1
|
Mari G, De Crescentini L, Favi G, Golobič A, Santeusanio S, Mantellini F. Useful Access to Uncommon Thiazolo[3,2- a]indoles. J Org Chem 2024; 89:1184-1192. [PMID: 38193441 PMCID: PMC10804410 DOI: 10.1021/acs.joc.3c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
A practical and environmentally benign protocol for the assembly of poly substituted-thiazolo[3,2-a]indoles from 3-alkylated indoline-2-thiones and 2-halo-ketones has been developed. This metal-free approach consists in a complete chemo/regioselective formal [3 + 2] annulation that occurs in air, at 60 °C, and in water as the sole reaction medium. The opportunity to vary the substitution pattern up to six different positions, odorless manipulation of sulfurylated compounds, very easy product isolation, and mild reaction conditions are the main synthetic features of this method. The scaled-up experiment and the successive transformations of the products further demonstrate the utility of this chemistry.
Collapse
Affiliation(s)
- Giacomo Mari
- Department
of Biomolecular Sciences, Section of Chemistry and Pharmaceutical
Technologies, University of Urbino “Carlo
Bo”, Via I Maggetti
24, 61029 Urbino
(PU), Italy
| | - Lucia De Crescentini
- Department
of Biomolecular Sciences, Section of Chemistry and Pharmaceutical
Technologies, University of Urbino “Carlo
Bo”, Via I Maggetti
24, 61029 Urbino
(PU), Italy
| | - Gianfranco Favi
- Department
of Biomolecular Sciences, Section of Chemistry and Pharmaceutical
Technologies, University of Urbino “Carlo
Bo”, Via I Maggetti
24, 61029 Urbino
(PU), Italy
| | - Amalija Golobič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
| | - Stefania Santeusanio
- Department
of Biomolecular Sciences, Section of Chemistry and Pharmaceutical
Technologies, University of Urbino “Carlo
Bo”, Via I Maggetti
24, 61029 Urbino
(PU), Italy
| | - Fabio Mantellini
- Department
of Biomolecular Sciences, Section of Chemistry and Pharmaceutical
Technologies, University of Urbino “Carlo
Bo”, Via I Maggetti
24, 61029 Urbino
(PU), Italy
| |
Collapse
|
2
|
Busnena BA, Beerhues L, Liu B. Biphenyls and dibenzofurans of the rosaceous subtribe Malinae and their role as phytoalexins. PLANTA 2023; 258:78. [PMID: 37689618 PMCID: PMC10492887 DOI: 10.1007/s00425-023-04228-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
MAIN CONCLUSION Biphenyl and dibenzofuran phytoalexins are differentially distributed among species of the rosaceous subtribe Malinae, which includes apple and pear, and exhibit varying inhibitory activity against phytopathogenic microorganisms. Biphenyls and dibenzofurans are specialized metabolites, which are formed in species of the rosaceous subtribe Malinae upon elicitation by biotic and abiotic inducers. The subtribe Malinae (previously Pyrinae) comprises approximately 1000 species, which include economically important fruit trees such as apple and pear. The present review summarizes the current status of knowledge of biphenyls and dibenzofurans in the Malinae, mainly focusing on their role as phytoalexins. To date, 46 biphenyls and 41 dibenzofurans have been detected in 44 Malinae species. Structurally, 54 simple molecules, 23 glycosidic compounds and 10 miscellaneous structures were identified. Functionally, 21 biphenyls and 21 dibenzofurans were demonstrated to be phytoalexins. Furthermore, their distribution in species of the Malinae, inhibitory activities against phytopathogens, and structure-activity relationships were studied. The most widely distributed phytoalexins of the Malinae are the three biphenyls aucuparin (3), 2'-methoxyaucuparin (7), and 4'-methoxyaucuparin (9) and the three dibenzofurans α-cotonefuran (47), γ-cotonefuran (49), and eriobofuran (53). The formation of biphenyl and dibenzofuran phytoalexins appears to be an essential defense weapon of the Malinae against various stresses. Manipulating phytoalexin formation may enhance the disease resistance in economically important fruit trees. However, this approach requires an extensive understanding of how the compounds are formed. Although the biosynthesis of biphenyls was partially elucidated, formation of dibenzofurans remains largely unclear. Thus, further efforts have to be made to gain deeper insight into the distribution, function, and metabolism of biphenyls and dibenzofurans in the Malinae.
