1
|
Peng BY, Singh AK, Chan CH, Deng YH, Li PY, Su CW, Wu CY, Deng WP. AGA induces sub-G1 cell cycle arrest and apoptosis in human colon cancer cells through p53-independent/p53-dependent pathway. BMC Cancer 2023; 23:1. [PMID: 36597025 PMCID: PMC9808967 DOI: 10.1186/s12885-022-10466-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Despite the advancement in chemotherapeutic drugs for colon cancer treatment, it is still a life-threatening disease worldwide due to drug resistance. Therefore, an urgently needed to develop novel drugs for colon cancer therapies. AGA is a combination of traditional Chinese medicine Antler's extract (A), Ganoderma lucidum (G), and Antrodia camphorata (A); it contains a lot of biomolecules like polysaccharides, fatty acids, and triterpenoids that are known to exerting anti-oxidative, anti-inflammatory, anti-microbial and anti-tumor activities in oral cancer. In this study, we investigate AGA anti-proliferative, anti-metastatic and apoptotic activity to explore its anti-cancer activity against colon cancer cells and its underlying mechanism. METHOD Here, in-vitro studies were performed to determine the antiproliferative activity of AGA through MTT and colony formation assays. Wound healing and transwell migration assay were used to evaluate the metastasis. Flow cytometry and protein expression were used to investigate the involved molecular mechanism by evaluating the cell cycle and apoptosis. The in-vivo anti-cancerous activity of AGA was assessed by xenograft mice model of colon cancer cells. RESULTS We found that AGA significantly inhibited the proliferative capacity and metastasis of colon cancer cells in-vitro. In addition, AGA induced cell cycle arrest in the sub-G1 phase through upregulating p21 and downregulating CDK2, CDK6 in SW620, and CDK4 in SW480 and HT29, respectively. Annexin-v assay indicated that colon cancer cells had entered early and late apoptosis after treatment with AGA. Furthermore, a mechanistic protein expressions study revealed that AGA in p53-dependent and independent regulated the apoptosis of colon cancer by downregulating the p53 protein expression in SW620 and SW480 cells but upregulating in a dose-dependent manner in HT29 cells and increasing the expression of Bax and caspase-9 to inhibit the colon cancer cells. In vivo study, we found that AGA significantly reduced the xenograft tumor growth in NOD/SCID mice with no adverse effect on the kidney and liver. CONCLUSION Collectively, AGA has the potential to inhibit colon cancer through inhibiting proliferation, migration, and cell cycle kinase by upregulating p21 protein expression and promoting the apoptotic protein in a p53-dependent and independent manner.
Collapse
Affiliation(s)
- Bou-Yue Peng
- grid.412897.10000 0004 0639 0994Department of Dentistry, Taipei Medical University Hospital, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Abhinay Kumar Singh
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Chun-Hao Chan
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Yue-Hua Deng
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Pin-Ying Li
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Chun-Wei Su
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Chia-Yu Wu
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412897.10000 0004 0639 0994Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, 110301 Taipei, Taiwan
| | - Win-Ping Deng
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.256105.50000 0004 1937 1063Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, 242062 Taipei, Taiwan ,grid.265231.10000 0004 0532 1428Department of Life Science, Tunghai University, 407224 Taichung, Taiwan
| |
Collapse
|
2
|
Mazumder S, Mitra Ghosh T, Mukherjee UK, Chakravarti S, Amiri F, Waliagha RS, Hemmati F, Mistriotis P, Ahmed S, Elhussin I, Salam AB, Dean-Colomb W, Yates C, Arnold RD, Mitra AK. Integrating Pharmacogenomics Data-Driven Computational Drug Prediction with Single-Cell RNAseq to Demonstrate the Efficacy of a NAMPT Inhibitor against Aggressive, Taxane-Resistant, and Stem-like Cells in Lethal Prostate Cancer. Cancers (Basel) 2022; 14:6009. [PMID: 36497496 PMCID: PMC9738762 DOI: 10.3390/cancers14236009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metastatic prostate cancer/PCa is the second leading cause of cancer deaths in US men. Most early-stage PCa are dependent on overexpression of the androgen receptor (AR) and, therefore, androgen deprivation therapies/ADT-sensitive. However, eventual resistance to standard medical castration (AR-inhibitors) and