1
|
Yi M, Wang S, Zhang X, Jiang L, Xia X, Zhang T, Fang X. Linc-ROR Promotes EMT by Targeting miR-204-5p/SMAD4 in Endometriosis. Reprod Sci 2023; 30:2665-2679. [PMID: 36917423 DOI: 10.1007/s43032-023-01204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Endometriosis (EMs) is a systemic and chronic disease with cancer-like feature, namely, distant implantation, which caused heavy healthy burden of nearly 200 million females. LncRNAs have been proved as new modulators in epithelial-mesenchymal transition (EMT) and EMs. Quantitative real-time PCR was conducted to measure the expression level of long intergenic non-protein coding RNA, regulator of reprogramming (Linc-ROR), and miR-204-5p in ectopic endometrium (n = 25), eutopic endometrium (n = 20), and natural control endometrium (n = 22). Overexpression of Linc-ROR, knockdown or overexpression of miR-204-5p in End1/E6E7 and Ishikawa cells, was conducted to detect the function of Linc-ROR and miR-204-5p in EMs. Furthermore, luciferase reports were used to confirm the combination of Linc-ROR and miR-204-5p and the combination between miR-204-5p and SMAD4. Cell-Counting Kit-8, EdU assay, transwell assays, and Western blotting were used to detect the function of Linc-ROR and miR-204-5p in EMs cancer-like behaviors and EMT process. Linc-ROR was up-regulated in ectopic endometrium. Overexpressed Linc-ROR promotes cell proliferation, invasion, and EMT process. Linc-ROR regulated the EMT process, cellular proliferation, and invasion of EMs via binding to miR-204-5p. In addition, overexpression of Linc-ROR up-regulated SMAD4, a target protein of miR-204-5p, with which regulated EMT process and cancer-like behaviors in EMs together. Linc-ROR/miR-204-5p/SMAD4 axis plays a vital role in regulation EMT process in EMs, which might become a novel therapeutic targets and powerful biomarkers in EMs therapy.
Collapse
Affiliation(s)
- Mingyu Yi
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xinyue Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Li Jiang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Cho SB. Molecular Mechanisms of Endometriosis Revealed Using Omics Data. Biomedicines 2023; 11:2210. [PMID: 37626707 PMCID: PMC10452455 DOI: 10.3390/biomedicines11082210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Endometriosis is a gynecological disorder prevalent in women of reproductive age. The primary symptoms include dysmenorrhea, irregular menstruation, and infertility. However, the pathogenesis of endometriosis remains unclear. With the advent of high-throughput technologies, various omics experiments have been conducted to identify genes related to the pathophysiology of endometriosis. This review highlights the molecular mechanisms underlying endometriosis using omics. When genes identified in omics experiments were compared with endometriosis disease genes identified in independent studies, the number of overlapping genes was moderate. However, the characteristics of these genes were found to be equivalent when functional gene set enrichment analysis was performed using gene ontology and biological pathway information. These findings indicate that omics technology provides invaluable information regarding the pathophysiology of endometriosis. Moreover, the functional characteristics revealed using enrichment analysis provide important clues for discovering endometriosis disease genes in future research.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
3
|
Qiu M, Li T, Wang B, Gong H, Huang T. miR-146a-5p Regulated Cell Proliferation and Apoptosis by Targeting SMAD3 and SMAD4. Protein Pept Lett 2020; 27:411-418. [PMID: 31544687 PMCID: PMC7460735 DOI: 10.2174/0929866526666190911142926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/06/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Background: microRNAs (miRNAs) are a small, endogenous non-coding RNAs that are involved in post-transcriptional gene regulation of many biological processes, including embryo implantation and placental development. In our previous study, miR-146a-5p was found expressed higher in the serum exosomes of pregnant sows than non-pregnant. The research on miR-146a-5p has been mainly related to human diseases, but