1
|
Balikci E, Baran ET, Tahmasebifar A, Yilmaz B. Characterization of Collagen from Jellyfish Aurelia aurita and Investigation of Biomaterials Potentials. Appl Biochem Biotechnol 2024; 196:6200-6221. [PMID: 38224393 DOI: 10.1007/s12010-023-04848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Marine collagen sources are potent alternatives due to abundant yield, low pathogen infection risk, high biocompatibility, and any religious and ethical restrictions compared to terrestrial collagen sources. In this research, we aim to investigate the biomaterials potential of the collagen from Aurelia aurita, which is a native jellyfish species in the Marmara Sea. Spectroscopic techniques were used to investigate the structure of jellyfish collagen (JCol) from acid-soluble fraction and compared to Jellagen® from Rhizostoma pulmo. MALDI-TOF showed the main peak of Jellagen® at 276,765.161 Da and jellyfish collagen at 276,761.687 Da. SDS-PAGE indicated α1 and α2 bands at about 122 kDa and 140 kDa, respectively. In FTIR and Raman spectra, the locations of amide bands of both species were almost the same. The pI of JCol was determined as 4.46. The particle size decreased abruptly at 43 oC from 890 to 290 nm. Water, organic and inorganic ratios of collagen were determined at 7.14%, 63.59, and 29.27 respectively. In DSC, the denaturation temperature (Td) of JCol was found at 43.7 oC and found to be higher than that of the collagens from jellyfishes that have been reported so far in the literature. Biocompatibility testing by metabolic assay revealed significantly higher fibroblast proliferation on collagen film than on the Tissue Culture Plate. To conclude, Aurelia aurita collagen would be a suitable source of collagen when biomaterials are needed to have high biocompatibility and unique macromolecular properties such as high denaturation temperatures.
Collapse
Affiliation(s)
- Elif Balikci
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Tissue Engineering, 34668, Istanbul, Turkey
- University of Health Sciences Turkey, Experimental Medicine Application and Research Center, Uskudar, 34662, Istanbul, Turkey
- University of Health Sciences Turkey, Regenerative Medicine Application and Research Center, Uskudar, 34668, Istanbul, Turkey
| | - Erkan Türker Baran
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Tissue Engineering, 34668, Istanbul, Turkey.
- University of Health Sciences Turkey, Experimental Medicine Application and Research Center, Uskudar, 34662, Istanbul, Turkey.
- University of Health Sciences Turkey, Regenerative Medicine Application and Research Center, Uskudar, 34668, Istanbul, Turkey.
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Biomaterials, 34668, Istanbul, Turkey.
| | - Aydin Tahmasebifar
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Tissue Engineering, 34668, Istanbul, Turkey
- University of Health Sciences Turkey, Experimental Medicine Application and Research Center, Uskudar, 34662, Istanbul, Turkey
- University of Health Sciences Turkey, Regenerative Medicine Application and Research Center, Uskudar, 34668, Istanbul, Turkey
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Biomaterials, 34668, Istanbul, Turkey
| | - Bengi Yilmaz
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Tissue Engineering, 34668, Istanbul, Turkey
- University of Health Sciences Turkey, Experimental Medicine Application and Research Center, Uskudar, 34662, Istanbul, Turkey
- University of Health Sciences Turkey, Regenerative Medicine Application and Research Center, Uskudar, 34668, Istanbul, Turkey
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Biomaterials, 34668, Istanbul, Turkey
| |
Collapse
|
2
|
Sharma A, Devi I. Animal waste as a valuable biosorbent in the removal of heavy metals from aquatic ecosystem-an eco-friendly approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:606. [PMID: 38856948 DOI: 10.1007/s10661-024-12740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Toxic pollutants in the form of heavy metals are added through various anthropogenic activities daily into the aquatic ecosystem beyond their permissible limits, and their bioaccumulation capacity makes them hazardous substances for the survival of all organisms. Thus, their removal from aquatic ecosystems is the need of the hour. Treatment of wastewater containing heavy metals through biosorption is gaining popularity and is being explored all around the world due to its various advantages over conventional methods of treatment. Utilization of animal waste as a biomaterial could be the best solution to remove it from the ecosystem. Such treatment methods are a blessing for developing and underdeveloped countries due to their low cost. This paper provides in-depth details about heavy metals, their health implications, mechanisms of toxicity, modes of transportation, and conventional treatment approaches. A comprehensive understanding of the biosorption process, encompassing its world scenario, evolution, mechanisms, factors affecting the process, and advantages, will also be covered. Finally, animal wastes and their applicability in the removal of heavy metal pollutants from wastewater shall also be thoroughly reviewed, followed by their future utility and recommendations.
Collapse
Affiliation(s)
- Arti Sharma
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Isha Devi
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India.
| |
Collapse
|
3
|
Jridi M, Abdelhedi O, Salem A, Zouari N, Nasri M. Food applications of bioactive biomaterials based on gelatin and chitosan. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:399-438. [PMID: 38906591 DOI: 10.1016/bs.afnr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Food packaging must guarantee the products' quality during the different operations including packing and maintenance throughout transportation and storage until to consumption. Thus, it should satisfy, both, food freshness and quality preservation and consumers health safety. Natural bio-sourced polymers have been explored as safe edible materials for several packaging applications, being interestingly carrier of bioactive substances, once added to improve films' properties. Gelatin and chitosan are among the most studied biomaterials for the preparation of edible packaging films due to their excellent characteristics including biodegradability, compatibility and film-forming property. These polymers could be used alone or in combination with other polymers to produce composite films with the desired physicochemical and mechanical properties. When incorporated with bioactive substances (natural extracts, polyphenolic compounds, essential oils), chitosan/gelatin-based films acquired various biological properties, including antioxidant and antimicrobial activities. The emerging bioactive composite films with excellent physical attributes represent excellent packaging alternative to preserve different types of foodstuffs (fruits, meat, fish, dairy products, …) and have shown great achievements. This chapter provides the main techniques used to prepare gelatin- and chitosan- based films, showing some examples of bioactive compounds incorporated into the films' matrix. Also, it illustrates the outstanding advantages given by these biomaterials for food preservation, when used as coating and wrapping agents.