secondary chemotherapies (taxanes) is nearly universal. Further, the presence of cancer stem-like cells (EMT/epithelial-to-mesenchymal transdifferentiation) and neuroendocrine PCa (NEPC) subtypes significantly contribute to aggressive/lethal/advanced variants of PCa (AVPC). In this study, we introduced a pharmacogenomics data-driven optimization-regularization-based computational prediction algorithm ("secDrugs") to predict novel drugs against lethal PCa. Integrating secDrug with single-cell RNA-sequencing/scRNAseq as a 'Double-Hit' drug screening tool, we demonstrated that single-cells representing drug-resistant and stem-cell-like cells showed high expression of the NAMPT pathway genes, indicating potential efficacy of the secDrug FK866 which targets NAMPT. Next, using several cell-based assays, we showed substantial impact of FK866 on clinically advanced PCa as a single agent and in combination with taxanes or AR-inhibitors. Bulk-RNAseq and scRNAseq revealed that, in addition to NAMPT inhibition, FK866 regulates tumor metastasis, cell migration, invasion, DNA repair machinery, redox homeostasis, autophagy, as well as cancer stemness-related genes, HES1 and CD44. Further, we combined a microfluidic chip-based cell migration assay with a traditional cell migration/'scratch' assay and demonstrated that FK866 reduces cancer cell invasion and motility, indicating abrogation of metastasis. Finally, using PCa patient datasets, we showed that FK866 is potentially capable of reversing the expression of several genes associated with biochemical recurrence, including IFITM3 and LTB4R. Thus, using FK866 as a proof-of-concept candidate for drug repurposing, we introduced a novel, universally applicable preclinical drug development pipeline to circumvent subclonal aggressiveness, drug resistance, and stemness in lethal PCa.
Collapse
Affiliation(s)
- Suman Mazumder
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Taraswi Mitra Ghosh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Department of Urology Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ujjal K. Mukherjee
- Department of Business Administration, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Sayak Chakravarti
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Farshad Amiri
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Razan S. Waliagha
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Farnaz Hemmati
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Salsabil Ahmed
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Isra Elhussin
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ahmad-Bin Salam
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Windy Dean-Colomb
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Hospital, Newnan, GA 30309, USA
| | - Clayton Yates
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| |
Collapse
|
3
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
4
|
Wang HF, Jiang J, Wu JS, Zhang M, Pang X, Dai L, Tang YL, Liang XH. Hypermethylation of PRKCZ Regulated by E6 Inhibits Invasion and EMT via Cdc42 in HPV-Related Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14174151. [PMID: 36077689 PMCID: PMC9454700 DOI: 10.3390/cancers14174151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/09/2022] Open
Abstract
Purpose: To study the role of target genes with aberrant DNA methylation in HPV+ HNSCC. Methods: A HumanMethylation450 BeadChip array (Illumina) was used to identify differentially methylated genes. CCK-8, flow cytometry, wound healing, and cell invasion assays were conducted to analyze the biological roles of PRKCZ. Western blot, qRT-PCR, immunohistochemistry, and animal studies were performed to explore the mechanisms underlying the functions of PRKCZ. Results: We selected PRKCZ, which is associated with HPV infection, as our target gene. PRKCZ was hypermethylated in HPV+ HNSCC patients, and PRKCZ methylation status was negatively related to the pathological grading of HNSCC patients. Silencing PRKCZ inhibited the malignant capacity of HPV+ HNSCC cells. Mechanistically, HPV might promote DNMT1 expression via E6 to increase PRKCZ methylation. Cdc42 was required for the PRKCZ-mediated mechanism of action, contributing to the occurrence of epithelial-mesenchymal transition (EMT) in HPV+ HNSCC cells. In addition, blocking PRKCZ delayed tumor growth in HPV16-E6/E7 transgenic mice. Cdc42 expression was decreased, whereas E-cadherin levels increased. Conclusion: We suggest that PRKCZ hypermethylation induces EMT via Cdc42 to act as a potent tumor promoter in HPV+ HNSCC.