there are few studies on its effects on the reproduction of sows in early pregnancy. Objective: In this article, our motivation is to study the role of miR-146a-5p in the early pregnancy of sows on the cell proliferetion and apoptosis by targeting SMAD3 and SMAD4. Methods: Bioinformatics software was used to identify the target genes of miR-146a-5p. The wild-type and mutant-type recombinant plasmids of dual-luciferase reporter with 3'-UTR of Smad3 or 3'-UTR of Smad4 were constructed, and co-transfected in porcine kidney cell (PK-15 cell) with miR-146a-5p mimic, mimic-NC(M-NC), inhibitor and inhibitor-NC(IN-NC), then dual-luciferase activity analysis, qRT-PCR and Western blot were performed to verify the target genes. After the transfection of BeWo choriocarcinoma cell (BeWo cell) with miR-146a-5p mimic, M-NC, inhibitor and IN-NC, the mRNA expression of Caspase-3, BAX and Bcl-2 was measured using qRT-PCR, and the cell proliferation was measured using CCK-8 kit. Results: The luciferase, mRNA and protein expression of Smad3 in PK-15 cells treated by Smad3-3'-UTR-W co-transfected with miR-146a-5p mimic were significantly lower than that with miR-146a-5p M-NC, and the results of Smad4 were similar to Smad3, but the protein expression had a trend to lower in mimic group. The expression level of Bcl-2 in the miR-146a-5p mimic group was significantly lower than that in the miR-146a-5p M-NC group, but the expression pattern of Caspase-3 was just opposite. The mimic of miR-146a-5p reduced the proliferation of BeWo cells, however the inhibitor increased. Conclusion: Smad3 and Smad4 are the direct target genes of miR-146a-5p. The expression of Smad3 and Smad4 were affected by the mimic and inhibitor of miR-146a-5p. miR-146a-5p affects cell apoptosis and proliferation by regulating their target genes. This study provided new data to understand the regulation mechanism of early pregnancy in sows.
Collapse
Affiliation(s)
- Meiyu Qiu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.,Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Tao Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.,Animal Husbandry General Station of Yili Prefecture, Yili 835000, China
| | - Binhu Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hongbin Gong
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
Che Q, Liu M, Zhang D, Lu Y, Xu J, Lu X, Cao X, Liu Y, Dong X, Liu S. Long Noncoding RNA HUPCOS Promotes Follicular Fluid Androgen Excess in PCOS Patients via Aromatase Inhibition. J Clin Endocrinol Metab 2020; 105:5722239. [PMID: 32016412 DOI: 10.1210/clinem/dgaa060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Androgen excess is a key feature of polycystic ovary syndrome (PCOS), but the underlying molecular mechanism remains unclear. OBJECTIVE To determine the role and mechanism of novel long noncoding RNA (lncRNA) highly up-regulated in PCOS (HUPCOS) in the androgen excess of PCOS patients. DESIGN The lncRNA expression profile in granulosa cells derived from PCOS and non-PCOS women were analyzed by using microarray assay. Human granulosa cell line KGN was used for mechanism investigation. SETTING This was a university-based study. PATIENTS Thirty-eight PCOS and 38 control patients were recruited: 8 PCOS and 8 control samples used for microarray discovery, the remaining 30 PCOS cases and 30 controls for quantitative RT-PCR validation. MAIN OUTCOME MEASURES The aberrant expression lncRNA profile of PCOS patients was measured using microarray. The relationship of HUPCOS and follicular fluid testosterone was measured. Aromatase expression were analyzed after HUPCOS downregulation. HUPCOS interaction protein was confirmed by RNA pull-down. RESULTS The significantly elevated lncRNA in PCOS granulosa cells was named HUPCOS, which was positively correlated with follicular fluid testosterone of PCOS patients. HUPCOS downregulation increased aromatase expression and promoted conversion of androgen to estrogen. RNA-binding protein with multiple splicing (RBPMS) was the most likely protein that combined with HUPCOS. CONCLUSIONS Our findings suggested that HUPCOS mediated androgen excess in follicular fluid of PCOS patients by suppressing aromatase expression via interaction with RBPMS.
