23:163-75. [PMID: 25922306 PMCID: PMC5933172 DOI: 10.1177/1933719115584449] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uterine leiomyomas, also known as uterine fibroids, are the most common pelvic tumors, occurring in nearly 70% of all reproductive-aged women and are the leading indication for hysterectomy worldwide. The development of uterine leiomyomas involve a complex and heterogeneous constellation of hormones, growth factors, stem cells, genetic, and epigenetic abnormalities. An increasing body of evidence emphasizes the important contribution of epigenetics in the pathogenesis of leiomyomas. Genome-wide methylation analysis demonstrates that a subset of estrogen receptor (ER) response genes exhibit abnormal hypermethylation levels that are inversely correlated with their RNA expression. Several tumor suppressor genes, including Kruppel-like factor 11 (KLF11), deleted in lung and esophageal cancer 1 (DLEC1), keratin 19 (KRT19), and death-associated protein kinase 1 (DAPK1) also display higher hypermethylation levels in leiomyomas when compared to adjacent normal tissues. The important role of active DNA demethylation was recently identified with regard to the ten-eleven translocation protein 1 and ten-eleven translocation protein 3-mediated elevated levels of 5-hydroxymethylcytosine in leiomyoma. In addition, both histone deacetylase and histone methyltransferase are reported to be involved in the biology of leiomyomas. A number of deregulated microRNAs have been identified in leiomyomas, leading to an altered expression of their targets. More recently, the existence of side population (SP) cells with characteristics of tumor-initiating cells have been characterized in leiomyomas. These SP cells exhibit a tumorigenic capacity in immunodeficient mice when exposed to 17β-estradiol and progesterone, giving rise to fibroid-like tissue in vivo. These new findings will likely enhance our understanding of the crucial role epigenetics plays in the pathogenesis of uterine leiomyomas as well as point the way to novel therapeutic options.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Aymara Mas
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Michael P Diamond
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Ayman Al-Hendy
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
15
|
Ling J, Wu X, Fu Z, Tan J, Xu Q. Systematic analysis of gene expression pattern in has-miR-197 over-expressed human uterine leiomyoma cells. Biomed Pharmacother 2015; 75:226-33. [PMID: 26311392 DOI: 10.1016/j.biopha.2015.07.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/26/2015] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION Our previous study showed that the expression of miR-197 in leiomyoma was down-regulated compared with myometrium. Further, miR-197 has been identified to affect uterine leiomyoma cell proliferation, apoptosis, and metastasis ability, though the responsible molecular mechanism has not been well elucidated. In this study, we sought to determine the expression patterns of miR-197 targeted genes and to explore their potential functions, participating Pathways and the networks that are involved in the biological behavior of human uterine leiomyoma. METHODS After transfection of human uterine leiomyoma cells with miR-197, we confirmed the expression level of miR-197 using quantitative real-time PCR (qRT-PCR), and we detected the gene expression profiles after miR-197 over-expression through DNA microarray analysis. Further, we performed GO and Pathway analysis. The dominantly dys-regulated genes, which were up- or down-regulated by more than 10-fold, compared with parental cells, were confirmed using qRT-PCR technology. RESULT Compared with the control group, miR-197 was up-regulated by 30-fold after miR-197 lentiviral transfection. The microarray data showed that 872 genes were dys-regulated by more than 2-fold in human uterine leiomyoma cells after miR-197 overexpression, including 537 up-regulated and 335 down-regulated genes. The GO analysis indicated that the dys-regulated genes were primarily involved in response to stimuli, multicellular organ processes, and the signaling of biological progression. Further, Pathway analysis data showed that these genes participated in regulating several signaling Pathways, including the JAK/STAT signaling Pathway, the Toll-like receptor signaling Pathway, and cytokine-cytokine receptor interaction. The qRT-PCR results confirmed that 17 of the 66 selected genes, which were up- or down-regulated more than 10-fold by miR-197, were consistent with the microarray results, including tumorigenesis-related genes, such as DRT7, SLC549, SFMBT2, FLJ37956, FBLN2, C10orf35, HOXD12, CACNG7, and LOC100134279. CONCLUSION Our study explored gene expression patterns after miR-197 overexpression and confirmed 17 dominantly dys-regulated genes, which could expand the insights into the function of miR-197 and the molecular mechanisms during the development and progression of uterine leiomyomas. This study might afford new clues for understanding the pathogenesis of uterine leiomyomas, and it could likely provide a unique method for diagnosing or predicting prognosis in the clinical treatment of leiomyoma.
