1
|
Trusheva B, Petkov H, Chimshirova R, Popova M, Dimitrova L, Zaharieva MM, Ilieva Y, Vasileva B, Tsvetkova I, Najdenski H, Miloshev G, Georgieva M, Bankova V. Insight into the influence of natural deep eutectic solvents on the extraction of phenolic compounds from poplar type propolis: Composition and in vitro biological activity. Heliyon 2024; 10:e28621. [PMID: 38586359 PMCID: PMC10998187 DOI: 10.1016/j.heliyon.2024.e28621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Natural deep eutectic solvents (NADESs) have been considered promising to replace traditional volatile and toxic organic solvents for the extraction of biologically active substances from natural sources. This work applied an efficient and ethanol-exclusion strategy for extraction of phenolic compounds from poplar type propolis using five known NADESs (lactic acid:1,2-propanediol 1:1, lactic acid:fructose 5:1, choline chloride:1,2-propanediol 1:3, choline chloride:1,2-propanediol:water 1:1:1 and betaine:malic acid:water 1:1:6). The selected NADESs' extractability was evaluated by measuring the concentrations of total phenolics and total flavones and flavonols in the propolis extracts obtained, which qualitative chemical composition was further determined in detail by gas chromatography-mass spectrometry (GC-MS) analysis. It demonstrated that the chemical profiles of NADES and 70% ethanolic propolis extracts are similar. To expand the knowledge about the role of the applied solvents in the poplar propolis extraction process, the in vitro antimicrobial, cytotoxic and genotoxic activity of both NADESs and liquid NADES extracts were evaluated. The results revealed that the use of the selected NADESs as an extraction media for phenolic compounds from poplar propolis not only delivered a good extraction yield in some cases, but generally led to the preservation of propolis extracts' biological activity and even to the enhancement of their antimicrobial effect in comparison with the hydroethanolic one. Besides, the tested NADESs except for lactic acid:fructose and betaine:malic acid:water exerted low to negligible toxicity against normal cells treated and apart from lactic acid:fructose the remaining solvents demonstrated concentration-dependent moderate to subtle genotoxicity. There is a probability that not the supramolecular structure of the NADESs, but their components, played a key role for the observed biological effects. The present study has demonstrated an alternative approach for extracting the biologically active complex from poplar type propolis using NADESs, which could be useful for further pharmaceutical and cosmeceutical applications.
Collapse
Affiliation(s)
- Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113, Sofia, Bulgaria
| | - Hristo Petkov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113, Sofia, Bulgaria
| | - Ralitsa Chimshirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113, Sofia, Bulgaria
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113, Sofia, Bulgaria
| | - Lyudmila Dimitrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 26, 1113, Sofia, Bulgaria
| | - Maya M. Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 26, 1113, Sofia, Bulgaria
| | - Yana Ilieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 26, 1113, Sofia, Bulgaria
| | - Bela Vasileva
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | - Iva Tsvetkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 26, 1113, Sofia, Bulgaria
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 26, 1113, Sofia, Bulgaria
| | - George Miloshev
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | - Milena Georgieva
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113, Sofia, Bulgaria
| |
Collapse
|
2
|
Evran E, Durakli‐Velioglu S, Velioglu HM, Boyaci IH. Effect of wax separation on macro- and micro-elements, phenolic compounds, pesticide residues, and toxic elements in propolis. Food Sci Nutr 2024; 12:1736-1748. [PMID: 38455169 PMCID: PMC10916619 DOI: 10.1002/fsn3.3866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 03/09/2024] Open
Abstract
Propolis, a natural product with many biological activities, is a resinous material produced by honeybees. It contains not only valuable components but also some possible contaminants in varying amounts. Hence, this study aimed to examine how the process step of wax separation affects certain elements, pesticide residues, and phenolic compounds in propolis. Total phenolics, elements, and some pesticide residues were analyzed in the crude propolis (CP samples), wax portion (W samples), and remaining propolis fraction (PF samples) after wax separation. Total phenolics of the CP samples were determined in the range of 31.90-45.00 mg GAE g-1 sample, while those of the PF samples were in the range of 54.97-162.09 mg GAE g-1 sample. Loss/reduction values by means of wax separation for phenolics were calculated as 10.88% and 17.89%, respectively. Pb contents of all PF samples were low (0.232-1.520 mg kg-1), but it was also noteworthy that nearly 40% or even more of Cr, As, Cd, and Pb were removed by wax separation. Removal of significant amounts of carbendazim (38.09%-67.35%), metalaxyl (81.57%-72.67%), tebuconazole (65.99%-78.36%), and propargite (88.46%-83.05%) was also achieved. Wax separation enables the removal of toxic substances from crude propolis without causing huge losses in phenolic compounds.
Collapse
Affiliation(s)
- Eylul Evran
- Faculty of Engineering, Department of Food EngineeringHacettepe UniversityAnkaraTürkiye
| | - Serap Durakli‐Velioglu
- Faculty of Agriculture, Department of Food EngineeringTekirdag Namık Kemal UniversityTekirdağTürkiye
| | - Hasan Murat Velioglu
- Faculty of Agriculture, Department of Agricultural BiotechnologyTekirdag Namık Kemal UniversityTekirdağTürkiye
| | - Ismail Hakki Boyaci
- Faculty of Engineering, Department of Food EngineeringHacettepe UniversityAnkaraTürkiye
| |
Collapse
|
3
|
Sukri N, Putri TTM, Mahani, Nurhadi B. Characteristics of propolis encapsulated with gelatin and sodium alginate by complex coacervation method. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Nandi Sukri
- Department of Food Industrial Technology, Faculty of Agro-industrial Technology, Bandung, Indonesia
| | | | - Mahani
- Department of Food Industrial Technology, Faculty of Agro-industrial Technology, Bandung, Indonesia
| | - Bambang Nurhadi
- Department of Food Industrial Technology, Faculty of Agro-industrial Technology, Bandung, Indonesia
| |
Collapse
|
4
|
Zhu L, Zhang J, Yang H, Li G, Li H, Deng Z, Zhang B. Propolis polyphenols: A review on the composition and anti-obesity mechanism of different types of propolis polyphenols. Front Nutr 2023; 10:1066789. [PMID: 37063322 PMCID: PMC10102383 DOI: 10.3389/fnut.2023.1066789] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Obesity, one of the most common nutritional diseases worldwide, can lead to dyslipidemia, high blood sugar, high blood pressure, and inflammation. Some drugs have been developed to ameliorate obesity. However, these drugs may cause serious side effects. Therefore, there is an urgent need for alternative “natural” remedies including propolis. Studies have found that propolis has excellent anti-obesity activity in in vitro and in vivo models during the past decades, of which polyphenols are the key component in regulating weight loss. This review focused on the different polyphenol compositions of propolis from different regions and plants, the evidence for the anti-obesity effects of different types of propolis and its derivatives, discussed the impact of propolis polyphenols on obesity related signal pathways, and proposed the molecular mechanism of how propolis polyphenols affect these signal pathways. For example, propolis and its derivatives regulate lipid metabolism related proteins, such as PPARα, PPARγ, SREBP-1&2, and HMG CoA etc., destroy the formation of CREB/CRTC2 transcription complex, activate Nrf2 pathway or inhibit protein kinase IKK ε/TBK1, thereby affecting fat production and lipid metabolism; The effects of propolis on adipokines (adiponectin, leptin and inflammatory factors) were discussed. Additionally, the mechanism of polyphenols in propolis promoting the browning of adipose tissues and the relationship between intestinal microorganisms was summarized. These information may be of value to better understand how specific propolis polyphenols interact with specific signaling pathways and help guide the development of new drugs to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jinwu Zhang
- Nanchang Concentric Purple Nest Biological Engineering Co., Ltd., Nanchang, China
| | - Hui Yang
- Nanchang Concentric Purple Nest Biological Engineering Co., Ltd., Nanchang, China
| | - Guangyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Nanchang Concentric Purple Nest Biological Engineering Co., Ltd., Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- *Correspondence: Bing Zhang,
| |
Collapse
|
5
|
Rivera-Yañez CR, Ruiz-Hurtado PA, Reyes-Reali J, Mendoza-Ramos MI, Vargas-Díaz ME, Hernández-Sánchez KM, Pozo-Molina G, Méndez-Catalá CF, García-Romo GS, Pedroza-González A, Méndez-Cruz AR, Nieto-Yañez O, Rivera-Yañez N. Antifungal Activity of Mexican Propolis on Clinical Isolates of Candida Species. Molecules 2022; 27:molecules27175651. [PMID: 36080417 PMCID: PMC9457601 DOI: 10.3390/molecules27175651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Infections caused by micro-organisms of the genus Candida are becoming a growing health problem worldwide. These fungi are opportunistic commensals that can produce infections—clinically known as candidiasis—in immunocompromised individuals. The indiscriminate use of different anti-fungal treatments has triggered the resistance of Candida species to currently used therapies. In this sense, propolis has been shown to have potent antimicrobial properties and thus can be used as an approach for the inhibition of Candida species. Therefore, this work aims to evaluate the anti-Candida effects of a propolis extract obtained from the north of Mexico on clinical isolates of Candida species. Candida species were specifically identified from oral lesions, and both the qualitative and quantitative anti-Candida effects of the Mexican propolis were evaluated, as well as its inhibitory effect on C. albicans isolate’s germ tube growth and chemical composition. Three Candida species were identified, and our results indicated that the inhibition halos of the propolis ranged from 7.6 to 21.43 mm, while that of the MFC and FC50 ranged from 0.312 to 1.25 and 0.014 to 0.244 mg/mL, respectively. Moreover, the propolis was found to inhibit germ tube formation (IC50 ranging from 0.030 to 1.291 mg/mL). Chemical composition analysis indicated the presence of flavonoids, including pinocembrin, baicalein, pinobanksin chalcone, rhamnetin, and biochanin A, in the Mexican propolis extract. In summary, our work shows that Mexican propolis presents significant anti-Candida effects related to its chemical composition, and also inhibits germ tube growth. Other Candida species virulence factors should be investigated in future research in order to determine the mechanisms associated with antifungal effects against them.