Collapse
Affiliation(s)
- Belnaser A Busnena
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Benye Liu
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany.
| |
Collapse
|
3
|
Marques JG, Schwerd T, Bufler P, Koletzko S, Koletzko B. Metabolic changes during exclusive enteral nutrition in pediatric Crohn's disease patients. Metabolomics 2022; 18:96. [PMID: 36434414 PMCID: PMC9700625 DOI: 10.1007/s11306-022-01953-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS Exclusive enteral nutrition is recommended as a first-line treatment in active pediatric Crohn's Disease, but its mechanism of action is still not clear. We aimed to assess alterations in the metabolic profile of newly diagnosed pediatric Crohn's Disease patients before and during exclusive enteral nutrition therapy. METHODS Plasma samples from 14 pediatric Crohn's Disease patients before and after 3-4 weeks on exclusive enteral nutrition were analyzed using mass spectrometry. T-test, fold change and orthogonal partial least squares discriminant analysis were used for mining significant features. Correlation analysis was performed between the annotated features and the weighted pediatric Crohn's disease activity index using Pearson r distance. RESULTS Among the 13 compounds which decreased during exclusive enteral nutrition, most are related to diet, while one is a bacterial metabolite, Bacteriohopane-32,33,34,35-tetrol. The phosphatidic acid metabolite PA(15:1/18:0) was significantly reduced and correlated with the weighted pediatric Crohn's disease activity index. Lipids increased during exclusive enteral nutrition therapy included phosphatidylethanolamines; PE(24:1/24:1), PE(17:2/20:2) and one lactosylceramide; LacCer(d18:1/14:0). CONCLUSION Food additives and other phytochemicals were the major metabolites, which decreased following the exclusion of a regular diet during exclusive enteral nutrition. An alteration in bacterial biomarkers may reflect changes in intestinal microbiota composition and metabolism. Thus, metabolomics provides an opportunity to characterize the molecular mechanisms of dietary factors triggering Crohn's Disease activity, and the mechanisms of action of exclusive enteral nutrition, thereby providing the basis for the development and evaluation of improved intervention strategies for prevention and treatment.
Collapse
Affiliation(s)
- Jair G. Marques
- grid.411095.80000 0004 0477 2585Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Klinikum Munich, Munich, Germany
| | - Tobias Schwerd
- grid.411095.80000 0004 0477 2585Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Klinikum Munich, Munich, Germany
| | - Philip Bufler
- grid.411095.80000 0004 0477 2585Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Klinikum Munich, Munich, Germany
- grid.6363.00000 0001 2218 4662Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité- Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sibylle Koletzko
- grid.411095.80000 0004 0477 2585Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Klinikum Munich, Munich, Germany
- grid.412607.60000 0001 2149 6795Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Berthold Koletzko
- grid.411095.80000 0004 0477 2585Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Klinikum Munich, Munich, Germany
- grid.411095.80000 0004 0477 2585Dr. von Hauner Children’s Hospital, University Hospital, Campus Innenstadt Ludwig-Maximilians-Universität München, Lindwurmstr. 4, D-80337 Muenchen, Germany
| |
Collapse
|
4
|
Cook J, Hui JPM, Zhang J, Kember M, Berrué F, Zhang J, Cheng Z. Production of quorum sensing-related metabolites and phytoalexins during Pseudomonas aeruginosa-Brassica napus interaction. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001212. [PMID: 35980361 PMCID: PMC11449044 DOI: 10.1099/mic.0.001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that has been shown to interact with many organisms throughout the domains of life, including plants. How this broad-host-range bacterium interacts with each of its diverse hosts, especially the metabolites that mediate these interactions, is not completely known. In this work, we used a liquid culture root infection system to collect plant and bacterial metabolites on days 1, 3 and 5 post-P. aeruginosa (strain PA14) infection of the oilseed plant, canola (Brassica napus). Using MS-based metabolomics approaches, we identified the overproduction of quorum sensing (QS)-related (both signalling molecules and regulated products) metabolites by P. aeruginosa while interacting with canola plants. However, the P. aeruginosa infection induced the production of several phytoalexins, which is a part of the hallmark plant defence response to microbes. The QS system of PA14 appears to only mediate part of the canola-P. aeruginosa metabolomic interactions, as the use of isogenic mutant strains of each of the three QS signalling branches did not significantly affect the induction of the phytoalexin brassilexin, while induction of spirobrassinin was significantly decreased. Interestingly, a treatment of purified QS molecules in the absence of bacteria was not able to induce any phytoalexin production, suggesting that active bacterial colonization is required for eliciting phytoalexin production. Furthermore, we identified that brassilexin, the only commercially available phytoalexin that was detected in this study, demonstrated a MIC of 400 µg ml-1 against P. aeruginosa PA14. The production of phytoalexins can be an effective component of canola innate immunity to keep potential infections by the opportunistic pathogen P. aeruginosa at bay.