Collapse
Affiliation(s)
- Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia.
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Shaik MI, Kadir ANA, Sarbon NM. Physicochemical and thermal properties of pepsin- and acid-soluble collagen isolated from the body wall of sea cucumbers (Stichopus hermanni). J Food Sci 2024; 89:320-329. [PMID: 38051010 DOI: 10.1111/1750-3841.16858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
The main objective of this work was to characterize the acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the body wall of the sea cucumber scientifically called, Stichopus hermanni. For the extraction of ASC and PSC, the pre-treated sea cucumber body walls were subjected to 0.5 M acetic acid and 5 g L-1 pepsin, respectively. The yield of ASC (7.30% ± 0.30%) was found to be lower than the PSC (23.66% ± 0.15%), despite both ASC and PSC having similar chemical compositions except for the quantity of protein. The collagens produced from ASC and PSC show maximum peaks on ultraviolet-visible spectroscopic profiles at wavelengths of 230 and 235 nm, respectively, with no significant difference in the maximum temperature (Tmax ) of the extracted ASC and PSC. The ASC's coloration was whiter than that of the PSC. As a result, the collagen obtained from the body wall of the sea cucumber showed promise for usage as a substitute for collagen derived from marine sources. PRACTICAL APPLICATION: The two most popular methods of collagen extraction were acid hydrolysis and enzymatic hydrolysis. To determine whether the extracted collagen is a suitable substitute for animal collagen in different industries, it is required to characterize its physicochemical qualities. This study discovered a new application for marine collagen in the food industry: The sea cucumber has collagen with a greater yield in pepsin extraction with good physicochemical qualities.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Asmaa Nuha Abdul Kadir
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Syandri H, Azrita A, Mardiah A, Aryani N, Diharmi A. The proximate composition, amino acid profile, fatty acid content, and mineral content of scale flour from three fish species as potential feeds for fish fry. F1000Res 2023; 12:1144. [PMID: 38130426 PMCID: PMC10733663 DOI: 10.12688/f1000research.141304.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Fish scale waste is highly valued both as a functional food ingredient and a potential feed source for farmed fish. This study aimed to analyse the chemical composition, fatty acid profile, and mineral content in fish scale flour of Osphronemus (O) goramy, Cyprinus (C) carpio, and Oreochromis (O) niloticus as potential feed for fish fry. METHODS Fish scales were cleaned with 10% w/v NaCl solution at a ratio of 1:10 (w/w) for 24 hours at 4 °C. Agitation was used every eight hours to remove excess protein. Fish scales were evenly arranged in a cooker and cooked at 121 °C for 10 minutes with 15 psi pressure. After cooking, 100 grams of wet fish scales was dried at 50 °C for four hours. Dried fish scales were transformed into flour for proximate composition analysed via standard AOAC method, amino acid and fatty acid assessment employing HPLC and GC-MS, while mineral content was determined using AAS. RESULTS The examined fish scale flour from three species displayed significant variations in chemical components, amino acids, and minerals (p<0.01). Crude protein content spanned 49.52% to 72.94%, and fat content ranged from 0.11% to 0.23%. Magnesium levels varied between 767.82 mg/kg and 816.50 mg/kg, calcium content ranged from 3.54 mg/kg to 12.16 mg/kg, iron content was within 40.46 mg/kg to 44.10 mg/kg, and zinc content ranged from 45.80 mg/kg to 139.19 mg/kg. Predominantly, glycine emerged as the main free amino acid (FAA), varying from 13.70% to 16.08%, while histidine had the lowest content, at 0.39% to 0.71%. Conversely, fatty acid content was low in all species examined ranging from 6.73% to 9.48%. CONCLUSIONS Flour from three farmed fish types has potential for fish fry feed due to its chemical composition, amino acid, and mineral content. Further validation is needed for amino acid comparison to fish meal.
