1
|
Da Costa KDA, Malvezzi H, Dobo C, Neme RM, Filippi RZ, Aloia TPA, Prado ER, Meola J, Piccinato CDA. Site-Specific Regulation of Sulfatase and Aromatase Pathways for Estrogen Production in Endometriosis. Front Mol Biosci 2022; 9:854991. [PMID: 35591944 PMCID: PMC9110888 DOI: 10.3389/fmolb.2022.854991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is a highly prevalent gynecological disease characterized by lesions in different sites. Regulation of specific estrogen pathways may favor the formation of distinct microenvironments and the progression of endometriosis. However, no study has simultaneously evaluated the gene and protein regulation of the main estrogen-synthesizing enzymes in endometriosis. Thus, our goals were to study the relationship between gene and protein expression of aromatase (CYP19A1 or ARO), steroid sulfatase (STS), and hydroxysteroid 17-beta dehydrogenase (HSD17B1) in superficial (SUP), ovarian (OMA), and deep infiltrating (DIE) endometriotic lesion sites as well as in the eutopic endometrium of patients with (EE) and without (control) endometriosis in the same and large cohort of patients. The site-specific expression of these enzymes within different cells (glandular and stromal components) was also explored. The study included 108 patients surgically diagnosed with endometriosis who provided biopsies of EE and endometriotic lesions and 16 disease-free patients who collected normal endometrium tissue. Our results showed that CYP19A1 was detected in all endometriosis tissues and was in higher levels than in control. Unique patterns of the STS and HSD17B1 levels showed that they were most closely regulated in all tissues, with manifestation at greater levels in DIE compared to the other endometriotic lesion sites, OMA and SUP. Gene and protein expression of ARO, STS, and HSD17B1 occurred at different rates in endometriotic sites or EE. The distinctive levels of these estrogen-synthesizing enzymes in each endometriotic site support the hypothesis of a tissue microenvironment that can both influence and be influenced by the expression of different estrogenic pathways, locally affecting the availability of estrogen needed for maintenance and progression of endometriotic lesions.
Collapse
Affiliation(s)
| | | | - Cristine Dobo
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Clinical Pathology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rosa Maria Neme
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Centro de Endometriose São Paulo, Av. República Do Líbano, São Paulo, Brazil
| | - Renée Zon Filippi
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Clinical Pathology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Juliana Meola
- Department of Gynaecology & Obstetrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carla de Azevedo Piccinato
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Gynaecology & Obstetrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Carla de Azevedo Piccinato,
| |
Collapse
|
2
|
Liu YZ, Zhang ZP, Fu ZW, Yang K, Ding N, Hu LG, Fang ZZ, Zhuo X. Per- and polyfluoroalkyl substances display structure-dependent inhibition towards UDP-glucuronosyltransferases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113093. [PMID: 31472452 DOI: 10.1016/j.envpol.2019.113093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large group of chemicals and can be detected in environmental and human samples all over the world. Toxicity of existing and emerging PFASs will be a long-term source of concern. This study aimed to investigate structure-dependent inhibitory effects of 14 PFASs towards the activity of 11 UDP-glucuronosyltransferase (UGT) isoforms. In vitro UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was employed to determine the inhibition of PFASs towards different UGT isoforms. All the PFASs showed <75% of inhibition or stimulation effects on UGT1A3, UGT1A7, UGT1A9, UGT2B4, UGT2B7 and UGT2B17. However, PFASs showed broad inhibition on the activity of UGT1A1 and UGT1A8. The activity of UGT1A1 was inhibited by 98.8%, 98%, 79.9%, 77.1%, and 76.9% at 100 μmoL/L of perfluorodecanoic acid (PFDA), perfluorooctanesulfonic acid potassium salt (PFOS), perfluorotetradecanoic acid (PFTA), perfluorooctanoic acid (PFOA) and perfluorododecanoic acid (PFDoA), respectively. UGT1A8 was inhibited by 97.6%, 94.8%, 86.3%, 83.4% and 77.1% by PFDA, PFTA, perfluorooctadecanoic acid (PFOcDA), PFDoA and PFOS, respectively. Additionally, PFDA significantly inhibited UGT1A6 and UGT1A10 by 96.8% and 91.6%, respectively. PFDoA inhibited the activity of UGT2B15 by 88.2%. PFDA and PFOS exhibited competitive inhibition towards UGT1A1, and PFDA and PFTA showed competitive inhibition towards UGT1A8. The inhibition kinetic parameter (Ki) were 3.15, 1.73, 13.15 and 20.21 μmoL/L for PFDA-1A1, PFOS-1A1, PFDA-1A8 and PFTA-1A8, respectively. The values were calculated to be 0.3 μmoL/L and 1.3 μmoL/L for the in vivo inhibition of PFDA towards UGT1A1-and UGT1A8-catalyzed metabolism of substances, and 0.2 μmoL/L and 2.0 μmoL/L for the inhibition of PFOS towards UGT1A1 and the inhibition of PFTA towards UGT1A8, respectively. Molecular docking indicated that hydrogen bonds and hydrophobic interactions contributed to the interaction between PFASs and UGT isoforms. In conclusion, exposure to PFASs might inhibit the activity of UGTs to disturb metabolism of endogenous compounds and xenobiotics. The structure-related effects of PFASs on UGTs would be very important for risk assessment of PFASs.
Collapse
Affiliation(s)
- Yong-Zhe Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin 300070, China
| | - Zhi-Peng Zhang
- Department of Surgery, Peking University Third Hospital, Beijing, China
| | - Zhi-Wei Fu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin 300070, China
| | - Kun Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin 300070, China
| | - Ning Ding
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Shaanxi, Xi'an, 710061, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin 300070, China.
| | - Xiaozhen Zhuo
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Shaanxi, Xi'an, 710061, China.
| |
Collapse
|