Collapse
Affiliation(s)
- Claudia Rebeca Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero 07738, Mexico
| | - Julia Reyes-Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - María Isabel Mendoza-Ramos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - María Elena Vargas-Díaz
- Laboratorio de Química de Productos Naturales, Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Ciudad de México 11340, Mexico
| | - Karla Mariela Hernández-Sánchez
- Laboratorio de Química de Productos Naturales, Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Ciudad de México 11340, Mexico
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Gina Stella García-Romo
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Alexander Pedroza-González
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Adolfo René Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (O.N.-Y.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| | - Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (O.N.-Y.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| |
Collapse
|
6
|
Asma ST, Bobiş O, Bonta V, Acaroz U, Shah SRA, Istanbullugil FR, Arslan-Acaroz D. General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses. Nutrients 2022; 14:nu14173579. [PMID: 36079835 PMCID: PMC9460612 DOI: 10.3390/nu14173579] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Bee products have been extensively employed in traditional therapeutic practices to treat several diseases and microbial infections. Numerous bioactive components of bee products have exhibited several antibacterial, antifungal, antiviral, anticancer, antiprotozoal, hepatoprotective, and immunomodulatory properties. Apitherapy is a form of alternative medicine that uses the bioactive properties of bee products to prevent and/or treat different diseases. This review aims to provide an elaborated vision of the antiviral activities of bee products with recent advances in research. Since ancient times, bee products have been well known for their several medicinal properties. The antiviral and immunomodulatory effects of bee products and their bioactive components are emerging as a promising alternative therapy against several viral infections. Numerous studies have been performed, but many clinical trials should be conducted to evaluate the potential of apitherapy against pathogenic viruses. In that direction, here, we review and highlight the potential roles of bee products as apitherapeutics in combating numerous viral infections. Available studies validate the effectiveness of bee products in virus inhibition. With such significant antiviral potential, bee products and their bioactive components/extracts can be effectively employed as an alternative strategy to improve human health from individual to communal levels as well.
Collapse
Affiliation(s)
- Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Otilia Bobiş
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (O.B.); (U.A.)
| | - Victoriţa Bonta
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- Correspondence: (O.B.); (U.A.)
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Fatih Ramazan Istanbullugil
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Damla Arslan-Acaroz
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
7
|
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, Kiani R, Kobarfard F, Mojgani N, Saffarian P, Ayatollahi SA, Sarkar C, Islam MT, Keriman D, Uçar A, Martorell M, Sureda A, Pintus G, Butnariu M, Sharifi-Rad J, Cho WC. Propolis: An update on its chemistry and pharmacological applications. Chin Med 2022; 17:100. [PMID: 36028892 PMCID: PMC9412804 DOI: 10.1186/s13020-022-00651-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9280 Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Pranta Ray
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Damira Ongalbek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022 India
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roghayeh Kiani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Dılhun Keriman
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Arserim Uçar
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN - Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, Palma, Spain
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences King Mihai I from Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
8
|
Kis B, Moacă EA, Tudoran LB, Muntean D, Magyari-Pavel IZ, Minda DI, Lombrea A, Diaconeasa Z, Dehelean CA, Dinu Ș, Danciu C. Green Synthesis of Silver Nanoparticles Using Populi gemmae Extract: Preparation, Physicochemical Characterization, Antimicrobial Potential and In Vitro Antiproliferative Assessment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5006. [PMID: 35888477 PMCID: PMC9318049 DOI: 10.3390/ma15145006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Green route is an economic, facile and eco-friendly method, employed for the synthesis of various types of nanoparticles, having it as a starting point biological entity, especially as a plant extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural characterization exhibited that both the reaction temperature and the concentration of metal salt, contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell lines (breast cancer cells-MCF7 and lung carcinoma epithelial cells-A549). Results have shown that the green-synthetized Pg-AgNPs_S2 (obtained at 60 °C, using AgNO3 of 5 M) induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to 5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.
Collapse
Affiliation(s)
- Brigitta Kis
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
| | - Elena-Alina Moacă
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Delia Muntean
- Department of Microbiology Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Daliana Ionela Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ștefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, 9 Revolutiei Bulevard, 300041 Timișoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, 9 Revolutiei Bulevard, 300041 Timișoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
9
|
Preparation of Aqueous Propolis Extracts Applying Microwave-Assisted Extraction. Processes (Basel) 2022. [DOI: 10.3390/pr10071330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Water-based propolis extracts usually contain up to 10-fold lower quantities of active ingredients due to poor solubility in water of propolis bioactive compounds when compared with ethanol-based extracts. Since ethanol-based extracts are of limited use, water-based extracts are preferred nowadays. The application of alternative extraction techniques should be evaluated to improve extraction efficiency. Aqueous propolis extracts were prepared using purified water and propylene glycol, 2-hydroxypropyl-beta-cyclodextrin and sodium bicarbonate aqueous solutions. A microwave-assisted extraction method was applied in cycles. The total concentration of hydroxycinnamic acids in aqueous propolis extract produced by four extraction cycles was determined to be 1502.1 ± 130.1 μg/mL and 20% propylene glycol, 10% 2-hydroxypropyl-beta-cyclodextrin and 5% sodium bicarbonate aqueous solutions, increasing the total concentration of hydroxycinnamic acids by 1.6, 1.7 and 1.9-fold, respectively. An application of microwave-assisted extraction method and the procedure of repeating extraction cycles reliably increased the quantity of hydroxycinnamic acids in aqueous propolis extracts. Similarly, the presence of propylene glycol, 2-hydroxypropyl-β-cyclodextrin and sodium bicarbonate increased the concentration of the hydroxycinnamic acids in propolis extracts.
Collapse
|
10
|
Youssef DM, Alshubaily FA, Tayel AA, Alghuthaymi MA, Al-Saman MA. Application of Nanocomposites from Bees Products and Nano-Selenium in Edible Coating for Catfish Fillets Biopreservation. Polymers (Basel) 2022; 14:polym14122378. [PMID: 35745953 PMCID: PMC9229794 DOI: 10.3390/polym14122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Bee products, e.g., chitosan and propolis (Pro), have extraordinary importance in many disciplines including food biopreservation. Fish meat is highly susceptible to vast spoilage, especially catfish (Clarias gariepinus) products. The current work involved the extraction of bees’ chitosan nanoparticles (BCht), Pro, Pro-mediated SeNPs and their composites, to evaluate them as potential antimicrobial and preservative nano-compounds, for the preservation of catfish fillets and augment their quality. BCht was extracted from bees (Apis mellifera) corpses and had a 151.9 nm mean particle diameter. The Pro was used for biosynthesis of SeNPs, which had 11.2 nm mean diameters. The entire compounds/composites exhibited powerful antibacterial acts against Escherichia coli, Staphylococcus aureus and Salmonella typhimurium, where S aureus had the uppermost resistance. BCht/Pro/SeNPs were the most forceful toward all bacterial strains. The constructed edible coatings (ECs) from produced compounds/composites (BCht, Pro, Pro/SeNPs, Pro/BCht and BCht/Pro/SeNPs) had elevated efficiency for preserving catfish fillets during cold storages for 7 days. The microbiological (total counts, psychrophilic bacteria, yeast and molds), spoilage chemical parameters (TVB-N, TBARS) and sensorial attributes (appearance, odor, color, overall quality) of ECs-treated fillets indicated the nanocomposite’s efficiency for protecting the fish from microbial growth, the progress of chemical spoilage indicators and maintaining the sensorial quality of treated stored fillets. The most effective nanocomposite for maintaining the entire fillet’s quality was the BCht/Pro/SeNP. The based ECs on BNCt, Pro/SeNPs and their nanocomposites could be endorsed for prospective employment in the biopreservation of various seafoods.