Collapse
Affiliation(s)
- Hafrijal Syandri
- Faculty of Fisheries and Marine Science, Universitas Bung Hatta, Padang, West Sumatera, 25133, Indonesia
| | - Azrita Azrita
- Faculty of Fisheries and Marine Science, Universitas Bung Hatta, Padang, West Sumatera, 25133, Indonesia
| | - Ainul Mardiah
- Faculty of Science and Technology, Universitas Nahdlatul Ulama Sumatera Barat, Padang, West Sumatera, 25136, Indonesia
| | - Netti Aryani
- Faculty of Fisheries and Marine, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Andarini Diharmi
- Faculty of Fisheries and Marine, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| |
Collapse
|
6
|
Syandri H, Azrita A, Mardiah A, Aryani N, Diharmi A. The proximate composition, amino acid profile, fatty acid content, and mineral content of scale flour from three fish species as potential feeds for fish fry. F1000Res 2023; 12:1144. [PMID: 38130426 PMCID: PMC10733663 DOI: 10.12688/f1000research.141304.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/23/2023] Open
Abstract
Background Fish scale waste is highly valued both as a functional food ingredient and a potential feed source for farmed fish. This study aimed to analyse the chemical composition, fatty acid profile, and mineral content in fish scale flour of Osphronemus (O) goramy, Cyprinus (C) carpio, and Oreochromis (O) niloticus as potential feed for fish fry. Methods Fish scales were cleaned with 10% w/v NaCl solution at a ratio of 1:10 (w/w) for 24 hours at 4 °C. Agitation was used every eight hours to remove excess protein. Fish scales were evenly arranged in a cooker and cooked at 121 °C for 10 minutes with 15 psi pressure. After cooking, 100 grams of wet fish scales was dried at 50 °C for four hours. Dried fish scales were transformed into flour for proximate composition analysed via standard AOAC method, amino acid and fatty acid assessment employing HPLC and GC-MS, while mineral content was determined using AAS. Results The examined fish scale flour from three species displayed significant variations in chemical components, amino acids, and minerals (p<0.01). Crude protein content spanned 49.52% to 72.94%, and fat content ranged from 0.11% to 0.23%. Magnesium levels varied between 767.82 mg/kg and 816.50 mg/kg, calcium content ranged from 3.54 mg/kg to 12.16 mg/kg, iron content was within 40.46 mg/kg to 44.10 mg/kg, and zinc content ranged from 45.80 mg/kg to 139.19 mg/kg. Predominantly, glycine emerged as the main free amino acid (FAA), varying from 13.70% to 16.08%, while histidine had the lowest content, at 0.39% to 0.71%. Conversely, fatty acid content was low in all species examined ranging from 6.73% to 9.48%. Conclusions Flour from three farmed fish types has potential for fish fry feed due to its chemical composition, amino acid, and mineral content. Further validation is needed for amino acid comparison to fish meal.
Collapse
Affiliation(s)
- Hafrijal Syandri
- Faculty of Fisheries and Marine Science, Universitas Bung Hatta, Padang, West Sumatera, 25133, Indonesia
| | - Azrita Azrita
- Faculty of Fisheries and Marine Science, Universitas Bung Hatta, Padang, West Sumatera, 25133, Indonesia
| | - Ainul Mardiah
- Faculty of Science and Technology, Universitas Nahdlatul Ulama Sumatera Barat, Padang, West Sumatera, 25136, Indonesia
| | - Netti Aryani
- Faculty of Fisheries and Marine, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Andarini Diharmi
- Faculty of Fisheries and Marine, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| |
Collapse
|
7
|
Sveen LR, Robinson N, Krasnov A, Daniels RR, Vaadal M, Karlsen C, Ytteborg E, Robledo D, Salisbury S, Dagnachew B, Lazado CC, Tengs T. Transcriptomic landscape of Atlantic salmon (Salmo salar L.) skin. G3 (BETHESDA, MD.) 2023; 13:jkad215. [PMID: 37724757 PMCID: PMC10627282 DOI: 10.1093/g3journal/jkad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
In this study, we present the first spatial transcriptomic atlas of Atlantic salmon skin using the Visium Spatial Gene Expression protocol. We utilized frozen skin tissue from 4 distinct sites, namely the operculum, pectoral and caudal fins, and scaly skin at the flank of the fish close to the lateral line, obtained from 2 Atlantic salmon (150 g). High-quality frozen tissue sections were obtained by embedding tissue in optimal cutting temperature media prior to freezing and sectioning. Further, we generated libraries and spatial transcriptomic maps, achieving a minimum of 80 million reads per sample with mapping efficiencies ranging from 79.3 to 89.4%. Our analysis revealed the detection of over 80,000 transcripts and nearly 30,000 genes in each sample. Among the tissue types observed in the skin, the epithelial tissues exhibited the highest number of transcripts (unique molecular identifier counts), followed by muscle tissue, loose and fibrous connective tissue, and bone. Notably, the widest nodes in the transcriptome network were shared among the epithelial clusters, while dermal tissues showed less consistency, which is likely attributable to the presence of multiple cell types at different body locations. Additionally, we identified collagen type 1 as the most prominent gene family in the skin, while keratins were found to be abundant in the epithelial tissue. Furthermore, we successfully identified gene markers specific to epithelial tissue, bone, and mesenchyme. To validate their expression patterns, we conducted a meta-analysis of the microarray database, which confirmed high expression levels of these markers in mucosal organs, skin, gills, and the olfactory rosette.
Collapse
Affiliation(s)
| | - Nicholas Robinson
- Nofima, Fish Health, Tromsø NO-9291, Norway
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | |
Collapse
|
8
|
Mandal A, Dhineshkumar E, Murugan E. Collagen Biocomposites Derived from Fish Waste: Doped and Cross-Linked with Functionalized Fe 3O 4 Nanoparticles and Their Comparative Studies with a Green Approach. ACS OMEGA 2023; 8:24256-24267. [PMID: 37457468 PMCID: PMC10339420 DOI: 10.1021/acsomega.3c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Collagen-based nanobiocomposites can reabsorb and are biodegradable. These properties are effectively controlled by the number of cross-links. This study demonstrates an effortless and proficient approach for the functionalization of Fe3O4 NPs for cross-linking collagen obtained from biowaste, viz., fish scales of Lates Calcarifer, a marine origin. The size of Fe3O4 NPs (10-40 nm) was confirmed using particle size analysis. The physico-chemical properties of the aminosilane-coated Fe3O4 NPs cross-linked via succinylated collagen (FFCSC) were characterized using different analytical techniques and compared with succinylated collagen doped with Fe3O4 NPs (FDSC). Thermogravimetric analysis indicates cross-linked product FFCSC to be more stable than the FDSC. Also, the antibacterial effect was more pronounced for FFCSC than for FDSC nanobiocomposites. FFCSC exhibited improved mechanical properties which are essential for materials used for wound dressing purposes. Moreover, the cell viability of fibroblasts (3T3-L1) and their morphology studied by SEM and fluorescence microscopy showed biocompatibility of both FDSC and FFCSC. Thus, the current investigation, involves a waste to wealth approach where the collagen-based nanobiocomposites present an easy way to recycle the biowaste to value-added products using simple and clean methods, which are suitable for use in biomedical and environmental applications.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department
of Physical Chemistry, School of Chemical Sciences, University of Madras, Maramalai Campus, Guindy, Chennai 600 025, India
- Department
of Biotechnology, School of Life Sciences, Pondicherry University, R. V. Nagar, Kalapet, Puducherry 605 014, India
| | - Ezhumalai Dhineshkumar
- Dr.