Collapse
Affiliation(s)
- Jamie Cook
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph P. M. Hui
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Janie Zhang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michaela Kember
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fabrice Berrué
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Liao A, Li L, Wang T, Lu A, Wang Z, Wang Q. Discovery of Phytoalexin Camalexin and Its Derivatives as Novel Antiviral and Antiphytopathogenic-Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2554-2563. [PMID: 35179026 DOI: 10.1021/acs.jafc.1c07805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In response to the invasion of plant viruses and pathogenic fungi, higher plants produce defensive allelochemicals. Finding candidate varieties of botanical pesticides based on allelochemicals is one of the important ways to create efficient and green pesticides. Here, a series of camalexin derivatives based on a phytoalexin camalexin scaffold were designed, synthesized, and assessed for their antiviral and fungicidal activities systematically. Most of these camalexin derivatives exhibited better antiviral activities against tobacco mosaic virus (TMV) than the control antiviral agent ribavirin. Under the same test conditions, the anti-TMV activities of compounds 3d, 5a, 5d, and 10f-10h were found to be equivalent to or better than that of ningnanmycin, an agricultural cytosine nucleoside antibiotic with excellent protective effect. The antiviral mechanism research showed that compound 5a could cause 20S CP disk fusion and disintegration, thus affecting the assembly of virus particles. The results of molecular docking indicate that there were obvious hydrogen bonds between compounds 3d, 5a, and 10f and TMV CP. The binding constants of compounds 5a and 10f to TMV CP were also calculated using fluorescence titration. These camalexin derivatives also presented broad spectrum fungicidal activities, especially for Rhizoctonia solani and Physalospora piricola. In this work, the design, synthesis, structure optimization, and mode of action of camalexin derivatives were carried out progressively. This work provides a reference for using defensive chemical compounds as novel pesticide lead compounds.
Collapse
Affiliation(s)
- Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lin Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tienan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Pedras MSC, Hossain S, Snitynsky RB. Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite. PHYTOCHEMISTRY 2011; 72:199-206. [PMID: 21176925 DOI: 10.1016/j.phytochem.2010.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/03/2010] [Accepted: 11/22/2010] [Indexed: 05/18/2023]
Abstract
Phytopathogenic fungi are able to overcome plant chemical defenses through detoxification reactions that are enzyme mediated. As a result of such detoxifications, the plant is quickly depleted of its most important antifungal metabolites and can succumb to pathogen attack. Understanding and predicting such detoxification pathways utilized by phytopathogenic fungi could lead to approaches to control plant pathogens. Towards this end, the inhibitory activities and metabolism of the cruciferous phytoalexins camalexin, brassinin, cyclobrassinin, and brassilexin by the phytopathogenic fungus Botrytis cinerea Pers. (teleomorph: Botryotinia fuckeliana) was investigated. Brassilexin was the most antifungal of the phytoalexins, followed by camalexin, cyclobrassinin and brassinin. Although B. cinerea is a species phylogenetically related to the phytopathogenic fungus Sclerotinia sclerotiorum (Lib) de Bary, contrary to S. sclerotiorum, detoxification of strongly antifungal phytoalexins occurred via either oxidative degradation or hydrolysis but not through glucosylation, suggesting that glucosyl transferases are not involved. A strongly antifungal bisindolylthiadiazole that B. cinerea could not detoxify was discovered, which resulted from spontaneous oxidative dimerization of 3-indolethiocarboxamide, a camalexin detoxification product.