Collapse
Affiliation(s)
- Dareen M. Youssef
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Correspondence: (A.A.T.); (M.A.A.)
| | - Mousa A. Alghuthaymi
- Department of Biology, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia
- Correspondence: (A.A.T.); (M.A.A.)
| | - Mahmoud A. Al-Saman
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City 32897, Egypt;
| |
Collapse
|
11
|
Bouchelaghem S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi J Biol Sci 2022; 29:1936-1946. [PMID: 35531223 PMCID: PMC9072893 DOI: 10.1016/j.sjbs.2021.11.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/28/2021] [Indexed: 01/07/2023] Open
Abstract
Propolis is a plant-based sticky substance that is produced by honeybees. It has been used traditionally by ancient civilizations as a folk medicine, and is known to have many pharmaceutical properties including antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and antitumour effects. Worldwide, researchers are still studying the complex composition of propolis to unveil its biological potential, and especially its antimicrobial activity against a variety of multidrug-resistant microorganisms. This review explores scientific reports published during the last decade on the characterization of different types of propolis, and evaluates their antimicrobial activities against Staphylococcus aureus and Candida albicans. Propolis can be divided into different types depending on their chemical composition and physical properties associated with geographic origin and plant sources. Flavonoids, phenols, diterpenes, and aliphatic compounds are the main chemicals that characterize the different types of propolis (Poplar, Brazilian, and Mediterranean), and are responsible for their antimicrobial activity. The extracts of most types of propolis showed greater antibacterial activity against Gram-positive bacteria: particularly on S. aureus, as well as on C. albicans, as compared to Gram-negative pathogens. Propolis acts either by directly interacting with the microbial cells or by stimulating the immune system of the host cells. Some studies have suggested that structural damage to the microorganisms is a possible mechanism by which propolis exhibits its antimicrobial activity. However, the mechanism of action of propolis is still unclear, due to the synergistic interaction of the ingredients of propolis, and this natural substance has multi-target activity in the cell. The broad-spectrum biological potentials of propolis present it as an ideal candidate for the development of new, potent, and cost-effective antimicrobial agents.
Collapse
Affiliation(s)
- Sarra Bouchelaghem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság str. 6, 7624 Pécs, Hungary
| |
Collapse
|
12
|
Kis B, Pavel IZ, Avram S, Moaca EA, Herrero San Juan M, Schwiebs A, Radeke HH, Muntean D, Diaconeasa Z, Minda D, Oprean C, Bojin F, Dehelean CA, Soica C, Danciu C. Antimicrobial activity, in vitro anticancer effect (MCF-7 breast cancer cell line), antiangiogenic and immunomodulatory potentials of Populus nigra L. buds extract. BMC Complement Med Ther 2022; 22:74. [PMID: 35296309 PMCID: PMC8928639 DOI: 10.1186/s12906-022-03526-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the antioxidant potential, antimicrobial activity, the in vitro anticancer effect (tested on MCF-7 breast cancer cell line), as well as the antiangiogenic and immunomodulatory potential of Populus nigra L. bud (Pg) extract collected from the western part of Romania. RESULTS Populus nigra L. bud extract presents an important antioxidant activity, due to the rich phytochemical composition. Regarding the biological activity, results have shown that poplar bud extract presents a significant inhibitory activity against Gram-positive bacteria and a dose-dependent decrease of MCF-7 tumor cell viability with an IC50 of 66.26 μg/mL, while not affecting healthy cells. Phenomena of early apoptotic events at the maximum concentration tested (150 μg/mL) were detected by Annexin V-PI double staining. The extract induced G0/G1 phase cell cycle arrest. In addition, Pg extract showed antiangiogenic potential on the chorioallantoic membrane. Also, at the highest concentration (150 μg/mL), good tolerability and no signs of toxicity upon vascular plexus were observed. Moreover, in low concentrations, the Pg extract had immunomodulatory activity on primary human dendritic cells by upregulating IL-12 and IL-23 subunits. CONCLUSION The study concludes that poplar bud extract elicited antioxidant activity, antitumor properties on the breast cancer cell line, followed by an antiangiogenic effect and an immunomodulatory potential on human primary dendritic cells. The biological activity of Populus nigra L. buds extract may open new directions of research on the topic addressed.
Collapse
Affiliation(s)
- Brigitta Kis
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania. .,Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.
| | - Stefana Avram
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Elena Alina Moaca
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Department of Toxicology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Martina Herrero San Juan
- Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Hospital of the Goethe University, 60590, Frankfurt/Main, Germany
| | - Anja Schwiebs
- Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Hospital of the Goethe University, 60590, Frankfurt/Main, Germany
| | - Heinfried H Radeke
- Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Hospital of the Goethe University, 60590, Frankfurt/Main, Germany
| | - Delia Muntean
- Department of Microbiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372, Cluj-Napoca, Romania
| | - Daliana Minda
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Camelia Oprean
- Department of Pharmacy I, Drug Analysis, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,"Pius Brinzeu" Timişoara County Emergency Clinical Hospital, Oncogen Institute, 156 Liviu Rebreanu, 300723, Timişoara, Romania.,Advanced Instrumental Screening Center, Faculty of Pharmacy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Florina Bojin
- "Pius Brinzeu" Timişoara County Emergency Clinical Hospital, Oncogen Institute, 156 Liviu Rebreanu, 300723, Timişoara, Romania.,Department of Functional Sciences, Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Department of Toxicology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Codruta Soica
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Department of Pharmaceutical Chemistry, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.,Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| |
Collapse
|
13
|
Javed S, Mangla B, Ahsan W. From propolis to nanopropolis: An exemplary journey and a paradigm shift of a resinous substance produced by bees. Phytother Res 2022; 36:2016-2041. [PMID: 35259776 DOI: 10.1002/ptr.7435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Propolis, a natural resinous mixture produced by honey bees is poised with diverse biological activities. Owing to the presence of flavonoids, phenolic acids, terpenes, and sesquiterpenes, propolis has garnered versatile applications in pharmaceutical industry. The biopharmaceutical issues associated with propolis often beset its use as being too hydrophobic in nature; it is not absorbed in the body well. To combat the problem, various nanotechnological approaches for the development of novel drug delivery systems are generally applied to improve its bioavailability. This paradigm shift and transition of conventional propolis to nanopropolis are evident from the literature wherein a multitude of studies are available on nanopropolis with improved bioavailability profile. These approaches include preparation of gold nanoparticles, silver nanoparticles, magnetic nanoparticles, liposomes, liquid crystalline formulations, solid lipid nanoparticles, mesoporous silica nanoparticles, etc. Nanopropolis has further been explored to assess the potential benefits of propolis for the development of futuristic useful products such as sunscreens, creams, mouthwashes, toothpastes, and nutritional supplements with improved solubility, bioavailability, and penetration profiles. However, more high-quality clinical studies assessing the effects of propolis either alone or in combination with synthetic drugs as well as natural products are warranted and its safety needs to be firmly established.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
14
|
El Adham EK, Hassan AI, A Dawoud MM. Evaluating the role of propolis and bee venom on the oxidative stress induced by gamma rays in rats. Sci Rep 2022; 12:2656. [PMID: 35173181 PMCID: PMC8850618 DOI: 10.1038/s41598-022-05979-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Honeybee products consist of many substances, which have long been known for their medicinal and health-promoting properties. This study set out to appraise the protective potential of Egyptian propolis (EP) and bee venom (BV) separately or combined against total body irradiation (TBI) induced oxidative injury in rats. Besides, we assessed the bioactive components in EP and BV using HPLC and UPLC/ ESI-MS analysis in the positive ion mode. The animals were subjected to a source of gamma ionizing radiation at a dose of 6 Gy. Propolis and BV were administered independently and in combination before 14 days of γ-irradiation. Liver and kidney functions were estimated besides, DNA damage index (8- OHdG) by ELISA. Antioxidants, including glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were detected. Gene expression technique investigated for BAX, BCL2, and in plasma also miR125b expression in serum of rats. Besides, the histopathological for the brain, liver, kidney, and heart were investigated. In addition, lipid peroxidation was investigated in plasma and in the previous organs. The present results provide opportunities to advance the use of bee products as promising medicinal sources.
Collapse
Affiliation(s)
- Eithar K El Adham
- Radioisotopes Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Dokki, Giza, 12311, Egypt
| | - Amal I Hassan
- Radioisotopes Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Dokki, Giza, 12311, Egypt.
| | - M M A Dawoud
- Radioisotopes Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Dokki, Giza, 12311, Egypt
| |
Collapse
|
15
|
Development and Validation of an HPLC Method for Simultaneous Determination of Capsaicinoids and Camphor in Over-the-Counter Medication for Topical Use. Molecules 2022; 27:molecules27041261. [PMID: 35209050 PMCID: PMC8878854 DOI: 10.3390/molecules27041261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022] Open
Abstract
A reverse-phase high-performance liquid chromatography method was developed to determine and quantify capsaicin (trans-8-methyl-N-vanillyl-6- nonenamid), dihydrocapsaicin (8-methyl-N-vanillylnonanamide), and camphor (trimethylbicyclo[2.2.1]heptan-2-one). It is applicable in analyses of over-the-counter (OTC) medications for topical use and raw materials such as chili pepper oleoresin. Chromatographic separation was carried out on a C18 column using an isocratic flow of the mobile phase containing acetonitrile and ultrapure water in a ratio of 2:3, with pH adjusted to 3.2 using glacial acetic acid, and a flow rate of 1.5 mL/min. The concentration of the eluting compounds was monitored by a diode-array detector at a wavelength of 281 nm. The method was evaluated for several validation parameters, including selectivity, accuracy (confidence intervals < 0.05%), repeatability, and intermediate precision. The limit of detection (LOD) was determined to be 0.070 µg/mL for capsaicin, 0.211 µg/mL for dihydrocapsaicin, and 0.060 µg/mL for camphor. The limit of quantification (LOQ) was determined to be 0.212 µg/mL for capsaicin, 0.640 µg/mL for dihydrocapsaicin, and 0.320 µg/mL for camphor. Linearity was set in the range of 2.5–200 µg/mL for capsaicin and dihydrocapsaicin and 25–2000 µg/mL for camphor. The suggested analytical method can be used for quality control of formulated pharmaceutical products containing capsaicinoids, camphor, and propolis.