Krishnamoorthi Foundation for Advanced Scientific Research, Vellore 632 001, Tamil Nadu, India
| | - Eagambaram Murugan
- Department
of Physical Chemistry, School of Chemical Sciences, University of Madras, Maramalai Campus, Guindy, Chennai 600 025, India
| |
Collapse
|
9
|
Alvarado-Ramírez L, Santiesteban-Romero B, Poss G, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R, Bonaccorso AD, Melchor-Martínez EM. Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. FRONTIERS IN CHEMICAL ENGINEERING 2023; 4. [DOI: 10.3389/fceng.2022.1072761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
The annual global fish production reached a record 178 million tonnes in 2020, which continues to increase. Today, 49% of the total fish is harvested from aquaculture, which is forecasted to reach 60% of the total fish produced by 2030. Considering that the wastes of fishing industries represent up to 75% of the whole organisms, the fish industry is generating a large amount of waste which is being neglected in most parts of the world. This negligence can be traced to the ridicule of the value of this resource as well as the many difficulties related to its valorisation. In addition, the massive expansion of the aquaculture industry is generating significant environmental consequences, including chemical and biological pollution, disease outbreaks that increase the fish mortality rate, unsustainable feeds, competition for coastal space, and an increase in the macroalgal blooms due to anthropogenic stressors, leading to a negative socio-economic and environmental impact. The establishment of integrated multi-trophic aquaculture (IMTA) has received increasing attention due to the environmental benefits of using waste products and transforming them into valuable products. There is a need to integrate and implement new technologies able to valorise the waste generated from the fish and aquaculture industry making the aquaculture sector and the fish industry more sustainable through the development of a circular economy scheme. This review wants to provide an overview of several approaches to valorise marine waste (e.g., dead fish, algae waste from marine and aquaculture, fish waste), by their transformation into biofuels (biomethane, biohydrogen, biodiesel, green diesel, bioethanol, or biomethanol) and recovering biomolecules such as proteins (collagen, fish hydrolysate protein), polysaccharides (chitosan, chitin, carrageenan, ulvan, alginate, fucoidan, and laminarin) and biosurfactants.
Collapse
|
10
|
Indrakumar J, Sankar S, Madhyastha H, Muthukaliannan GK. Progressive Application of Marine Biomaterials in Targeted Cancer Nanotherapeutics. Curr Pharm Des 2022; 28:3337-3350. [PMID: 35466870 DOI: 10.2174/1381612828666220422091611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 01/28/2023]
Abstract
The marine microenvironment harbors many unique species of organisms that produce a plethora of compounds that help mankind cure a wide range of diseases. The diversity of products from the ocean bed serves as potentially healing materials and inert vehicles carrying the drug of interest to the target site. Several composites still lay undiscovered under the blue canopy, which can provide treatment for untreated diseases that keep haunting the earth periodically. Cancer is one such disease that has been of interest to several eminent scientists worldwide due to the heterogenic complexity involved in the disease's pathophysiology. Due to extensive globalization and environmental changes, cancer has become a lifestyle disease continuously increasing exponentially in the current decade. This ailment requires a definite remedy that treats by causing minimal damage to the body's normal cells. The application of nanotechnology in medicine has opened up new avenues of research in targeted therapeutics due to their highly malleable characteristics. Marine waters contain an immense ionic environment that succors the production of distinct nanomaterials with exceptional character, yielding highly flexible molecules to modify, thus facilitating the engineering of targeted biomolecules. This review provides a short insight into an array of marine biomolecules that can be probed into cancer nanotherapeutics sparing healthy cells.
Collapse
Affiliation(s)
- Janani Indrakumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Srivarshini Sankar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Medical Sciences, Division of Cardio-Vascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | |
Collapse
|
11
|
Silva AVS, Mortari DA, Conconi CC, Pereira FM, Cruz G. Investigation of the combustion process of fish scales from Northeast Brazil in a drop tube furnace (DTF). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67270-67286. [PMID: 35524094 DOI: 10.1007/s11356-022-20643-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The waste generated by the global fishing industry, such as fish scales, is mostly considered useless and discarded in a disorderly and/or unplanned way in inappropriate places, posing serious risks to both the environment and human health. This study proposes the use of fish scales in combustion processes as an alternative for such residues and to avoid their exposure in urban areas. Combustion experiments were conducted in a drop tube furnace (DTF), and the factors temperature, residence time, and sample particle size were investigated. The main atmospheric pollutants (CO, NO, CO2, and SO2) and the residues generated from the combustion processes were characterized by FTIR, EDS and ICP-OES analyses, and SEM images. The samples showed better performance at 1100 °C and 500 -ms residence time, when the burnout reached 96%, and particle size greater than 300-μm and 300-ms residence time led to the worst combustion performance (24.45% burnout), with the highest CO and NO peaks, indicating incomplete combustion of the fish scales. The analysis of the residues revealed total decomposition of the organic matter at temperatures above 700 °C and formation of hydroxyapatite. According to the DTF results, the use of fish scales in firing processes is a viable treatment of the residues, generating energy and avoiding environmental problems caused by inadequate disposal.