Collapse
|
7
|
Pedras MSC, Minic Z, Thongbam PD, Bhaskar V, Montaut S. Indolyl-3-acetaldoxime dehydratase from the phytopathogenic fungus Sclerotinia sclerotiorum: purification, characterization, and substrate specificity. PHYTOCHEMISTRY 2010; 71:1952-1962. [PMID: 21036375 DOI: 10.1016/j.phytochem.2010.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/27/2010] [Accepted: 10/04/2010] [Indexed: 05/30/2023]
Abstract
The purification and characterization of indolyl-3-acetaldoxime dehydratase produced by the plant fungal pathogen Sclerotinia sclerotiorum is described. The substrate specificity indicates that it is an indolyl-3-acetaldoxime dehydratase (IAD, EC 4.99.1.6), which catalyzes transformation of indolyl-3-acetaldoxime to indolyl-3-acetonitrile. The enzyme showed Michaelis-Menten kinetics and had an apparent molecular mass of 44 kDa. The amino acid sequence of IAD, determined using LC-ESI-MS/MS, identified it as the protein SS1G_01653 from S. sclerotiorum. IADSs was highly homologous (84% amino acid identity) to the hypothetical protein BC1G_14775 from Botryotinia fuckeliana B05.10. In addition, similarity to the phenylacetaldoxime dehydratases from Gibberella zeae (33% amino acid identity) and Bacillus sp. (20% amino acid identity) was noted. The specific activity of IADSs increased about 17-fold upon addition of Na(2)S(2)O(4) under anaerobic conditions, but in the absence of Na(2)S(2)O(4) no significant change was observed, whether aerobic or anaerobic conditions were used. As with other aldoxime dehydratases isolated from microbes, the role of IADSs in fungal plant pathogens is not clear, but given its substrate specificity, it appears unlikely that IADSs is a general xenobiotic detoxifying enzyme.
Collapse
Affiliation(s)
- M Soledade C Pedras
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9.
| | | | | | | | | |
Collapse
|
8
|
Pedras MSC, Yaya EE. Phytoalexins from Brassicaceae: news from the front. PHYTOCHEMISTRY 2010; 71:1191-1197. [PMID: 20416910 DOI: 10.1016/j.phytochem.2010.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/24/2010] [Accepted: 03/30/2010] [Indexed: 05/27/2023]
Abstract
The chemical structures, syntheses, metabolism and biological activities of the cruciferous phytoalexins discovered to date, with particular focus on the latest results dealing with their biosynthesis and detoxification are reviewed.
Collapse
Affiliation(s)
- M Soledade C Pedras
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9.
| | | |
Collapse
|
9
|
Pedras MSC, Snitynsky RB. Impact of Cruciferous Phytoalexins on the Detoxification of Brassilexin by the Blackleg Fungus Pathogenic to Brown Mustard. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The biotransformation of brassilexin, a potent phytoalexin produced by brown mustard (Brassica juncea L.), in the presence of various cruciferous phytoalexins was investigated. An important group of isolates of the fungal species Leptosphaeria maculans (Laird 2 and Mayfair 2), which is virulent to brown mustard, but not to canola, was used in this investigation. Brassilexin was detoxified by the fungus, but none of the phytoalexins seemed to affect substantially the rate of brassilexin detoxification; after 12 h of incubation, the amounts of brassilexin remaining in culture were as low as in controls, except in co-incubations with cyclobrassinin and sinalexin, which afforded intermediates that in solution oxidized spontaneously to brassilexin.
Collapse
Affiliation(s)
- M. Soledade C. Pedras
- Department of Chemistry, 110 Science Place, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Ryan B. Snitynsky
- Department of Chemistry, 110 Science Place, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
10
|
Pedras MSC, Zheng QA. Metabolic responses of Thellungiella halophila/salsuginea to biotic and abiotic stresses: metabolite profiles and quantitative analyses. PHYTOCHEMISTRY 2010; 71:581-9. [PMID: 20122704 DOI: 10.1016/j.phytochem.2009.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 05/08/2023]
Abstract
The metabolite profiles of the model crucifer Thellungiella salsuginea (salt cress) ecotype Shandong subjected to various biotic and abiotic stresses were analyzed using HPLC-DAD-ESI-MS. Two different cruciferous microbial pathogens, Albugo candida, a biotrophic oomycete, and Leptosphaeria maculans, a necrotrophic fungus, elicited formation of the phytoalexins wasalexins A and B without causing visual damage on inoculated leaves. Analyses of non-polar and polar metabolites led to elucidation of the chemical structures of five metabolites: 4'-O-(E)-sinapoyl-7-methoxyisovitexin-2''-O-beta-D-glucopyranoside, 4'-O-(E)-sinapoylisovitexin-2''-O-beta-D-glucopyranoside, 4-O-beta-D-glucopyranosyl-7-hydroxymatairesinol, 5'-O-beta-D-glucopyranosyldihydroneoascorbigen and 3-O-beta-D-glucopyranosylthiane. 3-O-beta-D-glucopyranosylthiane, an unique metabolite for which we suggest the name glucosalsuginin, is proposed to derive from the glucosinolate glucoberteroin. In addition, the identification of a broad range of polar metabolites identical to those of other crucifers was carried out. Quantification of several metabolites over a period of eight days showed that concentrations of the polar phytoanticipin 4-methoxyglucobrassicin increased substantially in leaves irradiated with UV light (lambda(max) 254 nm) relative to control leaves, but not in leaves subjected to other stresses.