Collapse
|
16
|
Widelski J, Okińczyc P, Paluch E, Mroczek T, Szperlik J, Żuk M, Sroka Z, Sakipova Z, Chinou I, Skalicka-Woźniak K, Malm A, Korona-Głowniak I. The Antimicrobial Properties of Poplar and Aspen–Poplar Propolises and Their Active Components against Selected Microorganisms, Including Helicobacter pylori. Pathogens 2022; 11:pathogens11020191. [PMID: 35215134 PMCID: PMC8875431 DOI: 10.3390/pathogens11020191] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
There is a noticeable interest in alternative therapies where the outcome is the eradication of the Gram-negative bacterium, Helicobacter pylori (H. pylori), for the purpose of treating many stomach diseases (chronic gastritis and peptic ulcers) and preventing stomach cancer. It is especially urgent because the mentioned pathogen infects over 50% of the world’s population. Recent studies have shown the potential of natural products, such as medicinal plant and bee products, on the inhibition of H. pylori growth. Propolis is such a bee product, with known antimicrobial activities. The main scope of the study is the determination of the antimicrobial activity of ethanolic extracts from 11 propolis samples (mostly from Poland, Ukraine, Kazakhstan, and Greece) against H. pylori, as well as selected bacterial and yeast species. The most effective against H. pylori was the propolis from Ukraine, with an MIC = 0.02 mg/mL while the rest of samples (except one) had an MIC = 0.03 mg/mL. Moreover, significant antimicrobial activity against Gram+ bacteria (with an MIC of 0.02–2.50 mg/mL) and three yeasts (with an MIC of 0.04–0.63 mg/mL) was also observed. A phytochemical analysis (polyphenolic profile) of the propolis samples, by ultra-high-performance liquid chromatography-diode array detector-mass spectrometry (UPLC-DAD-MS), was performed. An evaluation of the impact of the propolis components on antimicrobial activity, consisting of statistical analyses (principal component analysis (PCA) and hierarchical fuzzy clustering), was then performed. It was observed that the chemical composition characteristics of the poplar propolis correlated with higher antibacterial activity, while that of the poplar and aspen propolis correlated with weaker antibacterial activity. To summarize the activity in vitro, all tested propolis samples indicate that they can be regarded as useful and potent factors in antimicrobial therapies, especially against H. pylori.
Collapse
Affiliation(s)
- Jarosław Widelski
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (J.W.); (P.O.); Tel.: +48-81-448-70-86 (J.W.); +48-71-448-70-86 (P.O.)
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, 50-556 Wroclaw, Poland;
- Correspondence: (J.W.); (P.O.); Tel.: +48-81-448-70-86 (J.W.); +48-71-448-70-86 (P.O.)
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-376 Wroclaw, Poland;
| | - Tomasz Mroczek
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland; (T.M.); (K.S.-W.)
| | - Jakub Szperlik
- Faculty of Biological Sciences, Botanical Garden, Laboratory of Tissue Culture, University of Wrocław, 50-525 Wroclaw, Poland;
| | - Magdalena Żuk
- Faculty of Biotechnology, Wrocław University, 51-148 Wroclaw, Poland;
| | - Zbigniew Sroka
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, 50-556 Wroclaw, Poland;
| | - Zuriyadda Sakipova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Ioanna Chinou
- Division of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Krystyna Skalicka-Woźniak
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland; (T.M.); (K.S.-W.)
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (I.K.-G.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (I.K.-G.)
| |
Collapse
|
17
|
The Study of Chemical Profile and Antioxidant Properties of Poplar-Type Polish Propolis Considering Local Flora Diversity in Relation to Antibacterial and Anticancer Activities in Human Breast Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030725. [PMID: 35163989 PMCID: PMC8840218 DOI: 10.3390/molecules27030725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Nine samples of ethanolic extracts of poplar-type propolis (EEP) originated from South-Eastern Poland were analyzed in terms of the diversity of the flora around the apiary. The mineral composition, antioxidant properties, polyphenolic profile (HPTLC), and main polyphenolic constituents (HPLC-DAD) were determined. Only minor differences in chemical composition and antioxidant capacity between tested EEPs were found regardless of their botanical origin. However, the biological activity of the EEPs was more diversified. The tested EEPs showed stronger antibacterial activity against Gram-negative bacteria (Escherichia coli) compared to Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis). Staphylococci biofilm inhibition occurred as a result of exposure to the action of four out of nine EEPs (P1–P4). Due to the various compositions of individual EEPs, a different MCF-7 cellular response was observed according to inhibition of cells migration and proliferation. Almost every sample inhibited the migration of breast cancer cells at a low concentration (0.04 µg/mL) of propolis. Even at the lowest concentration (0.02 µg/mL), each EEP inhibited the proliferation of MCF-7 cells, however, the level of inhibition varied between samples.
Collapse
|
18
|
Bouchelaghem S, Das S, Naorem RS, Czuni L, Papp G, Kocsis M. Evaluation of Total Phenolic and Flavonoid Contents, Antibacterial and Antibiofilm Activities of Hungarian Propolis Ethanolic Extract against Staphylococcus aureus. Molecules 2022; 27:574. [PMID: 35056886 PMCID: PMC8782033 DOI: 10.3390/molecules27020574] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Propolis is a natural bee product that is widely used in folk medicine. This study aimed to evaluate the antimicrobial and antibiofilm activities of ethanolic extract of propolis (EEP) on methicillin-resistant and sensitive Staphylococcus aureus (MRSA and MSSA). Propolis samples were collected from six regions in Hungary. The minimum inhibitory concentrations (MIC) values and the interaction of EEP-antibiotics were evaluated by the broth microdilution and the chequerboard broth microdilution methods, respectively. The effect of EEP on biofilm formation and eradication was estimated by crystal violet assay. Resazurin/propidium iodide dyes were applied for simultaneous quantification of cellular metabolic activities and dead cells in mature biofilms. The EEP1 sample showed the highest phenolic and flavonoid contents. The EEP1 successfully prevented the growth of planktonic cells of S. aureus (MIC value = 50 µg/mL). Synergistic interactions were shown after the co-exposition to EEP1 and vancomycin at 108 CFU/mL. The EEP1 effectively inhibited the biofilm formation and caused significant degradation of mature biofilms (50-200 µg/mL), as a consequence of the considerable decrement of metabolic activity. The EEP acts effectively as an antimicrobial and antibiofilm agent on S. aureus. Moreover, the simultaneous application of EEP and vancomycin could enhance their effect against MRSA infection.
Collapse
Affiliation(s)
- Sarra Bouchelaghem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Sourav Das
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság Str. 13, 7624 Pécs, Hungary;
| | - Romen Singh Naorem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Lilla Czuni
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Gábor Papp
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary; (S.B.); (R.S.N.); (L.C.); (G.P.)
| | - Marianna Kocsis
- Department of Plant Biology, Institute of Biology, University of Pécs, Ifjúság str. 6, 7624 Pécs, Hungary
| |
Collapse
|
19
|
Oliveira JMDS, Cavalcanti TFS, Leite IF, Dos Santos DMRC, Porto ICCDM, de Aquino FLT, Sonsin AF, Lins RML, Vitti RP, de Freitas JD, Barreto EDO, de Souza ST, Kamiya RU, do Nascimento TG, Tonholo J. Propolis in Oral Healthcare: Antibacterial Activity of a Composite Resin Enriched With Brazilian Red Propolis. Front Pharmacol 2021; 12:787633. [PMID: 34912230 PMCID: PMC8667603 DOI: 10.3389/fphar.2021.787633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to obtain a Brazilian red propolis (BRP) enriched composite resin and to perform the characterization of its antibacterial activity, mechanical, and physical-chemical properties. Brazilian red propolis ethyl acetate extract (EABRP) was characterized by LC-ESI-Orbitrap-FTMS, UPLC-DAD, antibacterial activity, total flavonoids content, and radical scavenging capacity. BRP was incorporated to a commercial composite resin (RC) to obtain BRP enriched composite at 0.1, 0.15 and 0.25% (RP10, RP15 and RP25, respectively). The antibacterial activity RPs was evaluated against Streptococcus mutans by contact direct test and expressed by antibacterial ratio. The RPs were characterized as its cytotoxicity against 3T3 fibroblasts, flexural strength (FS), Knoop microhardness (KHN), post-cure depth (CD), degree of conversion (DC%), water sorption (Wsp), water solubility (Wsl), average roughness (Ra), and thermal analysis. Were identified 50 chemical compounds from BRP extract by LC-ESI-Orbitrap-FTMS. EABRP was bacteriostatic and bactericide at 125 and 500 μg/ml, respectively. The RP25 exhibited antibacterial ratio of 90.76% after 1 h of direct contact with S. mutans (p < 0.0001) while RC no showed significative antibacterial activity (p = 0.1865), both compared with cell control group. RPs and RC no showed cytotoxicity. RPs exhibited CD from 2.74 to 4.48 mm, DC% from 80.70 to 83.96%, Wsp from 17.15 to 21.67 μg/mm3, Wsl from 3.66 to 4.20 μg/mm3, Ra from 14.48 to 20.76 nm. RPs showed thermal resistance between 448–455°C. The results support that propolis can be used on development of modified composite resins that show antibacterial activity and that have compatible mechanical and physical-chemical properties to the indicate for composite resins.
