1
|
Faustino TG, da Rosa Filho RR, Francischini MCP, Brito MM, Angrimani DSR, Vannucchi CI. In Situ Uterine Artery Prostaglandin E 2 and Nitric Oxide in Open-Cervix Pyometra and Medically Treated Bitches. J Vet Pharmacol Ther 2024. [PMID: 39287059 DOI: 10.1111/jvp.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Uterine vascular alterations take place in pyometra bitches speculatively influenced by prostaglandin and nitric oxide pathways. However, no causative effect of nitric oxide on endometrial vascularization was proved elsewhere for medically treated pyometra bitches. This study aimed to identify the main in situ uterine artery vasodilation pathway in pyometra bitches medically treated with antigestagen solely or coupled with prostaglandin. Pyometra bitches were enrolled into groups: Ovariohysterectomy at diagnosis (Control-OHE; n = 7), Antigestagen (10 mg/kg aglepristone on Days 1, 2, and 8 after diagnosis; n = 5), and Antigestagen + luteolytic (aglepristone plus 1 μg/kg of cloprostenol from Days 1-7; n = 5). Treated bitches were ovariohysterectomized after 8 days of treatment. Uterine artery fragments from all bitches were collected for tissue nitric oxide and prostaglandin E2 assays. Control-OHE group had lower uterine artery concentration of nitric oxide compared to treated bitches (Antigestagen and Antigestagen + luteolytic groups). No significant difference was verified between the medical treated groups. Uterine artery concentration of prostaglandin E2 was not different between control and treated bitches, as well as between both treated groups. In conclusion, nitric oxide and prostaglandin E2 are not directly involved in vascular modulation of the uterine artery, albeit pyometra medical treatment influences nitric oxide concentration in the uterine artery.
Collapse
Affiliation(s)
- Thaís Gomes Faustino
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Roberto Rodrigues da Rosa Filho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Maíra Morales Brito
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Daniel Souza Ramos Angrimani
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Camila Infantosi Vannucchi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Liu H, Shetty AC, Ibrahim AS, Filler SG, Bruno VM. Novel Host Pathways Govern Epithelial Cell Invasion of Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0008423. [PMID: 37255456 PMCID: PMC10434228 DOI: 10.1128/spectrum.00084-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Invasive aspergillosis is initiated when Aspergillus fumigatus adheres to and invades the pulmonary epithelial cells that line the airways and alveoli. To gain deeper insight into how pulmonary epithelial cells respond to A. fumigatus invasion, we used transcriptome sequencing (RNA-seq) to determine the transcriptional response of the A549 type II alveolar epithelial cell line to infection with strains CEA10 and Af293, two clinical isolates of A. fumigatus. Upstream regulator analysis of the data indicated that while both strains activated virtually identical host cell signaling pathways after 16 h of infection, only strain CEA10 activated these pathways after 6 h of infection. Many of the pathways that were predicted to be activated by A. fumigatus, including the tumor necrosis factor (TNF), interleukin-1α (IL-1α), IL-1β, IL-17A, Toll-like receptor 2 (TLR2), and TLR4 pathways, are known to be critical for the host defense against this fungus. We also found that the platelet-derived growth factor BB (PDGF BB) and progesterone receptor (PGR) pathways were activated by A. fumigatus. Using pharmacologic inhibitors, we determined that blocking the PDGF receptor or PGR inhibited the endocytosis of both strains of A. fumigatus in an additive manner. Both the PDGF BB and PGR pathways are also predicted to be activated by infection of A549 cells with other molds, such as Rhizopus delemar and Rhizopus oryzae. Thus, these pathways may represent a common response of pulmonary epithelial cells to mold infection. IMPORTANCE Invasive aspergillosis is a deadly invasive fungal infection that initiates when Aspergillus fumigatus spores are inhaled and come into contact with the epithelial cells that line the airways and alveoli. Understanding this fungus-host interaction is important for the development of novel therapeutics. To gain a deeper understanding of how these airway epithelial cells respond to A. fumigatus during infection, we used RNA-seq to determine the transcriptional response of alveolar epithelial cells to infection with two different clinical isolates of A. fumigatus. Our analysis identified new host response pathways that have not previously been tied to infection with A. fumigatus. Pharmacological inhibition of two of these pathways inhibited the ability of A. fumigatus to invade airway epithelial cells. These two pathways are also predicted to be activated by infection with other filamentous fungi. Thus, these pathways may represent a common response of alveolar epithelial cells to mold infection.