Collapse
Affiliation(s)
- Arthur Vinicius Sousa Silva
- Postgraduate Program in Mechanical Engineering, Department of Mechanics and Materials, Federal Institute of Education, Science and Technology of Maranhão, Avenida Getúlio Vargas 04, São Luís, Maranhão, 65.030-005, Brazil
| | - Daniela Andresa Mortari
- Federal University of Rio Grande do Sul (UFRGS), Combustion Laboratory, Sarmento Leite 425, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Charles Correa Conconi
- Materials and Environmental Research Laboratory, Mercedes-Benz Brazil, Avenida Alfred Jurzykowski, 09680-900, São Bernardo do Campo, São Paulo, Brazil
| | - Fernando Marcelo Pereira
- Federal University of Rio Grande do Sul (UFRGS), Combustion Laboratory, Sarmento Leite 425, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Glauber Cruz
- Postgraduate Program in Mechanical Engineering, Department of Mechanics and Materials, Federal Institute of Education, Science and Technology of Maranhão, Avenida Getúlio Vargas 04, São Luís, Maranhão, 65.030-005, Brazil.
- Department of Mechanical Engineering, Process and Thermal Systems Laboratory, Federal University of Maranhão, Avenida dos Portugueses 1966, São Luís, Maranhão, 65080-505, Brazil.
| |
Collapse
|
12
|
Heng TT, Tey JY, Soon KS, Woo KK. Utilizing Fish Skin of Ikan Belida (Notopterus lopis) as a Source of Collagen: Production and Rheology Properties. Mar Drugs 2022; 20:md20080525. [PMID: 36005530 PMCID: PMC9410226 DOI: 10.3390/md20080525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen hydrogels have been extensively applied in biomedical applications. However, their mechanical properties are insufficient for such applications. Our previous study showed improved mechanical properties when collagen was blended with alginate. The current study aims to analyze the physico-chemical properties of collagen-alginate (CA) films such as swelling, porosity, denaturation temperature (Td), and rheology properties. Collagen was prepared from discarded fish skin of Ikan Belida (Notopterus lopis) that was derived from fish ball manufacturing industries and cross-linked with alginate from brown seaweed (Sargasum polycystum) of a local species as a means to benefit the downstream production of marine industries. CA hydrogels were fabricated with ratios (v/v) of 1:1, 1:4, 3:7, 4:1, and 7:3 respectively. FTIR spectrums of CA film showed an Amide I shift of 1636.12 cm−1 to 1634.64 cm−1, indicating collagen-alginate interactions. SEM images of CA films show a porous structure that varied from pure collagen. DSC analysis shows Td was improved from 61.26 °C (collagen) to 83.11 °C (CA 3:7). CA 4:1 swelled nearly 800% after 48 h, correlated with the of hydrogels porosity. Most CA demonstrated visco-elastic solid characteristics with greater storage modulus (G′) than lost modulus (G″). Shear thinning and non-Newtonian behavior was observed in CA with 0.4% to 1.0% (w/v) CaCl2. CA hydrogels that were derived from discarded materials shows promising potential to serve as a wound dressing or ink for bio printing in the future.
Collapse
Affiliation(s)
- Tzen T. Heng
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Jing Y. Tey
- Department of Mechanical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kean S. Soon
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kwan K. Woo
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
13
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|
14
|
Extraction and Characterization of Bioactive Fish By-Product Collagen as Promising for Potential Wound Healing Agent in Pharmaceutical Applications: Current Trend and Future Perspective. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:9437878. [PMID: 35573824 PMCID: PMC9106525 DOI: 10.1155/2022/9437878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 12/29/2022]
Abstract
Collagen is a structural protein naturally found in mammals. Vertebrates and other connective tissues comprise about 30% of an animal’s overall protein. Collagen is used in a variety of applications including cosmetics, biomedical, biomaterials, food, and pharmaceuticals. The use of marine-based collagen as a substitute source is rapidly increasing due to its unique properties, which include the absence of religious restrictions, a low molecular weight, no risk of disease transmission, biocompatibility, and ease of absorption by the body system. This review discusses recent research on collagen extraction from marine-based raw material, specifically fish by-products. Furthermore, pretreatment on various sources of fish materials, followed by extraction methods, was described. The extraction procedures for acid soluble collagen (ASC) and pepsin soluble collagen (PSC) for fish collagen isolation are specifically discussed and compared. As a result, the efficacy of collagen yield was also demonstrated. The recent trend of extracting fish collagen from marine biomaterials has been summarized, with the potential to be exploited as a wound healing agent in pharmaceutical applications. Furthermore, background information on collagen and characterization techniques primarily related to the composition, properties, and structure of fish collagen are discussed.