Collapse
Affiliation(s)
- José Marcos Dos Santos Oliveira
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Health Research, Cesmac University Center, Maceió, Brazil
| | - Théo Fortes Silveira Cavalcanti
- Postgraduate Program in Materials, Center of Technology, Federal University of Alagoas, Maceió, Brazil.,Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Isabel Cristina Celerino de Moraes Porto
- Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Fernanda Lima Torres de Aquino
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Artur Falqueto Sonsin
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | | | | | | | - Emiliano de Oliveira Barreto
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Samuel Teixeira de Souza
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | - Regianne Umeko Kamiya
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Ticiano Gomes do Nascimento
- Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Josealdo Tonholo
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
20
|
Determination of Phenolic Compounds in Various Propolis Samples Collected from an African and an Asian Region and Their Impact on Antioxidant and Antibacterial Activities. Molecules 2021; 26:molecules26154589. [PMID: 34361742 PMCID: PMC8347760 DOI: 10.3390/molecules26154589] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
The biological activities of propolis samples are the result of many bioactive compounds present in the propolis. The aim of the present study was to determine the various chemical compounds of some selected propolis samples collected from Palestine and Morocco by the High-Performance Liquid Chromatography–Photodiode Array Detection (HPLC-PDA) method, as well as the antioxidant and antibacterial activities of this bee product. The chemical analysis of propolis samples by HPLC-PDA shows the cinnamic acid content in the Palestinian sample is higher compared to that in Moroccan propolis. The results of antioxidant activity demonstrated an important free radical scavenging activity (2,2-Diphenyl-1-picrylhydrazyl (DPPH); 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and reducing power assays) with EC50 values ranging between 0.02 ± 0.001 and 0.14 ± 0.01 mg/mL. Additionally, all tested propolis samples possessed a moderate antibacterial activity against bacterial strains. Notably, Minimum Inhibitory Concentrations (MICs) values ranged from 0.31 to 2.50 mg/mL for Gram-negative bacterial strains and from 0.09 to 0.125 mg/mL for Gram-positive bacterial strains. The S2 sample from Morocco and the S4 sample from Palestine had the highest content of polyphenol level. Thus, the strong antioxidant and antibacterial properties were apparently due to the high total phenolic and flavone/flavonol contents in the samples. As a conclusion, the activities of propolis samples collected from both countries are similar, while the cinnamic acid in the Palestinian samples was more than that of the Moroccan samples.
Collapse
|
21
|
de Oliveira MS, Cruz JN, Ferreira OO, Pereira DS, Pereira NS, Oliveira MEC, Venturieri GC, Guilhon GMSP, Souza Filho APDS, Andrade EHDA. Chemical Composition of Volatile Compounds in Apis mellifera Propolis from the Northeast Region of Pará State, Brazil. Molecules 2021; 26:molecules26113462. [PMID: 34200300 PMCID: PMC8201256 DOI: 10.3390/molecules26113462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 01/29/2023] Open
Abstract
Propolis is a balsamic product obtained from vegetable resins by exotic Africanized bees Apis mellifera L., transported and processed by them, originating from the activity that explores and maintains these individuals. Because of its vegetable and natural origins, propolis is a complex mixture of different compound classes; among them are the volatile compounds present in the aroma. In this sense, in the present study we evaluated the volatile fraction of propolis present in the aroma obtained by distillation and simultaneous extraction, and its chemical composition was determined using coupled gas chromatography, mass spectrometry, and flame ionization detection. The majority of compounds were sesquiterpene and hydrocarbons, comprising 8.2-22.19% α-copaene and 6.2-21.7% β-caryophyllene, with additional compounds identified in greater concentrations. Multivariate analysis showed that samples collected from one region may have different chemical compositions, which may be related to the location of the resin's production. This may be related to other bee products.
Collapse
Affiliation(s)
- Mozaniel Santana de Oliveira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (J.N.C.); (O.O.F.); (E.H.d.A.A.)
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil
- Correspondence: ; Tel.: +55-91-988-647-823
| | - Jorddy Neves Cruz
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (J.N.C.); (O.O.F.); (E.H.d.A.A.)
| | - Oberdan Oliveira Ferreira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (J.N.C.); (O.O.F.); (E.H.d.A.A.)
| | - Daniel Santiago Pereira
- Empresa Brasileira de Pesquisa Agropecuária-Embrapa Amazônia Oriental, Tv. Dr. Eneas Pinheiro, s/n—Marco, Belém 66095-903, PA, Brazil; (D.S.P.); (M.E.C.O.); (A.P.d.S.S.F.)
| | - Natanael Santiago Pereira
- Laboratory of Soil Water for Irrigation Purposes and Vegetable Tissues, Federal Institute of Education Science and Technology of Ceará, Limoeiro do Norte 62930-000, CE, Brazil;
| | - Marcos Enê Chaves Oliveira
- Empresa Brasileira de Pesquisa Agropecuária-Embrapa Amazônia Oriental, Tv. Dr. Eneas Pinheiro, s/n—Marco, Belém 66095-903, PA, Brazil; (D.S.P.); (M.E.C.O.); (A.P.d.S.S.F.)
| | - Giorgio Cristino Venturieri
- Pollination Ecology, Meliponiculture and Beekeeping, NATIVO Company, Wavell Heights North, QLD 4012, Australia;
| | | | - Antônio Pedro da Silva Souza Filho
- Empresa Brasileira de Pesquisa Agropecuária-Embrapa Amazônia Oriental, Tv. Dr. Eneas Pinheiro, s/n—Marco, Belém 66095-903, PA, Brazil; (D.S.P.); (M.E.C.O.); (A.P.d.S.S.F.)
| | - Eloisa Helena de Aguiar Andrade
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (J.N.C.); (O.O.F.); (E.H.d.A.A.)
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil
- Faculdade de Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil;
| |
Collapse
|
22
|
Balica G, Vostinaru O, Stefanescu C, Mogosan C, Iaru I, Cristina A, Pop CE. Potential Role of Propolis in the Prevention and Treatment of Metabolic Diseases. PLANTS (BASEL, SWITZERLAND) 2021; 10:883. [PMID: 33925692 PMCID: PMC8144987 DOI: 10.3390/plants10050883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 01/09/2023]
Abstract
Propolis is a resinous mixture with a complex chemical composition, produced by honeybees and stingless bees from a variety of vegetal sources. In the last decades, propolis was extensively researched, multiple studies confirming its anti-inflammatory, antioxidant, antimicrobial, and wound-healing properties. More recently, due to an exponential increase in the number of patients with metabolic diseases, there is also a growing interest in the study of antidiabetic, antihyperlipidemic, and anti-obesity effects of propolis. The aim of this review was to evaluate the potential role of propolis in the prevention and treatment of metabolic diseases like diabetes mellitus, dyslipidemia, and obesity. The preclinical in vivo and in vitro pharmacological models investigating antidiabetic, antihyperlipidemic, and anti-obesity effects of propolis were reviewed with a focus on the putative mechanisms of actions of several chemical constituents. Additionally, the available clinical studies and an evaluation of the safety profile of propolis were also presented.
Collapse
Affiliation(s)
- Georgeta Balica
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gh. Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Oliviu Vostinaru
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Cristina Stefanescu
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gh. Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Cristina Mogosan
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Irina Iaru
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Anamaria Cristina
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Carmen Elena Pop
- Department of Pharmaceutical Industry, Iuliu Hatieganu University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Extracts of Poplar Buds ( Populus balsamifera L., Populus nigra L.) and Lithuanian Propolis: Comparison of Their Composition and Biological Activities. PLANTS 2021; 10:plants10050828. [PMID: 33919265 PMCID: PMC8143302 DOI: 10.3390/plants10050828] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
Balsam poplar and black poplar (Populus balsamifera L. and Populus nigra L.) buds that grow in Lithuania are the primary source of propolis, therefore it is proper to evaluate and compare the composition of these raw plant materials and propolis quantitatively and qualitatively. Propolis and balsamic poplar bud extract are dominated by p-coumaric acid and black poplar-caffeic acid. Antioxidant activity was evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (ferric-reducing antioxidant power) and CUPRAC (cupric reducing antioxidant capacity) methods and all extracts showed antioxidant activity, and obtained results correlated with the obtained amounts of phenolic compounds and flavonoids in the extracts. Studies of antimicrobial activity have shown that all extracts have a growth inhibitory effect against Staphylococcus aureus and Candida albicans, but the extract of balsam poplar buds showed the most significant effect of such kind. Considering the results of the research, it can be stated that balsam poplar buds cultured in Lithuania are the primary raw material of propolis, which is rich in phenolic compounds with antioxidant properties and is a promising raw material for pharmaceutical purposes.