Collapse
Affiliation(s)
- Qi Che
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Doudou Zhang
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongning Lu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Xu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinmei Lu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiang Cao
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Platelets induce increased estrogen production through NF-κB and TGF-β1 signaling pathways in endometriotic stromal cells. Sci Rep 2020; 10:1281. [PMID: 31992765 PMCID: PMC6987096 DOI: 10.1038/s41598-020-57997-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Endometriosis is estrogen-dependent disorder. Two theories provide the explanations for the increased estrogen production. One is the feed-forward loop model linking inflammation and estrogen production. The more recent model evokes the tissue hypoxia resulting from endometrial debris detached and then regurgitated to the peritoneal cavity. Both models tacitly assume that everything occurs within the endometriotic stromal cells, seemingly without the need for exogenous factors. This study was undertaken to investigate as whether platelets may be responsible for local estrogen overproduction. We employed in vitro experimentation that evaluated the 17β-estradiol (E2) levels in endometriotic stromal cells treated with activated platelets, and the genes and protein expression levels of StAR, HSD3B2, aromatase, and HSD17B1, as well as their upstream genes/proteins such as NF-κB, TGF-β1, HIF-1α, SF-1 and phosphorylated CREB. In addition, we conducted 2 animal experimentations using platelet depletion/infusion and also neutralization of NF-κB and TGF-β1, followed by immunohistochemistry analysis of involved in StAR, HSD3B2, aromatase, and HSD17B1, as well as SF-1 and p-CREB. We found that treatment of endometriotic stromal cells by activated platelets increase the E2 production by 4.5 fold, and concomitant with increased gene and protein expression of StAR, HSD3B2, aromatase, and HSD17B1, the four genes/enzymes important to estrogen synthesis, along with their upstream genes HIF-1α, SF-1 and phosphorylated CREB. Moreover, platelets activate these genes through the activation of NF-κB and/or TGF-β1, and antagonism of either signaling pathway can abolish the induction of the 4 genes and thus increased estrogen production. The two animal experimentations confirmed these changes. Thus, platelets increase the E2 production in endometriotic stromal cells through upregulation of StAR, HSD3B2, aromatase, and HSD17B1 via the activation of NF-κB and/or TGF-β1. These findings provide a yet another compelling piece of evidence that endometriotic lesions are indeed wounds undergoing repeated tissue injury and repair. They strongly indicate that non-hormonal therapeutics for endometriosis is theoretically viable, with anti-platelet therapy being one promising avenue.
Collapse
|
6
|
Ganieva U, Nakamura T, Osuka S, Bayasula, Nakanishi N, Kasahara Y, Takasaki N, Muraoka A, Hayashi S, Nagai T, Murase T, Goto M, Iwase A, Kikkawa F. Involvement of Transcription Factor 21 in the Pathogenesis of Fibrosis in Endometriosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:145-157. [DOI: 10.1016/j.ajpath.2019.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022]
|
7
|
Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC. Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril 2018; 111:327-340. [PMID: 30527836 DOI: 10.1016/j.fertnstert.2018.10.013] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To study the pathophysiology of endometriosis. DESIGN Overview of observations on endometriosis. SETTING Not applicable. PATIENT(S) None. INTERVENTIONS(S) None. MAIN OUTCOME MEASURE(S) The hypothesis is compatible with all observations. RESULT(S) Endometriosis, endometrium-like tissue outside the uterus, has a variable macroscopic appearance and a poorly understood natural history. It is a hereditary and heterogeneous disease with many biochemical changes in the lesions, which are clonal in origin. It is associated with pain, infertility, adenomyosis, and changes in the junctional zone, placentation, immunology, plasma, peritoneal fluid, and chronic inflammation of the peritoneal cavity. The Sampson hypothesis of implanted endometrial cells following retrograde menstruation, angiogenic spread, lymphogenic spread, or the metaplasia theory cannot explain all observations if metaplasia is defined as cells with reversible changes and an abnormal behavior/morphology due to the abnormal environment. We propose a polygenetic/polyepigenetic mechanism. The set of genetic and epigenetic incidents transmitted at birth could explain the hereditary aspects, the predisposition, and the endometriosis-associated changes in the endometrium, immunology, and placentation. To develop typical, cystic ovarian or deep endometriosis lesions, a variable series of additional transmissible genetic and epigenetic incidents are required to occur in a cell which may vary from endometrial to stem cells. Subtle lesions are viewed as endometrium in a different environment until additional incidents occur. Typical cystic ovarian or deep endometriosis lesions are heterogeneous and represent three different diseases. CONCLUSION(S) The genetic epigenetic theory is compatible with all observations on endometriosis. Implications for treatment and prevention are discussed.