Collapse
|
15
|
Jaziri AA, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Microstructural and Physicochemical Analysis of Collagens from the Skin of Lizardfish ( Saurida tumbil Bloch, 1795) Extracted with Different Organic Acids. Molecules 2022; 27:molecules27082452. [PMID: 35458650 PMCID: PMC9028408 DOI: 10.3390/molecules27082452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023] Open
Abstract
Marine fish collagen has attracted considerable attention due to its characteristics, including its biodegradability, biocompatibility, and weak antigenicity, and is considered a safer material compared to collagen from terrestrial animals. The aim of this study was to extract and characterize collagen from the skin of lizardfish (Saurida tumbil Bloch, 1795) with three different acids. The yields of acetic acid-extracted collagen (AESkC), lactic acid-extracted collagen (LESkC), and citric acid-extracted collagen (CESkC) were 11.73 ± 1.14%, 11.63 ± 1.10%, and 11.39 ± 1.05% (based on wet weight), respectively. All extracted collagens were categorized as type I collagen with mainly alpha chains (α1 and α2) detected and γ and β chains to some extent. Fourier transform infrared (FTIR) spectra showed an intact triple-helical structure in the AESkC, LESkC, and CESkC. UV-vis spectra and X-ray diffraction further demonstrated the similarity of the extracted collagens to previously reported fish skin collagens. AESkC (Tmax = 40.24 °C) had higher thermostability compared to LESkC (Tmax = 38.72 °C) and CESkC (Tmax = 36.74 °C). All samples were highly soluble in acidic pH and low concentrations of NaCl (0-20 g/L). Under field emission scanning electron microscopy (FESEM) observation, we noted the loose, fibrous, and porous structures of the collagens. The results suggest that the lizardfish skin collagens could be a potential alternative source of collagen, especially the AESkC due to its greater thermostability characteristic.
Collapse
Affiliation(s)
- Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | | | | | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
- Correspondence:
| |
Collapse
|
16
|
Chinh NT, Trang TDM, Dung HT, Lu LT, Dung NT, Quyen NTC, Hong PT, Le VTT, Mao CV, Hoang T. A Ternary Biocomposite Based on Modified Fish Scale Collagen and Ginsenoside Rb1: Preparation, Properties and Bioactivities. POLYM INT 2022. [DOI: 10.1002/pi.6389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nguyen Thuy Chinh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Ha Noi 100000 Vietnam
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Tran Do Mai Trang
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Hoang Tran Dung
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Le Trong Lu
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Nguyen Tien Dung
- Faculty of Chemistry Hanoi National University of Education, 136 Xuan Thuy, Cau Giay Ha Noi 100000 Vietnam
| | - Ngo Thi Cam Quyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Ha Noi 100000 Vietnam
- Institute of Environmental Sciences Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Pham Thi Hong
- Faculty of Chemistry Hanoi National University of Education, 136 Xuan Thuy, Cau Giay Ha Noi 100000 Vietnam
| | - Vu Thi Thu Le
- Thai Nguyen University of Agriculture and Forestry, Quyet Thang Thai Nguyen 250000 Vietnam
| | - Can Van Mao
- Vietnam Military Medical University, 160 Phung Hung, Phuc La, Ha Dong Hanoi 100000 Vietnam
| | - Thai Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Ha Noi 100000 Vietnam
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| |
Collapse
|
17
|
Hou EJ, Huang CS, Lee YC, Han YS, Chu HT. A method for the process of collagen modified polyester from fish scales waste. MethodsX 2022; 9:101636. [PMID: 35251947 PMCID: PMC8892128 DOI: 10.1016/j.mex.2022.101636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Erh-Jen Hou
- College of Life Science, Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Chi-Shih Huang
- College of Life Science, Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Ying-Chou Lee
- College of Life Science, Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Yu-San Han
- College of Life Science, Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
- Corresponding authors.
| | - Hsueh-Ting Chu
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
- Corresponding authors.
| |
Collapse
|
18
|
Kumawat TK, Kumawat V, Sharma S, Sharma V, Pandit A, Kandwani N, Biyani M. Sustainable Green Methods for the Extraction of Biopolymers. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Głąb M, Drabczyk A, Kudłacik-Kramarczyk S, Kędzierska M, Tomala A, Sobczak-Kupiec A, Mierzwiński D, Tyliszczak B. Investigations on the Influence of Collagen Type on Physicochemical Properties of PVP/PVA Composites Enriched with Hydroxyapatite Developed for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 15:37. [PMID: 35009185 PMCID: PMC8746018 DOI: 10.3390/ma15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Nowadays, a great attention is directed into development of innovative multifunctional composites which may support bone tissue regeneration. This may be achieved by combining collagen and hydroxyapatite showing bioactivity, osteoconductivity and osteoinductivity with such biocompatible polymers as polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVA). Here PVA/PVP-based composites modified with hydroxyapatite (HAp, 10 wt.%) and collagen (30 wt.%) were obtained via UV radiation while two types of collagen were used (fish and bovine) and crosslinking agents differing in the average molecular weight. Next, their chemical structure was characterized using Fourier transform infrared (FT-IR) spectroscopy, roughness of their surfaces was determined using a stylus contact profilometer while their wettability was evaluated by a sessile drop method followed by the measurements of their surface free energy. Subsequently, swelling properties of composites were verified in simulated physiological liquids as well as the behavior of composites in these liquids by pH measurements. It was proved that collagen-modified composites showed higher swelling ability (even 25% more) compared to unmodified ones, surface roughness, biocompatibility towards simulated physiological liquids and hydrophilicity (contact angles lower than 90°). Considering physicochemical properties of developed materials and a possibility of the preparation of their various shapes and sizes, it may be concluded that developed materials showed great application potential for biomedical use, e.g., as materials filling bone defects supporting their treatments and promoting bone tissue regeneration due to the presence of hydroxyapatite with osteoinductive and osteoconductive properties.