Collapse
|
24
|
Stavropoulou MI, Termentzi A, Kasiotis KM, Cheilari A, Stathopoulou K, Machera K, Aligiannis N. Untargeted Ultrahigh-Performance Liquid Chromatography-Hybrid Quadrupole-Orbitrap Mass Spectrometry (UHPLC-HRMS) Metabolomics Reveals Propolis Markers of Greek and Chinese Origin. Molecules 2021; 26:molecules26020456. [PMID: 33467182 PMCID: PMC7830967 DOI: 10.3390/molecules26020456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical composition of propolis depends on the plant source and thus on the geographic and climatic characteristics of the site of collection. The aim of this study was to investigate the chemical profile of Greek and Chinese propolis extracts from different regions and suggest similarities and differences between them. Untargeted ultrahigh-performance liquid chromatography coupled to hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-HRMS) method was developed and 22 and 23 propolis samples from Greece and China, respectively, were analyzed. The experimental data led to the observation that there is considerable variability in terms of quality of the distinctive propolis samples. Partial least squares - discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) models were constructed and allowed the identification of significant features for sample discrimination, adding relevant information for the identification of class-determining metabolites. Chinese samples overexpressed compounds that are characteristic of the poplar type propolis, whereas Greek samples overexpress the latter and the diterpenes characteristic of the Mediterranean propolis type.
Collapse
Affiliation(s)
- Maria-Ioanna Stavropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 11527 Athens, Greece; (M.-I.S.); (A.C.); (K.S.)
| | - Aikaterini Termentzi
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens, Greece; (A.T.); (K.M.K.); (K.M.)
| | - Konstantinos M. Kasiotis
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens, Greece; (A.T.); (K.M.K.); (K.M.)
| | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 11527 Athens, Greece; (M.-I.S.); (A.C.); (K.S.)
| | - Konstantina Stathopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 11527 Athens, Greece; (M.-I.S.); (A.C.); (K.S.)
| | - Kyriaki Machera
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens, Greece; (A.T.); (K.M.K.); (K.M.)
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 11527 Athens, Greece; (M.-I.S.); (A.C.); (K.S.)
- Correspondence: ; Tel.: +30-210-727-4524
| |
Collapse
|
25
|
Impact of Plant Origin on Eurasian Propolis on Phenolic Profile and Classical Antioxidant Activity. Biomolecules 2021; 11:biom11010068. [PMID: 33419208 PMCID: PMC7825625 DOI: 10.3390/biom11010068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/05/2023] Open
Abstract
Propolis is a bee product with known medical properties, including antioxidant activity. The scope of the study is profiling 19 different Eurasian propolis samples (mostly from Russia and Kazakhstan, Kyrgyzstan, Poland, Ukraine, and Slovakia). Profiles of propolises were investigated by ultra-high-performance liquid chromatography–diode array detector–mass spectrometry (UPLC-DAD-MS). Classical antioxidant properties, which are based on electron donation mechanism, were assessed by DPPH, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) assays. Total phenolic and flavonoid contents were also evaluated by colorimetric tests. Most of the samples exhibited significant content of polyphenols (from 30.28 to 145.24 mg GAE/g of propolis) and flavonoids (from 10.45 to 82.71 mg GAE/g of propolis). Most of the propolis samples exhibited potent antiradical (DPPH test—from 8.83 to 64.47 mg GAE/g of propolis) and reducing activity (FRAP test—from 0.08 to 1.17 mmol Fe2+/g of propolis). Based on the occurrence of marker compounds, propolis samples were classified as poplar, aspen–birch, aspen–poplar, and aspen–birch–poplar type. Main markers present in propolis of poplar (e.g., chrysin, pinocembrin, galangin, and 3-O-acetyl-pinobanksin), birch (ermanin and acacetin) and aspen (2-acetyl-1,3-di-p-coumaroylglycerol) origin were used. DPPH, FRAP, and ORAC tests results were correlated with flavonoids, total polyphenols, or the polyphenols other than flavonoids content. In term of activity, poplar propolis type was variable, while aspen–birch–poplar type usually exhibited high DPPH and FRAP activity.
Collapse
|
26
|
Ghallab DS, Mohyeldin MM, Shawky E, Metwally AM, Ibrahim RS. Chemical profiling of Egyptian propolis and determination of its xanthine oxidase inhibitory properties using UPLC–MS/MS and chemometrics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Dezmirean DS, Paşca C, Moise AR, Bobiş O. Plant Sources Responsible for the Chemical Composition and Main Bioactive Properties of Poplar-Type Propolis. PLANTS 2020; 10:plants10010022. [PMID: 33374275 PMCID: PMC7823854 DOI: 10.3390/plants10010022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Propolis is a resinous mixture, made by the honeybees from substances collected from tree or other plant buds, plant exudates, or resins found in the stem, branches, or leaves of different plants. The geographical origin of propolis is given by plant sources from respective areas. Different studies have classified this bee product according to the vegetal material from the same areas. Poplar-type propolis has the widest spread in the world, in the temperate zones from Europe, Asia, or North America. The name is given by the main plant source from where the bees are collecting the resins, although other vegetal sources are present in the mentioned areas. Different Pinus spp., Prunus spp., Acacia spp. and also Betula pendula, Aesculus hippocastanum, and Salix alba are important sources of resins for "poplar-type" propolis. The aim of this review is to identify the vegetal material's chemical composition and activities of plant resins and balms used by the bees to produce poplar-type propolis and to compare it with the final product from similar geographical regions. The relevance of this review is to find the similarities between the chemical composition and properties of plant sources and propolis. The latest determination methods of bioactive compounds from plants and propolis are also reviewed.
Collapse
Affiliation(s)
- Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (D.S.D.); (C.P.); (A.R.M.)
| | - Claudia Paşca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (D.S.D.); (C.P.); (A.R.M.)
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (D.S.D.); (C.P.); (A.R.M.)
| | - Otilia Bobiş
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-746-027-940
| |
Collapse
|
28
|
Moise AR, Bobiş O. Baccharis dracunculifolia and Dalbergia ecastophyllum, Main Plant Sources for Bioactive Properties in Green and Red Brazilian Propolis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1619. [PMID: 33233429 PMCID: PMC7700410 DOI: 10.3390/plants9111619] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Nowadays, propolis is used as a highly valuable product in alternative medicine for improving health or treating a large spectrum of pathologies, an ingredient in pharmaceutical products, and also as a food additive. Different vegetal materials are collected by honeybees and mixed with wax and other own substances in order to obtain the final product, called propolis. It is known as the bee product with the widest chemical composition due to the raw material collected by the bees. Different types are known worldwide: green Brazilian propolis (having Baccharis dracunculifolia as the major plant source), red Brazilian propolis (from Dalbergia ecastophyllum), European propolis (Populus nigra L.), Russian propolis (Betula verrucosa Ehrh), Cuban and Venezuelan red propolis (Clusia spp.), etc. An impressive number of scientific papers already demonstrate the pharmacological potential of different types of propolis, the most important activities being the antimicrobial, anti-inflammatory, antitumor, immunomodulatory, and antioxidant activities. However, the bioactive compounds responsible for each activity have not been fully elucidated. This review aims to collect important data about the chemical composition and bioactive properties of the vegetal sources and to compare with the chemical composition of respective propolis types, in order to determine the connection between the floral source and the propolis properties.
Collapse
Affiliation(s)
- Adela Ramona Moise
- Department of Apiculture and Sericulture, Faculty of Animal Breeding and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Otilia Bobiş
- Life Science Institute “King Michael I of Romania”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
29
|
The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020; 25:molecules25204612. [PMID: 33050458 PMCID: PMC7587206 DOI: 10.3390/molecules25204612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Propolis has a very complex composition, with antibacterial, anti-inflammatory and other properties. To determine the composition of ethanol extracts of Brazilian green propolis (EEP-B) and their protective effect on mouse aortic endothelial cells (MAECs), the chemical composition of EEP-B was analysed by UPLC/Q-TOF-MS/MS, and the protective effect of EEP-B on the proliferation of lipopolysaccharide (LPS)-induced MAECs was determined by Cell Counting Kit-8 (CCK-8) assays. The protein levels of inflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) were measured by enzyme-linked immunosorbent assay (ELISA), and ICAM-1, VCAM-1 and MCP-1 expressions were analysed by western blotting. The results showed that a total of 24 compounds belonging to cinnamic acids and flavonoids, including 3,5-diisopentenyl-4-hydroxycinnamic acid (artepillin C), kaempferide, 3-isoprenyl p-coumaric acid, pinocembrin and 4′-methoxy pinobanksin, were identified in EEP-B. Among them, a new component, suggested to be 5-isoprenyl caffeic acid p-coumaric acid ester, was reported for the first time. The LPS-induced levels of TNF-α, IL-6, ICAM-1, VCAM-1 and MCP-1 were downregulated in response to 5, 10 and 20 μg/mL EEP-B. This study revealed that EEP-B could reduce LPS-induced inflammatory reactions, improve cell survival, and protect MAECs by regulating ICAM-1, VCAM-1 and MCP-1 expression. These findings could provide a theoretical basis for MAEC treatment using EEP-B.