Collapse
Affiliation(s)
- Jing Ling
- Department of Obstetrics and Gynecology, Affiliated Jiangyin Hospital of South-East University, Jiangyin 214400, China
| | - Xiaoli Wu
- Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Medical Institute, Affiliated Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210004, China
| | - Jie Tan
- Department of Obstetrics and Gynecology, Affiliated Jiangyin Hospital of South-East University, Jiangyin 214400, China.
| | - Qing Xu
- Department of Obstetrics and Gynecology, Affiliated Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210004, China
| |
Collapse
|
16
|
Ono M, Bulun SE, Maruyama T. Tissue-specific stem cells in the myometrium and tumor-initiating cells in leiomyoma. Biol Reprod 2014; 91:149. [PMID: 25376230 DOI: 10.1095/biolreprod.114.123794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue-specific (or somatic) stem cells constitute a subset of cells residing in normal adult tissues. By undergoing asymmetric division, they retain their ability to self-renew while producing daughter cells that go on to differentiate and play a role in tissue regeneration and repair. The human uterus consists primarily of endometrium and myometrium (the smooth muscle layer) that rapidly enlarges through its tremendous regenerative and remodeling capacity to accommodate the developing fetus. Such uterine enlargement and remodeling can take place repeatedly and cyclically over the course of a woman's reproductive life. These unique properties of the uterus suggest the existence of endometrial and myometrial stem cell systems. In addition, like somatic cells, tumor stem cells or tumor-initiating cells, a subset of cells within a tumor, retain the ability to reconstitute tumors. Uterine smooth muscle cells are thought to be the origin of leiomyomas that are the most common type of gynecologic tumor. Recent work has identified, isolated, and characterized putative stem/progenitor cells in the myometrium and in leiomyomas. Here, we review current studies of myometrial and leiomyoma stem/progenitor cells and provide a new paradigm for understanding myometrial physiology and pathology and how these cells might contribute to uterine remodeling during pregnancy and the formation of leiomyomas. The role of the WNT/CTNNB1 pathway in the pathogenesis of leiomyoma is also discussed.
Collapse
Affiliation(s)
- Masanori Ono
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Mas A, Cervello I, Gil-Sanchis C, Simón C. Current understanding of somatic stem cells in leiomyoma formation. Fertil Steril 2014; 102:613-20. [PMID: 24890270 DOI: 10.1016/j.fertnstert.2014.04.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To provide a detailed summary of current scientific knowledge of somatic stem cells (SSCs) in murine and human myometrium and their putative implication in leiomyoma formation, as well as to establish new therapeutic options. DESIGN Pubmed and Scholar One manuscripts were used to identify the most relevant studies on SSCs and their implications in human myometrium and leiomyomas. SETTING University research laboratory-affiliated infertility clinic. PATIENT(S) Not applicable. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Not applicable. RESULT(S) Despite numerous publications on SSCs, it was not until 2007 that scientific evidence based on the use of 5-bromo-2'-deoxyuridine (BrdU) and side population (SP) methods in murine and human myometrium were first published. Recently, it has been reported that SP cells are present in human leiomyomas; however, to date the pathogenesis of this benign tumor remains unclear. Besides many genetic/epigenetic alterations, changes to steroid hormones and growth factors may also be associated with the impaired function, proliferation, and differentiation of a subset of putative SSCs in human myometrium. CONCLUSION(S) These findings open up new possibilities for understanding the origin of this benign tumor and help to develop new nonsurgical approaches for their management.
Collapse
Affiliation(s)
- Aymara Mas
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI-University of Valencia, INCLIVA, Valencia, Spain.