Collapse
Affiliation(s)
- Hao-Fan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.-L.T.); (X.-H.L.)
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.-L.T.); (X.-H.L.)
| |
Collapse
|
5
|
Cell lineage-specific methylome and genome alterations in gout. Aging (Albany NY) 2021; 13:3843-3865. [PMID: 33493135 PMCID: PMC7906142 DOI: 10.18632/aging.202353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
In this study, we examined data from 69 gout patients and 1,455 non-gout controls using a MethylationEPIC BeadChip assay and Illumina HiSeq platform to identify lineage-specific epigenetic alterations and associated genetic factors that contributed to gouty inflammation. Cell lineage-specific differentially methylated sites were identified using CellDMC after adjusting for sex, age, alcohol drinking, smoking status, and smoking history (total pack-years). Different cell lineages displayed distinct differential methylation. Ingenuity Pathway Analysis and NetworkAnalyst indicated that many differential methylated sites were associated with interleukin-1β expression in monocytes. On the UCSC Genome Browser and WashU Epigenome Browser, metabolic trait, cis-methylation quantitative trait loci, genetic, and functional annotation analyses identified nine methylation loci located in interleukin-1β-regulating genes (PRKCZ, CIDEC, VDAC1, CPT1A, BIRC2, BRCA1, STK11, and NLRP12) that were associated specifically with gouty inflammation. All nine sites mapped to active regulatory elements in monocytes. MoLoTool and ReMap analyses indicated that the nine methylation loci overlapped with binding sites of several transcription factors that regulated interleukin-1β production and gouty inflammation. Decreases in PRKCZ and STK11 methylation were also associated with higher numbers of first-degree relatives who also had gout. The gouty-inflammation specific methylome and genome alterations could potentially aid in the identification of novel therapeutic targets.
Collapse
|
6
|
Charmpi K, Guo T, Zhong Q, Wagner U, Sun R, Toussaint NC, Fritz CE, Yuan C, Chen H, Rupp NJ, Christiansen A, Rutishauser D, Rüschoff JH, Fankhauser C, Saba K, Poyet C, Hermanns T, Oehl K, Moore AL, Beisel C, Calzone L, Martignetti L, Zhang Q, Zhu Y, Martínez MR, Manica M, Haffner MC, Aebersold R, Wild PJ, Beyer A. Convergent network effects along the axis of gene expression during prostate cancer progression. Genome Biol 2020; 21:302. [PMID: 33317623 PMCID: PMC7737297 DOI: 10.1186/s13059-020-02188-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tumor-specific genomic aberrations are routinely determined by high-throughput genomic measurements. It remains unclear how complex genome alterations affect molecular networks through changing protein levels and consequently biochemical states of tumor tissues. Results Here, we investigate the propagation of genomic effects along the axis of gene expression during prostate cancer progression. We quantify genomic, transcriptomic, and proteomic alterations based on 105 prostate samples, consisting of benign prostatic hyperplasia regions and malignant tumors, from 39 prostate cancer patients. Our analysis reveals the convergent effects of distinct copy number alterations impacting on common downstream proteins, which are important for establishing the tumor phenotype. We devise a network-based approach that integrates perturbations across different molecular layers, which identifies a sub-network consisting of nine genes whose joint activity positively correlates with increasingly aggressive tumor phenotypes and is predictive of recurrence-free survival. Further, our data reveal a wide spectrum of intra-patient network effects, ranging from similar to very distinct alterations on different molecular layers. Conclusions This study uncovers molecular networks with considerable convergent alterations across tumor sites and patients. It also exposes a diversity of network effects: we could not identify a single sub-network that is perturbed in all high-grade tumor regions.