Collapse
|
30
|
In Vitro Evaluation of Palestinian Propolis as a Natural Product with Antioxidant Properties and Antimicrobial Activity against Multidrug-Resistant Clinical Isolates. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8861395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work reveals, for the first time, the antioxidant and antibacterial properties of propolis samples collected from different regions of Palestine. The content on bioactive compounds has been estimated by total phenolic and flavone and flavonol content, while their antioxidant activity has been determined by radical scavenging methods of 1,2-diphenyl-1-picrylhydrazyl radical (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) radical (ABTS), and ferric reducing power assay (FRAP). The disc diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods were carried out to evaluate the antibacterial activity of Palestinian propolis against multidrug-resistant clinical isolates, includingEscherichia coli,Pseudomonas aeruginosa,Staphylococcus aureus,andStreptococcus faecalis. The results showed that the total phenolic content ranged from 9.62 mg to 124.94 mg gallic acid equivalent GAE/g of propolis, and the flavone and flavonol content ranged from 1.06 to 75.31 mg quercetin equivalent QE/g of propolis. The samples S6 from Al-Khalil presented the strongest radical scavenging activity toward DPPH, ABTS free radicals, and FRAP assay with IC50values of 0.02, 0.03, and 0.05 mg/mL, respectively. The results of antibacterial activity indicated that the propolis samples inhibit the growth of Gram-positive strains better than Gram-negative ones. In addition, a strong correlation was observed between the pH, resin, balsam, total phenolic, flavones and flavonol, and total antioxidant capacity (TAC) from one side and the antibacterial activity of propolis samples except onPseudomonas aeruginosa.
Collapse
|
31
|
Chinese Propolis Inhibits the Proliferation of Human Gastric Cancer Cells by Inducing Apoptosis and Cell Cycle Arrest. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2743058. [PMID: 32774408 PMCID: PMC7396018 DOI: 10.1155/2020/2743058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Special Chinese propolis sourced from the Changbai Mountains (CBMP) in Northeast China is rich in specific flavonoids and phenolic acids and its bioactivity has not been reported. This study aimed to investigate the antiproliferative effect of CBMP on cancer cells and its molecular mechanisms. Different cancer cell lines were treated with the ethanol extracts of CBMP for 24 hours before the cell viability and mechanism measurements. The results showed CBMP had weak activities against human pancreatic cancer cell PANC1, human lung cancer cell A549, human colon cancer cell HCT116, human liver cancer cell HepG2, human bladder cancer cell T24, and human breast cancer cell MDA-MB-231, but it significantly inhibited the growth of human gastric cancer SGC-7901 cells, caused cell apoptosis and cell cycle arrest in S phase, with increased production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential (MMP). The results indicate that Chinese propolis sourced from the Changbai Mountains selectively inhibits the proliferation of human gastric cancer SGC-7901 cells by inducing both death receptor-induced apoptosis and mitochondria-mediated apoptosis, and cell cycle arrest in S phase. These activities and mechanisms help understand the anticancer action of propolis and its active compounds.
Collapse
|
32
|
Grouping, Spectrum-Effect Relationship and Antioxidant Compounds of Chinese Propolis from Different Regions Using Multivariate Analyses and Off-Line Anti-DPPH Assay. Molecules 2020; 25:molecules25143243. [PMID: 32708723 PMCID: PMC7397058 DOI: 10.3390/molecules25143243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
49 samples of propolis from different regions in China were collected and analyzed for their chemical compositions, contents of total flavonoids (TFC), total phenolic acid (TPC) and antioxidant activity. High-performance liquid chromatography (HPLC) analysis identified 15 common components, including key marker compounds pinocembrin, 3-O-acetylpinobanksin, galangin, chrysin, benzyl p-coumarate, pinobanksin and caffeic acid phenethyl ester (CAPE). Cluster analysis (CA) and correlation coefficients (CC) analysis showed that these propolis could be divided into three distinct groups. Principal component analysis (PCA) and multiple linear regression analysis (MLRA) revealed that the contents of isoferulic acid, caffeic acid, CAPE, 3,4-dimethoxycinnamic acid, chrysin and apigenin are closely related to the antioxidant properties of propolis. In addition, eight peak areas decreased after reacting with 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals, indicating that these compounds have antioxidant activity. The results indicate that the grouping and spectrum–effect relationship of Chinese propolis are related to their chemical compositions, and several compounds may serve as a better marker for the antioxidant activity of Chinese propolis than TFC and TPC. The findings may help to develop better methods to evaluate the quality of propolis from different geographic origins.
Collapse
|
33
|
Svečnjak L, Marijanović Z, Okińczyc P, Marek Kuś P, Jerković I. Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay. Antioxidants (Basel) 2020; 9:E337. [PMID: 32326085 PMCID: PMC7222358 DOI: 10.3390/antiox9040337] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
There is no systematic report about propolis chemical biodiversity from the Adriatic Sea islands affecting its antioxidant capacity. Therefore, the samples from the islands Krk, Rab, Pag, Biševo and Korčula were collected. Comprehensive methods were used to unlock their chemical biodiversity: headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) followed by gas chromatography and mass spectrometry (GC-MS); Fourier transform mid-infrared spectroscopy (FT-MIR); ultra high performance liquid chromatography with diode array detector and quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QqTOF-MS) and DPPH and FRAP assay. The volatiles variability enabled differentiation of the samples in 2 groups of Mediterranean propolis: non-poplar type (dominated by α-pinene) and polar type (characterized by cadinane type sesquiterpenes). Spectral variations (FT-MIR) associated with phenolics and other balsam-related components were significant among the samples. The UHPLC profiles allowed to track compounds related to the different botanical sources such as poplar (pinobanksin esters, esters and glycerides of phenolic acids, including prenyl derivatives), coniferous trees (labdane, abietane diterpenes) and Cistus spp. (clerodane and labdane diterpenes, methylated myricetin derivatives). The antioxidant potential determined by DPPH ranged 2.6-81.6 mg GAE/g and in FRAP assay 0.1-0.8 mmol Fe2+/g. The highest activity was observed for the samples of Populus spp. origin. The antioxidant potential and phenolic/flavonoid content was positively, significantly correlated.
Collapse
Affiliation(s)
- Lidija Svečnjak
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Zvonimir Marijanović
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland;
| | - Piotr Marek Kuś
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland;
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| |
Collapse
|
34
|
Hodel KVS, Machado BAS, Santos NR, Costa RG, Menezes-Filho JA, Umsza-Guez MA. Metal Content of Nutritional and Toxic Value in Different Types of Brazilian Propolis. ScientificWorldJournal 2020; 2020:4395496. [PMID: 32410907 PMCID: PMC7204097 DOI: 10.1155/2020/4395496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023] Open
Abstract
Brazilian raw propolis samples (brown, green, red, and yellow) were investigated to evaluate the content of three elements of nutritional value (Cu, K, and Se) and three toxic metals (As, Cd, and Pb). The propolis samples (n = 19) were obtained from different regions of Brazil and analysed by atomic absorption spectrometry after microwave-assisted digestion. A descriptive analysis of the variables was carried out, and nonparametric tests (Kruskal-Wallis or Mann-Whitney) were performed to verify the differences in metal contents. The elemental concentrations of the Brazilian propolis were in the following ranges: As < 0.048-8.47 μg·g-1, Pb < 0.006-0.72 μg·g-1, Cu 0.57-11.60 μg·g-1, Se < 0.041-0.54 μg·g-1, and K 0.23-7.94 mg·g-1; Cd was below LOD (0.008 μg·g-1) in all samples, except one. Seven samples exceeded the limits defined for As or Pb by the Brazilian regulation.
Collapse
Affiliation(s)
- Katharine V. S. Hodel
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical's Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 40110-100, Brazil
| | - Bruna A. S. Machado
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical's Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 40110-100, Brazil
| | - Nathália R. Santos
- Federal University of Bahia, Laboratory of Toxicology, Pharmacy Faculty, Salvador 40170-290, Brazil
| | - Renata G. Costa
- Federal University of Bahia, Laboratory of Toxicology, Pharmacy Faculty, Salvador 40170-290, Brazil
| | - Jose A. Menezes-Filho
- Federal University of Bahia, Laboratory of Toxicology, Pharmacy Faculty, Salvador 40170-290, Brazil
| | - Marcelo A. Umsza-Guez
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical's Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 40110-100, Brazil
- Federal University of Bahia, Biotechnology, Institute of Health Sciences (ICS), Salvador 40170-290, Brazil
| |
Collapse
|
35
|
Petreska Stanoeva J, Stefova M, Trusheva B, Popova M, Antonova D, Bankova V. Comparison between Bulgarian and Macedonian propolis: chemical composition and plant origin. MAKEDONSKO FARMACEVTSKI BILTEN 2020. [DOI: 10.33320/maced.pharm.bull.2020.66.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Propolis is used as a constituent in over-the-counter preparations, food additives, cosmetics, etc. Bulgarian and Macedonian propolis samples were analyzed by gas chromatography – mass spectrometry (GC-MS) of ethanol extracts after silylation, in order to determine the presence of bioactive substances with antimicrobial and antioxidant activity and their chemical profiles were compared. Bulgarian and Macedonian propolis demonstrate very similar chemical profiles and belong to the Poplar type propolis, which has well-characterized qualitative composition and high content of bioactive substances. These results allow the standardization of Macedonian propolis to be approached on the basis of the recommendations by the International Honey Commission for poplar propolis.