| | - Irene Cervello
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI-University of Valencia, INCLIVA, Valencia, Spain
| | - Claudia Gil-Sanchis
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI-University of Valencia, INCLIVA, Valencia, Spain
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI-University of Valencia, INCLIVA, Valencia, Spain; Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, California
| |
Collapse
|
18
|
Segars JH, Parrott EC, Nagel JD, Guo XC, Gao X, Birnbaum LS, Pinn VW, Dixon D. Proceedings from the Third National Institutes of Health International Congress on Advances in Uterine Leiomyoma Research: comprehensive review, conference summary and future recommendations. Hum Reprod Update 2014; 20:309-33. [PMID: 24401287 DOI: 10.1093/humupd/dmt058] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Uterine fibroids are the most common gynecologic tumors in women of reproductive age yet the etiology and pathogenesis of these lesions remain poorly understood. Age, African ancestry, nulliparity and obesity have been identified as predisposing factors for uterine fibroids. Symptomatic tumors can cause excessive uterine bleeding, bladder dysfunction and pelvic pain, as well as associated reproductive disorders such as infertility, miscarriage and other adverse pregnancy outcomes. Currently, there are limited noninvasive therapies for fibroids and no early intervention or prevention strategies are readily available. This review summarizes the advances in basic, applied and translational uterine fibroid research, in addition to current and proposed approaches to clinical management as presented at the 'Advances in Uterine Leiomyoma Research: 3rd NIH International Congress'. Congress recommendations and a review of the fibroid literature are also reported. METHODS This review is a report of meeting proceedings, the resulting recommendations and a literature review of the subject. RESULTS The research data presented highlights the complexity of uterine fibroids and the convergence of ethnicity, race, genetics, epigenetics and environmental factors, including lifestyle and possible socioeconomic parameters on disease manifestation. The data presented suggest it is likely that the majority of women with uterine fibroids will have normal pregnancy outcomes; however, additional research is warranted. As an alternative to surgery, an effective long-term medical treatment for uterine fibroids should reduce heavy uterine bleeding and fibroid/uterine volume without excessive side effects. This goal has not been achieved and current treatments reduce symptoms only temporarily; however, a multi-disciplined approach to understanding the molecular origins and pathogenesis of uterine fibroids, as presented in this report, makes our quest for identifying novel targets for noninvasive, possibly nonsystemic and effective long-term treatment very promising. CONCLUSIONS The Congress facilitated the exchange of scientific information among members of the uterine leiomyoma research and health-care communities. While advances in research have deepened our knowledge of the pathobiology of fibroids, their etiology still remains incompletely understood. Further needs exist for determination of risk factors and initiation of preventive measures for fibroids, in addition to continued development of new medical and minimally invasive options for treatment.
Collapse
Affiliation(s)
- James H Segars
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Islam MS, Protic O, Stortoni P, Grechi G, Lamanna P, Petraglia F, Castellucci M, Ciarmela P. Complex networks of multiple factors in the pathogenesis of uterine leiomyoma. Fertil Steril 2013; 100:178-93. [DOI: 10.1016/j.fertnstert.2013.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 01/07/2023]
|
20
|
Islam MS, Protic O, Giannubilo SR, Toti P, Tranquilli AL, Petraglia F, Castellucci M, Ciarmela P. Uterine leiomyoma: available medical treatments and new possible therapeutic options. J Clin Endocrinol Metab 2013; 98:921-34. [PMID: 23393173 DOI: 10.1210/jc.2012-3237] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Uterine leiomyomas (fibroids or myomas) are benign tumors of the uterus and are clinically apparent in up to 25% of reproductive-age women. Heavy or abnormal uterine bleeding, pelvic pain or pressure, infertility, and recurrent pregnancy loss are generally associated with leiomyoma. Although surgical and radiological therapies are frequently used for the management of this tumor, medical therapies are considered the first-line treatment of leiomyoma. EVIDENCE ACQUISITION AND SYNTHESIS A review was conducted of electronic and print data comprising both original and review articles on pathophysiology and medical treatments of uterine leiomyoma retrieved from the PubMed or Google Scholar database up to June 2012. These resources were integrated with the authors' knowledge of the field. CONCLUSION To date, several pathogenetic factors such as genetic factors, epigenetic factors, estrogens, progesterone, growth factors, cytokines, chemokines, and extracellular matrix components have been implicated in leiomyoma development and growth. On the basis of current hypotheses, several medical therapies have been investigated. GnRH agonist has been approved by US Food and Drug Administration for reducing fibroid volume and related symptoms. In addition, the FDA also approved an intrauterine device, levonorgestrel-releasing intrauterine system (Mirena), for additional use to treat heavy menstrual bleeding in intrauterine device users only. Currently, mifepristone, asoprisnil, ulipristal acetate, and epigallocatechin gallate have been shown to be effective for fibroid regression and symptomatic improvement which are all in clinical trial. In addition, some synthetic and natural compounds as well as growth factor inhibitors are now under laboratory investigation, and they could serve as future therapeutic options.
Collapse
Affiliation(s)
- Md Soriful Islam
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020 Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Aquino NB, Sevigny MB, Sabangan J, Louie MC. The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:189-224. [PMID: 22970719 PMCID: PMC3476837 DOI: 10.1080/10590501.2012.705159] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During the past half-century, incidences of breast cancer have increased globally. Various factors--genetic and environmental--have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-level exposure to certain heavy metals (i.e., cadmium and nickel) can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens--metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-established risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis.
Collapse
Affiliation(s)
- Natalie B. Aquino
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Mary B. Sevigny
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Jackielyn Sabangan
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Maggie C. Louie
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| |
Collapse
|