Collapse
Affiliation(s)
- Konstantina Charmpi
- CECAD, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Tiannan Guo
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland. .,Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China. .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Qing Zhong
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Ulrich Wagner
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Rui Sun
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Nora C Toussaint
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Christine E Fritz
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chunhui Yuan
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Hao Chen
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ailsa Christiansen
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dorothea Rutishauser
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan H Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Fankhauser
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karim Saba
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cedric Poyet
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Hermanns
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kathrin Oehl
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ariane L Moore
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Qiushi Zhang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yi Zhu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | | | | | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland. .,Faculty of Science, University of Zurich, Zurich, Switzerland.
| | - Peter J Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany.
| | - Andreas Beyer
- CECAD, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
8
|
Smalley T, Metcalf R, Patel R, Islam SMA, Bommareddy RR, Acevedo-Duncan M. The Atypical Protein Kinase C Small Molecule Inhibitor ζ-Stat, and Its Effects on Invasion Through Decreases in PKC-ζ Protein Expression. Front Oncol 2020; 10:209. [PMID: 32175276 PMCID: PMC7056911 DOI: 10.3389/fonc.2020.00209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is estimated to reach 22,530 diagnoses and cause 13,980 cancer deaths per year. The most common histology diagnosed of ovarian cancer is epithelial ovarian carcinomas (EOC). An aggressive epithelial subtype is clear cell ovarian carcinoma (CCOC) and is characterized as a non-serous ovarian cancer. Protein kinase C (PKC) is an enzymatic family of proteins that have been found to be a component in cancer progression, tissue invasion, and metastasis. The atypical PKC (aPKC) isoforms, PKC-ι and PKC-ζ, have been suggested to participate in the increased proliferation of ovarian cancers. Previous studies have indicated that novel aPKC inhibitors ICA-1S and ζ-Stat decreased the migratory behaviors of colorectal cancer cells and were selective for PKC-ι/λ and PKC-ζ, respectively. The aims of this investigation were to further determine the binding mechanisms of ζ-Stat, expand on the tissue range of these compounds, investigate the therapeutic potential of ζ-Stat in CCOC, and to illustrate the disruption of invasion via the PKC-ζ signaling cascade. The methods utilized were molecular docking and virtual target screening, Western blot analysis, end-point PCR, GST pull down, cell viability and invasion and migration assays. We discovered that the small molecule inhibitor, ζ-Stat, is a prospective drug candidate to investigate as a novel potential treatment for CCOC. We also found that the PKC-ζ/Ect2/Rac1 activation pathway was decreased by ζ-Stat, which in turn decreased invasive behavior of CCOC.
Collapse
Affiliation(s)
- Tracess Smalley
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Rainer Metcalf
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Rekha Patel
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - S M Anisul Islam
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
9
|
PKCζ facilitates lymphatic metastatic spread of prostate cancer cells in a mice xenograft model. Oncogene 2019; 38:4215-4231. [PMID: 30705401 PMCID: PMC6756056 DOI: 10.1038/s41388-019-0722-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/20/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Prostate cancer disseminates primarily into the adjacent lymph nodes, which is related to a poor outcome. Atypical protein kinase C ζ (PKCζ) is highly expressed in aggressive prostate cancer and correlates with Gleason score, clinical stage, and poor prognosis. Here, we report the molecular mechanisms of PKCζ in lymphatic metastasis during prostate cancer progression. Using zinc-finger nuclease technology or PKCζ shRNA lentiviral particles, and orthotopic mouse xenografts, we show that PKCζ-knockout or knockdown from aggressive prostate cancer (PC3 and PC3U) cells, decreasesd tumor growth and lymphatic metastasis in vivo. Intriguingly, PKCζ-knockout or knockdown impaired the activation of AKT, ERK, and NF-κB signaling in prostate cancer cells, thereby impairing the expression of lymphangiogenic factors and macrophage recruitment, resulting in aberrant lymphangiogenesis. Moreover, PKCζ regulated the expression of hyaluronan synthase enzymes, which is important for hyaluronan-mediated lymphatic drainage and tumor dissemination. Thus, PKCζ plays a crucial oncogenic role in the lymphatic metastasis of prostate cancer and is predicted to be a novel therapeutic target for prostate cancer.