Collapse
|
11
|
Pedras MSC, Zheng QA, Schatte G, Adio AM. Photochemical dimerization of wasalexins in UV-irradiated Thellungiellahalophila and in vitro generates unique cruciferous phytoalexins. PHYTOCHEMISTRY 2009; 70:2010-2016. [PMID: 19818973 DOI: 10.1016/j.phytochem.2009.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 08/23/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
The production of phytoalexins in Thellungiella halophila exposed to UV-radiation and NaCl was investigated over a period of 8 days. UV-radiation induced substantially larger quantities of wasalexins A and B than NaCl irrigation or CuCl(2) spray. Isolation of two metabolites and their chemical structure determination using X-ray diffraction analysis provided the phytoalexins biswasalexins A1 and A2, that resulted from head-to-tail photodimerization of wasalexin A. The production of biswasalexins A1 and A2 in stressed T. halophila, as well as their chemical synthesis and antifungal activity are reported. Biswasalexins A1 and A2 (60 nmol/g and 15 nmol/g fresh wt, respectively, 2 days after UV elicitation) are cruciferous phytoalexins whose formation in planta appears to result from a photochemical reaction, which might protect the plant from fungal attack and UV-radiation.
Collapse
|
12
|
Pedras MSC, Yu Y. Phytotoxins, Elicitors and Other Secondary Metabolites from Phytopathogenic “Blackleg” Fungi: Structure, Phytotoxicity and Biosynthesis. Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900400927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The metabolites produced by the fungal species Leptosphaeria maculans and L. biglobosa under different culture conditions, together with their phytotoxic activities are reviewed. In addition, the biosynthetic studies of blackleg metabolites carried out to date are described and suggestions for species reclassification are provided.
Collapse
Affiliation(s)
- M. Soledade C. Pedras
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Yang Yu
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
13
|
Mezencev R, Galizzi M, Kutschy P, Docampo R. Trypanosoma cruzi: antiproliferative effect of indole phytoalexins on intracellular amastigotes in vitro. Exp Parasitol 2009; 122:66-9. [PMID: 19545522 PMCID: PMC2784243 DOI: 10.1016/j.exppara.2009.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 01/23/2009] [Accepted: 01/25/2009] [Indexed: 10/21/2022]
Abstract
American trypanosomiasis (Chagas disease) continues to be a significant public health problem, and the therapeutic potential of current antichagasic agents (nifurtimox and benznidazole) is rather limited. Here we report on the antitrypanosomal effect of 1-methoxyspirobrassinol and other indole phytoalexins--secondary metabolites produced by Cruciferous plants. These compounds, that previously demonstrated antimicrobial and anticancer properties, displayed significant antiproliferative effects on intracellular amastigotes of Trypanosoma cruzi and may be prospective candidates for antichagasic drug design and development.
Collapse
Affiliation(s)
- Roman Mezencev
- Georgia Institute of Technology, School of Biology, Cherry Emerson Building, 310 Ferst Drive, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
14
|
Pedras MSC, Chumala PB, Jin W, Islam MS, Hauck DW. The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. PHYTOCHEMISTRY 2009; 70:394-402. [PMID: 19223049 DOI: 10.1016/j.phytochem.2009.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 05/11/2023]
Abstract
The metabolites and phytotoxins produced by the phytopathogenic fungus Alternaria brassicicola (Schwein.) Wiltshire, as well as the phytoalexins induced in host plants, were investigated. Brassicicolin A emerged as the most selective phytotoxic metabolite produced in liquid cultures of A. brassicicola and spirobrassinin as the major phytoalexin produced in infected leaves of Brassica juncea (whole plants). In detached infected leaves of B. juncea, the main component was N'-acetyl-3-indolylmethanamine, the product of detoxification of the phytoalexin brassinin by A. brassicicola. In addition, the structure elucidation of three hitherto unknown metabolites having a fusicoccane skeleton was carried out and the antifungal activity of several plant defenses against A. brassicicola was determined.