Collapse
Affiliation(s)
- Magdalena Głąb
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Anna Drabczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, WWCOiT Copernicus Hospital, 90-001 Lodz, Poland;
| | - Agnieszka Tomala
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Dariusz Mierzwiński
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.T.); (A.S.-K.); (D.M.); (B.T.)
| |
Collapse
|
20
|
Abstract
Marine sources are gaining popularity and attention as novel materials for manufacturing biopolymers such as proteins and polysaccharides. Due to their biocompatibility, biodegradability, and non-toxicity features, these biopolymers have been claimed to be beneficial in the development of food packaging materials. Several studies have thoroughly researched the extraction, isolation, and latent use of marine biopolymers in the fabrication of environmentally acceptable packaging. Thus, a review was designed to provide an overview of (a) the chemical composition, unique properties, and extraction methods of marine biopolymers; (b) the application of marine biopolymers in film and coating development for improved shelf-life of packaged foods; (c) production flaws and proposed solutions for better isolation of marine biopolymers; (d) methods of preparation of edible films and coatings from marine biopolymers; and (e) safety aspects. According to our review, these biopolymers would make a significant component of a biodegradable food packaging system, reducing the amount of plastic packaging used and resulting in considerable environmental and economic benefits.
Collapse
|
21
|
Mechanical
and biological performance of rainbow trout collagen‐boron nitride nanocomposite scaffolds for soft tissue engineering. J Appl Polym Sci 2021. [DOI: 10.1002/app.50664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
A Novel Method for Preparation of Carrageenan/Fish Scale Collagen/Allopurinol Biocomposite Film. INT J POLYM SCI 2021. [DOI: 10.1155/2021/9960233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biopolymers such as carrageenan or collagen can be used as carriers for loading a drug to enhance a drug’s bioavailability. In this work, allopurinol was loaded on a carrageenan/collagen blend and the carrageenan/collagen/allopurinol (CCA) biocomposite films were prepared using the ionic gelation method combined with the 3D printing method using carrageenan/collagen/allopurinol gel as a 3D printing ink material. The advantages of the 3D printing method are the ease in shaping the design of films and the ease in controlling the thickness of films. The results of infrared (IR) spectroscopy and field emission scanning electron microscopy (FESEM) analyses showed that the CCA biocomposite films have a regular structure, and the functional groups of components in the biocomposites can interact with each other. After 30 minutes of immersion in distilled water and pH buffer solution, the biocomposite films swelled and disintegrated. The carrageenan/collagen blend can control the release of allopurinol in simulated body fluids. In addition, the drug release kinetic models reflecting the release process of allopurinol from CCA biocomposite films in simulated body fluids have also been calculated.
Collapse
|
23
|
Lionetto F, Esposito Corcione C. Recent Applications of Biopolymers Derived from Fish Industry Waste in Food Packaging. Polymers (Basel) 2021; 13:2337. [PMID: 34301094 PMCID: PMC8309529 DOI: 10.3390/polym13142337] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Fish waste is attracting growing interest as a new raw material for biopolymer production in different application fields, mainly in food packaging, with significant economic and environmental advantages. This review paper summarizes the recent advances in the valorization of fish waste for the preparation of biopolymers for food packaging applications. The issues related to fishery industry waste and fish by-catch and the potential for re-using these by-products in a circular economy approach have been presented in detail. Then, all the biopolymer typologies derived from fish waste with potential applications in food packaging, such as muscle proteins, collagen, gelatin, chitin/chitosan, have been described. For each of them, the recent applications in food packaging, in the last five years, have been overviewed with an emphasis on smart packaging applications. Despite the huge industrial potential of fish industry by-products, most of the reviewed applications are still at lab-scale. Therefore, the technological challenges for a reliable exploitation and recovery of several potentially valuable molecules and the strategies to improve the barrier, mechanical and thermal performance of each kind of biopolymer have been analyzed.
Collapse
Affiliation(s)
- Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy;
| | | |
Collapse
|
24
|
Lin H, Zheng Z, Yuan J, Zhang C, Cao W, Qin X. Collagen Peptides Derived from Sipunculus nudus Accelerate Wound Healing. Molecules 2021; 26:molecules26051385. [PMID: 33806637 PMCID: PMC7961935 DOI: 10.3390/molecules26051385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Marine collagen peptides have high potential in promoting skin wound healing. This study aimed to investigate wound healing activity of collagen peptides derived from Sipunculus nudus (SNCP). The effects of SNCP on promoting healing were studied through a whole cortex wound model in mice. Results showed that SNCP consisted of peptides with a molecular weight less than 5 kDa accounted for 81.95%, rich in Gly and Arg. SNCP possessed outstanding capacity to induce human umbilical vein endothelial cells (HUVEC), human immortalized keratinocytes (HaCaT) and human skin fibroblasts (HSF) cells proliferation and migration in vitro. In vivo, SNCP could markedly improve the healing rate and shorten the scab removal time, possessing a scar-free healing effect. Compared with the negative control group, the expression level of tumor necrosis factor-α, interleukin-1β and transforming growth factor-β1 (TGF-β1) in the SNCP group was significantly down-regulated at 7 days post-wounding (p < 0.01). Moreover, the mRNA level of mothers against decapentaplegic homolog 7 (Smad7) in SNCP group was up-regulated (p < 0.01); in contrast, type II TGF-β receptors, collagen I and α-smooth muscle actin were significantly down-regulated at 28 days (p < 0.01). These results indicate that SNCP possessed excellent activity of accelerating wound healing and inhibiting scar formation, and its mechanism was closely related to reducing inflammation, improving collagen deposition and recombination and blockade of the TGF-β/Smads signal pathway. Therefore, SNCP may have promising clinical applications in skin wound repair and scar inhibition.
Collapse
Affiliation(s)
- Haisheng Lin
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, China;
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhihong Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
| | - Jianjun Yuan
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, China;
- Correspondence: (J.Y.); (C.Z.); Tel.: +86-15980016199 (J.Y.); +86-13902501963 (C.Z.)
| | - Chaohua Zhang
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, China;
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (J.Y.); (C.Z.); Tel.: +86-15980016199 (J.Y.); +86-13902501963 (C.Z.)