Collapse
Affiliation(s)
- Philippe R Koninckx
- Obstetrics-Gynecology, KU Leuven, Bierbeek, Belgium; Gruppo Italo Belga, Rome, Italy; Latiffa Hospital, Dubai, United Arab Emirates; Università Cattolica, Roma, Italy.
| | - Anastasia Ussia
- Gruppo Italo Belga, Rome, Italy; Università Cattolica, Roma, Italy
| | - Leila Adamyan
- Department of Operative Gynecology, Federal State Budget Institution V. I. Kulakov Research Centre for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, and Department of Reproductive Medicine and Surgery, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Arnaud Wattiez
- Latiffa Hospital, Dubai, United Arab Emirates; Department of Obstetrics and Gynecology, University of Strasbourg, Strasbourg, France
| | - Victor Gomel
- Department of Obstetrics and Gynecology, University of British Columbia and Women's Hospital, Vancouver, British Columbia, Canada
| | - Dan C Martin
- School of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, and Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
8
|
Arlıer S, Kayışlı ÜA, Arıcı A. Tumor necrosis factor alfa and interleukin 1 alfa induced phosphorylation and degradation of inhibitory kappa B alpha are regulated by estradiol in endometrial cells. Turk J Obstet Gynecol 2018; 15:50-59. [PMID: 29662717 PMCID: PMC5894537 DOI: 10.4274/tjod.47700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: When bound to the inhibitory kappa B (IкB) protein, the transcription factor nuclear factor kappa B (NF-кB) remains inactively in the cytoplasm. Activated NF-кB upregulates the gene expression of many chemokines including monocyte chemoattractant protein-1 and interleukin (IL)-8. We hypothesized that estrogen may regulate IкB phosphorylation and degradation thus influencing NF-кB-dependent gene expression. Regulation of chemokines by estrogen is different in uterine endometrial cells when compared to ectopic endometrial cells of endometriosis. Materials and Methods: We investigated the in vivo expression of IкB in normal endometrium and in eutopic and ectopic endometrium of women with endometriosis. We then studied in cultured endometrial cells to assess the effects of estradiol on IкB and NF-кB function. Results: Normal endometrium from mid-late proliferative phase revealed the strongest IкB immunoreactivity throughout the cycle (p<0.05). When compared to paired homologous eutopic endometrium, ectopic endometrium revealed significantly less immunoreactivity for IкB (p<0.05). Moreover, estradiol induced a decrease in tumor necrosis factor-and IL-1-induced IкB phosphorylation, and also decreased the levels of active-NF-кB (p<0.05). Conclusion: Our results support the conclusion that one pathway for estradiol-mediated NF-кB inhibition occurs through the down-regulation of IкB phosphorylation. We propose that the estradiol-induced regulation of IкB and consequent reduction in active-NF-кB may affect inflammatory responses in human endometrial cells.
Collapse
Affiliation(s)
- Sefa Arlıer
- University of South Florida Faculty of Medicine, Department of Obstetrics and Gynecology, Tampa, USA.,University of Health Sciences, Adana Numune Training and Research Hospital, Clinic of Obstetrics and Gynecology, Adana, Turkey
| | - Ümit Ali Kayışlı
- University of South Florida Faculty of Medicine, Department of Obstetrics and Gynecology, Tampa, USA
| | - Aydın Arıcı
- Yale University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New Haven, USA.,Anadolu Medical Center, Clinic of Reproductive Endocrinology and Infertility, İstanbul, Turkey
| |
Collapse
|