Keywords: Bulgarian propolis, Macedonian propolis, GC-MS, chemical profiling
Collapse
Affiliation(s)
- Jasmina Petreska Stanoeva
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, North Macedonia
| | - Marina Stefova
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, North Macedonia
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Daniela Antonova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
36
|
Comparison of Physicochemical Properties of Bee Pollen with Other Bee Products. Biomolecules 2019; 9:biom9120819. [PMID: 31816969 PMCID: PMC6995560 DOI: 10.3390/biom9120819] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to compare the physichochemical composition of various bee products, namely, bee pollen, beebread, propolis, honey, and royal jelly. The samples (37 out of 53) were collected in Lithuania, several samples from other Europe countries (Italy, Denmark, Sweden, Slovakia, Poland, Spain, Republic of Malta, The Netherlands, Latvia, Ukraine) were used for comparison. Various quantities, such as pH, electrical conductivity, oxidation-reduction potential, NaCl content, refraction index, Brix value, total phenolic compound content, total flavonoid content and antiradical activity were measured. Together with the mentioned, the content of micro- and macroelements (As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Se, Sr, V and Zn), ultraviolet-visible spectroscopy absorption spectra were analysed. To our knowledge, the literature data about comprehensive comparison of various characteristics of bee products are scarce. Also, to the best of our knowledge, this is the first study revealing mineral content in Lithuanian bee pollen, beebread and royal jelly. The study exposed that bee pollen not only showed the highest values of pH, electrical conductivity and content of soluble solids, but also distinguished from the other samples by the highest flavonoid content (up to 48.3 mg/10 g), the absence of Cr, the presence of Co (0.011–0.100 mg/kg) and Sr (0.73–5.37 mg/kg) and the highest content of Ca (997–2455 mg/kg) and Mg (644–1004 mg/kg). Hierarchical clustering analysis was applied to group the tested samples according to the physicochemical analysis results and mineral content. The clustering analysis revealed that bee pollen formed separate group with the highest distance from the other samples in both cases.
Collapse
|
37
|
In Vitro Antifungal and Antivirulence Activities of Biologically Synthesized Ethanolic Extract of Propolis-Loaded PLGA Nanoparticles against Candida albicans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3715481. [PMID: 31871479 PMCID: PMC6907039 DOI: 10.1155/2019/3715481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Propolis is a natural substance and consists of bioactive compounds, which gives it antioxidant and antimicrobial properties. However, the use of propolis is limited by the low solubility in aqueous solutions. Thus, nanoparticles may be likely to accomplish enhanced delivery of poorly water-soluble phytomedicine. The aim of the present study was to fabricate and evaluate the biological activity of ethanolic extract of propolis-loaded poly(lactic-co-glycolic acid) nanoparticles (EEP-NPs). The EEP-NPs were prepared using the oil-in-water (o/w) single-emulsion solvent evaporation technique. The physicochemical properties of EEP-NPs were characterized and tested on their cytotoxicity, antifungal activity, and impact on key virulence factors that contribute to pathogenesis of C. albicans. EEP-NPs were successfully synthesized and demonstrated higher antifungal activity than EEP in free form. Moreover, EEP-NPs exhibited less cytotoxicity on Vero cells and suppressed the virulence factors of C. albicans, including adhesion, hyphal germination, biofilm formation, and invasion. Importantly, EEP-NPs exhibited a statistical decrease in the expression of hyphal adhesion-related genes, ALS3 and HWP1, of C. albicans. The results of this study revealed that EEP-NPs mediates a potent anticandidal activity and key virulence factors by reducing the gene-encoding virulence-associated hyphal- adhesion proteins of C. albicans and, thereby, disrupting the morphologic presence and attenuating their virulence.
Collapse
|
38
|
Identification of Resveratrol as Bioactive Compound of Propolis from Western Romania and Characterization of Phenolic Profile and Antioxidant Activity of Ethanolic Extracts. Molecules 2019; 24:molecules24183368. [PMID: 31527469 PMCID: PMC6766919 DOI: 10.3390/molecules24183368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to assess the phenolic content of eight ethanolic propolis samples (P1–P8) harvested from different regions of Western Romania and their antioxidant activity. The mean value of total phenolic content was 214 ± 48 mg gallic acid equivalents (GAE)/g propolis. All extracts contained kaempferol (514.02 ± 114.80 μg/mL), quercetin (124.64 ± 95.86 μg/mL), rosmarinic acid (58.03 ± 20.08 μg/mL), and resveratrol (48.59 ± 59.52 μg/mL) assessed by LC-MS. The antioxidant activity was evaluated using 2 methods: (i) DPPH (2,2-diphenyl-1-picrylhydrazyl) assay using ascorbic acid as standard antioxidant and (ii) FOX (Ferrous iron xylenol orange OXidation) assay using catalase as hydrogen peroxide (H2O2) scavenger. The DPPH radical scavenging activity was determined for all samples applied in 6 concentrations (10, 5, 3, 1.5, 0.5 and 0.3 mg/mL). IC50 varied from 0.0700 to 0.9320 mg/mL (IC50 of ascorbic acid = 0.0757 mg/mL). The % of H2O2 inhibition in FOX assay was assessed for P1, P2, P3, P4 and P8 applied in 2 concentrations (5 and 0.5 mg/mL). A significant H2O2% inhibition was obtained for these samples for the lowest concentration. We firstly report the presence of resveratrol as bioactive compound in Western Romanian propolis. The principal component analysis revealed clustering of the propolis samples according to the polyphenolic profile similarity.
Collapse
|
39
|
Pobiega K, Kraśniewska K, Przybył JL, Bączek K, Żubernik J, Witrowa-Rajchert D, Gniewosz M. Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts. Molecules 2019; 24:E2965. [PMID: 31443325 PMCID: PMC6720850 DOI: 10.3390/molecules24162965] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Propolis is a natural mixture produced by bees from plant resin substances. This study focuses on the general characteristics of five samples of Polish extract propolis originating from agricultural areas. Chemical composition with high performance liquid chromatography‒diode array detector method, total content of flavonoids and polyphenols, and antioxidative activity were determined in the ethanol extracts of propolis (EEP) samples. Minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC) and time-kill curves were studied for foodborne pathogens and food spoilage microorganisms. In EEPs the predominant flavonoid compounds were pinocembrin, chrysin, pinobanksin, apigenin, and kaempferol and the predominant phenolic acids were p-coumaric acid, ferulic acid, and caffeic acid. A strong antioxidative action of propolis in vitro was observed (IC50 for DPPH radical was at the level of 0.9-2.1 µg/mL). EEPs had MIC values for bacteria in the range of 1-16 mg/mL, whereas MIC for fungi ranged from 2 to 32 mg/mL. Extract of propolis originating from southern Poland was distinguished by higher content of bioactive components, and stronger antioxidative and antimicrobial activity than EPPs from the remaining areas of Poland. The results indicate the possibility of applying ethanol extracts from Polish propolis to protect food against microbiological spoilage.
Collapse
Affiliation(s)
- Katarzyna Pobiega
- Division of Food Biotechnology and Microbiology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | - Karolina Kraśniewska
- Division of Food Biotechnology and Microbiology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jarosław L Przybył
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Bączek
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Joanna Żubernik
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Małgorzata Gniewosz
- Division of Food Biotechnology and Microbiology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
40
|
Grecka K, Kuś PM, Okińczyc P, Worobo RW, Walkusz J, Szweda P. The Anti-Staphylococcal Potential of Ethanolic Polish Propolis Extracts. Molecules 2019; 24:molecules24091732. [PMID: 31058881 PMCID: PMC6540221 DOI: 10.3390/molecules24091732] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023] Open
Abstract
The principal objective of this study was to determine the anti-staphylococcal potential of ethanol extracts of propolis (EEPs). A total of 20 samples of propolis collected from apiaries located in different regions of Poland were used in the study. The two-fold broth microdilution method revealed some important differences in the antimicrobial activity of investigated EEPs. Up to the concentration of 4096 µg/mL no activity was observed against Gram-negative bacteria (E. coli and P. aeruginosa). Staphylococci exhibited much higher susceptibility. The highest efficiency observed for EEP12 and EEP20 (MIC values ranged between 32 and 256 µg/mL). However, the achievement of bactericidal effect usually required higher concentrations. In the case of clinical isolates of S. aureus MBC values for EEP12 and EEP20 ranged from 512 to 1024 µg/mL. The HPLC analysis revealed that these two products contained a higher concentration of flavonoids (flavonols, flavones, and flavanones) compared to other investigated EEPs. In checkerboard test, a synergistic anti-staphylococcal effect was observed for the action of EEP20 in combination with amikacin, kanamycin, gentamycin, tetracycline, and fusidic acid (all these antibiotics inhibit protein synthesis). Moreover, the investigated EEPs effectively eradicated staphylococcal biofilm. The obtained results clearly confirm the high anti-staphylococcal potential of propolis harvested in Polish apiaries.
Collapse
Affiliation(s)
- Katarzyna Grecka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Piotr M Kuś
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Justyna Walkusz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
41
|
Authentication of Turkish propolis through HPTLC fingerprints combined with multivariate analysis and palynological data and their comparative antioxidant activity. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.08.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|