Collapse
Affiliation(s)
- Hong Liu
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Torrance, California, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Torrance, California, USA
| | - Vincent M. Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Mallick S, Chakrabarti J, Eschbacher J, Moraitis AG, Greenstein AE, Churko J, Pond KW, Livolsi A, Thorne CA, Little AS, Yuen KCJ, Zavros Y. Genetically engineered human pituitary corticotroph tumor organoids exhibit divergent responses to glucocorticoid receptor modulators. Transl Res 2023; 256:56-72. [PMID: 36640905 PMCID: PMC11345864 DOI: 10.1016/j.trsl.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Cushing's disease (CD) is a serious endocrine disorder attributed to an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that that subsequently leads to chronic hypercortisolemia. PitNET regression has been reported following treatment with the investigational selective glucocorticoid receptor (GR) modulator relacorilant, but the mechanisms behind that effect remain unknown. Human PitNET organoid models were generated from induced human pluripotent stem cells (iPSCs) or fresh tissue obtained from CD patient PitNETs (hPITOs). Genetically engineered iPSC derived organoids were used to model the development of corticotroph PitNETs expressing USP48 (iPSCUSP48) or USP8 (iPSCUSP8) somatic mutations. Organoids were treated with the GR antagonist mifepristone or the GR modulator relacorilant with or without somatostatin receptor (SSTR) agonists pasireotide or octreotide. In iPSCUSP48 and iPSCUSP8 cultures, mifepristone induced a predominant expression of SSTR2 with a concomitant increase in ACTH secretion and tumor cell proliferation. Relacorilant predominantly induced SSTR5 expression and tumor cell apoptosis with minimal ACTH induction. Hedgehog signaling mediated the induction of SSTR2 and SSTR5 in response to mifepristone and relacorilant. Relacorilant sensitized PitNET organoid responsiveness to pasireotide. Therefore, our study identified the potential therapeutic use of relacorilant in combination with somatostatin analogs and demonstrated the advantages of relacorilant over mifepristone, supporting its further development for use in the treatment of Cushing's disease patients.
Collapse
Affiliation(s)
- Saptarshi Mallick
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Jayati Chakrabarti
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Jennifer Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, Phoenix, Arizona
| | | | | | - Jared Churko
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Kelvin W Pond
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | | | - Curtis A Thorne
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Andrew S Little
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Kevin C J Yuen
- Department of Neuroendocrinology, Barrow Neurological Institute, Phoenix, Arizona
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona.
| |
Collapse
|
4
|
Nayana J, Shankaranarayana Rao BS, Srikumar BN. Mifepristone's effects on depression- and anxiety-like behavior in rodents. Steroids 2022; 184:109058. [PMID: 35679911 DOI: 10.1016/j.steroids.2022.109058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Mifepristone is a non-selective progesterone (PR), glucocorticoid (GR), and androgen receptor (AR) antagonist with antidepressant and anxiolytic effects. The dose and duration of mifepristone administration vary in rodent preclinical studies to evaluate depression-like and anxiety-like behavior. This review summarizes the findings so far and attempts to reconcile some of the differences in the results. While a few studies assessed basal depression- and anxiety-like behavior, several studies have used mifepristone in conjunction with stress, corticosterone/dexamethasone (after adrenalectomy), or progesterone administration. The effect of mifepristone on depression-like behavior appears to depend not only on the dose and duration of administration but also on the intensity or type of stress. In addition, the anxiolytic effects may depend on the species and strain of the experimental animals. More reports assess antidepressant-like or anxiolytic-like effects following acute than chronic administration. These effects are dependent on the paradigms and the nature of stressors. Most mifepristone studies implicate the role of GRs, yet only two reports have confirmed its role using a genetic approach, whereas none implicate the role of PRs/ARs. There are several novel selective GR antagonists whose effects on depression- and anxiety-like behavior are yet to be studied. Future studies could aim to confirm the role of GRs and evaluate the contribution of PRs/ARs to the effects of mifepristone. Such studies will contribute to a better understanding of depression, anxiety, and other mood disorders and develop novel strategies, particularly for treatment-resistant conditions.