Collapse
Affiliation(s)
- M Soledade C Pedras
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9.
| | | | | | | | | |
Collapse
|
15
|
Pedras MSC, Gadagi RS, Zheng QA, Rimmer SR. Selective Elicitation of the Phytoalexin Rutalexin in Rutabaga and Turnip Roots by a Biotrophic Plant Pathogen. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Stress responses of roots of rutabaga ( Brassica napus ssp. napobrassica) and turnip ( B. rapa ssp. rapa) were analyzed. Phytoalexin production due to biotic elicitation by the biotroph Albugo candida and abiotic elicitation using UV irradiation was quantified by HPLC. The phytoalexin rutalexin was produced in substantially higher amounts in rutabaga and turnip roots inoculated with A. candida than in UV irradiated roots. By contrast, production of the phytoalexins brassinin in rutabaga and cyclobrassinin in turnip was higher in UV irradiated roots than in roots inoculated with A. candida. Overall, the results suggest that A. candida is able to redirect the phytoalexin biosynthetic pathway towards rutalexin, a phytoalexin substantially less inhibitory than either brassinin or cyclobrassinin.
Collapse
Affiliation(s)
- M. Soledade C. Pedras
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Ravi S. Gadagi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Qing-An Zheng
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - S. Roger Rimmer
- Saskatoon Research Centre, Agriculture and Agri Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
16
|
Pedras MSC, Adio AM. Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin. PHYTOCHEMISTRY 2008; 69:889-93. [PMID: 18078965 DOI: 10.1016/j.phytochem.2007.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/12/2007] [Accepted: 10/31/2007] [Indexed: 05/08/2023]
Abstract
Investigation of phytoalexin production using abiotic elicitation showed that the phytoalexin rapalexin A was produced by both Thellungiella halophila and Arabidopsis thaliana, but while A. thaliana produced camalexin, T. halophila produced wasalexins A and B and methoxybrassenin B. Considering that the genome of T. halophila is being sequenced currently and that the wasalexin pathway present in T. halophila is expected to involve a number of genes also present in Brassica species, our discovery should facilitate the isolation of genes involved in biosynthetic pathways of phytoalexins of the most economically important crucifer species.
Collapse
Affiliation(s)
- M Soledade C Pedras
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9.
| | | |
Collapse
|
17
|
Pedras MSC, Zheng QA, Gadagi RS, Rimmer SR. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. PHYTOCHEMISTRY 2008; 69:894-910. [PMID: 18039546 DOI: 10.1016/j.phytochem.2007.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/01/2007] [Accepted: 10/15/2007] [Indexed: 05/25/2023]
Abstract
The metabolites produced in leaves of the oilseeds canola and rapeseed (Brassica rapa L.) inoculated with either different races of the biotroph Albugo candida or sprayed with CuCl(2) were determined. This investigation established consistent phytoalexin (spirobrassinin, cyclobrassinin, and rutalexin) and phytoanticipin (indolyl-3-acetonitrile, arvelexin, caulilexin C, and 4-methoxyglucobrassicin) production in canola and rapeseed in response to both biotic and abiotic elicitation. In addition, a wide number of polar metabolites were isolated from infected leaves, including six new phenylpropanoids and two new flavonoids. The extractable chemical components of zoosporangia of A. candida and the anti-oomycete activity of phytoalexins were determined as well. Overall, the results suggest that during the initial stage of the interaction, leaves of B. rapa have a similar response to virulent and avirulent races of A. candida, with respect to the accumulation of chemical defenses. After this stage, despite the higher phytoalexin concentration, the "compatible" races could overcome the plant defense system for further infection, but growth of the "incompatible" races was inhibited. Since results of bioassays showed that cyclobrassinin and brassilexin were more inhibitory to A. candida than rutalexin, the apparent redirection of the phytoalexin pathway towards rutalexin, avoiding cyclobrassinin and brassilexin accumulation might be caused by the pathogen. Alternatively, A. candida might be able to detoxify both cyclobrassinin and brassilexin, similar to necrotrophic plant pathogens. Overall, the correlation between phytoalexin production in infected or stressed leaves and the outcome of the plant-pathogen interaction suggested that A. candida was able to elude the plant defense mechanisms by, for example, redirecting the phytoalexin biosynthetic pathway.
Collapse
Affiliation(s)
- M Soledade C Pedras
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9.
| | | | | | | |
Collapse
|