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
25
|
Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers (Basel) 2020; 12:E2230. [PMID: 32998331 PMCID: PMC7601392 DOI: 10.3390/polym12102230] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized.
Collapse
Affiliation(s)
- Hafez Jafari
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Alberto Lista
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy;
| | - Manuela Mafosso Siekapen
- Department of Chemical Engineering and Industrial Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Brussels, Belgium;
| | - Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Amin Shavandi
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
26
|
Tian Z, Wang Y, Wang H, Zhang K. Regeneration of native collagen from hazardous waste: chrome-tanned leather shavings by acid method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31300-31310. [PMID: 32483716 DOI: 10.1007/s11356-020-09183-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The collagens (COL2, COL4, and COL5) were extracted from chrome-tanned leather shavings via three distinctive routes of acid method. The dechroming degree of COL2 extracted with the easiest operation was the highest (95.6% ± 1.2%) and the yield exceeded 90%; however, the total amount of acid was the most and the cost was the highest. In the second route, although the three-step dechroming process brought cumbersome operation, the dechroming degree and yield of COL4 were 90.5% ± 0.8% and 92.2% ± 0.6%, respectively, and the acid amount was less than that in the first route. For COL5, the dechroming degree and yield was the lowest; nevertheless, this route had the advantages of lowest cost and simpler operation. Electrophoretic patterns showed that all the collagens contained α1, α2, and β chains without low molecular weight components and were close to those of type I collagen. Compared with native collagen extracted from fresh calf skin, the regenerated collagens also maintained unique triple helix conformation determined via ultraviolet, infrared spectra and X-ray diffraction, confirmed by the similar values of AIII/A1455 and Δν. Additionally, the collagens existed in the form of fibrils with D-period pattern of ~ 67 nm. Furthermore, the denaturation temperatures of COL2, COL4, and COL5 were 71.2, 79.1, and 85.4 °C, respectively, which were relevant to the tighter arrangement of fibrils with the increased chromium content.
Collapse
Affiliation(s)
- Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China.
| | - Ying Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China
| | - Hao Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China
| | - Kang Zhang
- Key Laboratory of Additives of Chemistry & Technology for Chemical Industry, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China
| |
Collapse
|
27
|
Zhang X, Ye T, Meng X, Tian Z, Pang L, Han Y, Li H, Lu G, Xiu F, Yu HD, Liu J, Huang W. Sustainable and Transparent Fish Gelatin Films for Flexible Electroluminescent Devices. ACS NANO 2020; 14:3876-3884. [PMID: 32186191 DOI: 10.1021/acsnano.9b09880] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the past decades, various alternating current electroluminescent (ACEL) devices, especially the flexible ones, have been developed and used in flat panel display, large-scale decorating, logo display lighting, optical signaling, etc. Transparent plastics are usually used as substrates in ACEL devices; however, they are undegradable and may cause serious environmental pollution. Herein, we have developed a flexible transient ACEL device based on transparent fish gelatin (FG) films. The FG films were made from fish scales, which are sustainable, cost-efficient, and eco-friendly. These films could dissolve in water within seconds at 60 °C and degrade completely within 24 days in soil. The transmittance of these FG films was up to 91.1% in the visible spectrum, comparable to that of polyethylene terephthalate (PET) (90.4%). After forming a composite with silver nanowires (Ag NWs), the Ag NWs-FG film showed a transmittance up to 82.3% and a sheet resistance down to 22.4 Ω sq-1. The fabricated ACEL device based on the Ag NWs-FG film exhibited high flexibility and luminance up to 56.0 cd m-2. The device could be dissolved in water within 3 min. Our work demonstrates that the sustainable, flexible, and transparent FG films are a promising alternative for green and degradable substrates in the field of flexible electronics, including foldable displays, wearable devices, and health monitoring.
Collapse
Affiliation(s)
- Xiaopan Zhang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Tengyang Ye
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Xianghao Meng
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Zhihui Tian
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Lihua Pang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yaojie Han
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Gang Lu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Fei Xiu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Hai-Dong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Juqing Liu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Wei Huang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
- Xi'an Institute of Flexible Electronics, MIIT Key Laboratory of Flexible Electronics, Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics (KLoFE), and Xi'an Key Laboratory of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P.R. China
| |
Collapse
|
28
|
Coppola D, Oliviero M, Vitale GA, Lauritano C, D’Ambra I, Iannace S, de Pascale D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar Drugs 2020; 18:E214. [PMID: 32326635 PMCID: PMC7230273 DOI: 10.3390/md18040214] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022] Open
Abstract
Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in the emerging health sectors. Recently, marine organisms have been considered as promising sources of collagen, because they do not harbor transmissible disease. In particular, fish biomass as well as by-catch organisms, such as undersized fish, jellyfish, sharks, starfish, and sponges, possess a very high collagen content. The use of discarded and underused biomass could contribute to the development of a sustainable process for collagen extraction, with a significantly reduced environmental impact. This addresses the European zero-waste strategy, which supports all three generally accepted goals of sustainability: sustainable economic well-being, environmental protection, and social well-being. A zero-waste strategy would use far fewer new raw materials and send no waste materials to landfills. In this review, we present an overview of the studies carried out on collagen obtained from by-catch organisms and fish wastes. Additionally, we discuss novel technologies based on thermoplastic processes that could be applied, likewise, as marine collagen treatment.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Oliviero
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, Portici, 80055 Naples, Italy; (M.O.); (S.I.)
| | - Giovanni Andrea Vitale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
| | - Isabella D’Ambra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Salvatore Iannace
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, Portici, 80055 Naples, Italy; (M.O.); (S.I.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| |
Collapse
|