Collapse
Affiliation(s)
- J Nayana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India.
| |
Collapse
|
5
|
Radzinsky VE, Startseva NM, Doronina OK, Teplov KV, Borisova AV. Mifepristone versus balloon catheter for labor induction: a cohort study. J Matern Fetal Neonatal Med 2022; 35:9331-9335. [PMID: 35086412 DOI: 10.1080/14767058.2022.2031965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE to compare trans-cervical balloon catheter with oral administration of mifepristone for induction of labor. METHODS Retrospective cohort study including a total of 325 patients; labor was induced with Foley catheter (group I, n = 220) or mifepristone (group II, n = 105). We selected patients with cervical ripening ≤5 cm according to Bishop score (n = 208) and divided into 2 subgroups depending on the parity: group I, primiparous with a Bishop score of ≤5, n = 70 - I (1, ≤5); group I, multiparous with a Bishop score of ≤5, n = 44 - I (2,≤5); group II, primiparous with a Bishop score of ≤5, n = 65 - II (1, ≤5); group II, multiparous with a Bishop score of ≤5, n = 29 - II (2, ≤5). Frequencies and percentages were presented using analysis of variance. RESULTS Vaginal delivery occurred more frequently in patients induced by mifepristone (76.5%) vs. Foley catheter (74.5%). However, vaginal delivery within 24 h from the onset of induction occurred in the majority of patients in the Foley catheter groups: 39 (55.7%) and 28 (63.6%) versus 15 (23.1%) and 6 (20.7%) in groups induced with mifepristone. The frequency of cesarean section in the primiparas induced using a Foley catheter was 14%, with the use of mifepristone 21%. However, all multiparas induced with mifepristone delivered vaginally, in contrast to 30.7% of multiparas with the placement of a Foley catheter which required a cesarean delivery. CONCLUSION Comparison of the effectiveness of induction of labor with the use of mifepristone and an intracervical balloon Foley catheter showed that both of these methods are successful, with more deliveries within the first 24 hrs achieved by using Foley catheter. The results of this study support the postulate that the success of an induction is largely dependent on the degree of cervical ripening and parity.
Collapse
Affiliation(s)
- Viktor E Radzinsky
- Department of Obstetrics and Gynecology with the Course of Perinatology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Nadezhda M Startseva
- Department of Obstetrics and Gynecology with the Course of Perinatology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Olga K Doronina
- Department of Obstetrics and Gynecology with the Course of Perinatology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Konstantin V Teplov
- Department of Obstetrics and Gynecology with the Course of Perinatology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anna V Borisova
- Department of Obstetrics and Gynecology with the Course of Perinatology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
6
|
You Y, Tan W, Guo Y, Luo M, Shang FF, Xia Y, Luo S. Progesterone promotes endothelial nitric oxide synthase expression through enhancing nuclear progesterone receptor-SP-1 formation. Am J Physiol Heart Circ Physiol 2020; 319:H341-H348. [PMID: 32618512 DOI: 10.1152/ajpheart.00206.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Progesterone exerts antihypertensive actions partially by modulating endothelial nitric oxide synthase (eNOS) activity. Here, we aimed to investigate the effects and mechanisms of progesterone on eNOS expression. First, human umbilical vein endothelial cells (HUVECs) were exposed to progesterone and then the eNOS transcription factor specificity protein-1 (SP-1) and progesterone receptor (PRA/B) expression were assessed by Western blotting and qRT-PCR. The interaction between SP-1 and PRA/B was next determined through coimmunoprecipitation assay. The chromatin immunoprecipitation assay and luciferase assay were used to investigate the relationship of PRA/B, SP-1, and eNOS promoter. At last, rats were intraperitoneally injected with progesterone receptor antagonist RU-486, and then the expression of eNOS and vasodilation function in thoracic aorta and mesenteric artery were measured. The results showed that progesterone could increase eNOS expression in HUVECs. Further study showed that progesterone increased PRA-SP-1 complex formation and facilitated PRA/B and SP-1 binding to eNOS promoter. Mutating SP-1 or PR-binding motif on eNOS promoter abolished the effect of progesterone on eNOS gene transcription. We also observed that progesterone receptor antagonist RU-486 reduced eNOS expression and impaired vasodilation in rats. Those results suggest that progesterone modulates eNOS expression through promoting PRA-SP-1 complex formation, and progesterone antagonist attenuates eNOS expression, leading to the loss of vascular relaxation.NEW & NOTEWORTHY Progesterone directly upregulated endothelial nitric oxide synthase (eNOS) expression in human endothelial cells. Progesterone augmented eNOS promoter activity through a progesterone receptor A- and specificity protein-1-dependent manner. Antagonism of the progesterone receptor reduced eNOS expression and impaired vasodilation in rats.
Collapse
Affiliation(s)
- Yuehua You
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanying Tan
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minghao Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
- Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Ivy JR, Jones NK, Costello HM, Mansley MK, Peltz TS, Flatman PW, Bailey MA. Glucocorticoid receptor activation stimulates the sodium-chloride cotransporter and influences the diurnal rhythm of its phosphorylation. Am J Physiol Renal Physiol 2019; 317:F1536-F1548. [PMID: 31588796 PMCID: PMC6962506 DOI: 10.1152/ajprenal.00372.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sodium-chloride cotransporter (NCC) in the distal convoluted tubule contributes importantly to sodium balance and blood pressure (BP) regulation. NCC phosphorylation determines transport activity and has a diurnal rhythm influenced by glucocorticoids. Disturbing this rhythm induces “nondipping” BP, an abnormality that increases cardiovascular risk. The receptor through which glucocorticoids regulate NCC is not known. In this study, we found that acute administration of corticosterone to male C57BL6 mice doubled NCC phosphorylation without affecting total NCC abundance in both adrenalectomized and adrenal-intact mice. Corticosterone also increased the whole kidney expression of canonical clock genes: period circadian protein homolog 1 (Per1), Per2, cryptochrome 1, and aryl hydrocarbon receptor nuclear translocator-like protein 1. In adrenal-intact mice, chronic blockade of glucocorticoid receptor (GR) with RU486 did not change total NCC but prevented corticosterone-induced NCC phosphorylation and activation of clock genes. Blockade of mineralocorticoid receptor (MR) with spironolactone reduced the total pool of NCC but did not affect stimulation by corticosterone. The diurnal rhythm of NCC phosphorylation, measured at 6-h intervals, was blunted by chronic GR blockade, and a similar dampening of diurnal variation was seen in GR heterozygous null mice. These effects on NCC phosphorylation did not reflect altered rhythmicity of plasma corticosterone or serum and glucocorticoid-induced kinase 1 activity. Both mineralocorticoids and glucocorticoids emerge as regulators of NCC, acting via distinct receptor pathways. MR activation provides maintenance of the NCC protein pool; GR activation dynamically regulates NCC phosphorylation and establishes the diurnal rhythm of NCC activity. This study has implications for circadian BP homeostasis, particularly in individuals with abnormal glucocorticoid signaling as is found in chronic stress and corticosteroid therapy.
Collapse
Affiliation(s)
- Jessica Ruth Ivy
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Natalie K Jones
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Hannah M Costello
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Morag K Mansley
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Theresa S Peltz
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Peter W Flatman
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| |
Collapse
|
8
|
Maduro MR. A Look Into the Promising World of Selective Progesterone Receptor Modulators. Reprod Sci 2018; 25:309-310. [DOI: 10.1177/1933719118758070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|