Collapse
|
10
|
Yang X, Huang H, Wang M, Zheng X, Xie M, Xu J. Nonylphenol promotes the proliferation of colorectal cancer COLO205 cells by upregulating the expression of protein kinase C ζ. Oncol Lett 2019; 17:2498-2506. [PMID: 30675313 DOI: 10.3892/ol.2018.9846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Previous studies have indicated the potential role of estrogen in the development and prognosis of colorectal cancer (CRC). Nonylpheno (NP) is an endocrine-disrupting chemical, which may influence the development of estrogen-dependent types of cancer. However, the molecular mechanism of NP in the development of CRCs remains unclear. In the present study, various concentrations of NP were used to treat COLO205 CRC cells, and the expression of protein kinase C ζ (PKCζ) was knocked down using PKCζ small interfering RNA. The effects of NP in various concentrations on the cell cycle and apoptosis of COLO205 cells were examined, and the change in the expression level of PKCζ was analyzed. The results indicated that NP may significantly induce proliferation of COLO205 CRC cells, and significantly reduce cell apoptosis. However, suppression of PKCζ expression may inhibit proliferation, while NP could reduce this inhibition. The results of a western blot analysis indicated that the expression level of cyclin D1 and E were significantly increased following NP treatment, and the expression of p27 was significantly decreased. The phosphorylation of PKCζ and extracellular-signal-regulated kinase (ERK)1/2 was significantly increased following NP treatment in a dose-dependent manner. Overall, NP induced human CRC COLO205 cell proliferation and inhibited the apoptotic rate of COLO205 cells by increasing the activity of PKCζ and ERK1/2.
Collapse
Affiliation(s)
- Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Handong Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Maijian Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Xingbin Zheng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Ming Xie
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Jie Xu
- School of Public Health, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
11
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Islam SMA, Patel R, Acevedo-Duncan M. Protein Kinase C-ζ stimulates colorectal cancer cell carcinogenesis via PKC-ζ/Rac1/Pak1/β-Catenin signaling cascade. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:650-664. [PMID: 29408512 DOI: 10.1016/j.bbamcr.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is the second most common cancer in the world and death from CRC accounts for 8% of all cancer deaths both in men and women in the United States. CRC is life-threatening disease due to therapy resistant cancerous cells. The exact mechanisms of cell growth, survival, metastasis and inter & intracellular signaling pathways involved in CRC is still a significant challenge. Hence, investigating the signaling pathways that lead to colon carcinogenesis may give insight into the therapeutic target. In this study, the role of atypical Protein Kinase C (aPKC) on CRC was investigated by using two inhibitors of that protein class: 1) ζ-Stat (8-hydroxynaphthalene-1,3,6-trisulfonic acid) is a specific inhibitor of PKC-ζ and 2) ICA-I 5-amino-1-(2,3-dihydroxy-4-hydroxymethyl)cyclopentyl)-1H-imidazole-4-carboxamide) is a specific inhibitor of PKC-ι. The cell lines tested were CCD18CO normal colon epithelial and LOVO metastatic CRC cells. The inhibition of aPKCs did not bring any significant toxicity on CCD18CO normal colon cell line. Although PKC-ι is an oncogene in many cancers, we found the overexpression of PKC-ζ and its direct association with Rac1. Our findings suggest that the PKC-ζ may be responsible for the abnormal growth, proliferation, and migration of metastatic LOVO colon cancer cells via PKC-ζ/Rac1/Pak1/β-Catenin pathway. These results suggest the possibility of utilizing PKC-ζ inhibitor to block CRC cells growth, proliferation, and metastasis.
Collapse
Affiliation(s)
- S M Anisul Islam
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA
| | - Rekha Patel
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA
| | - Mildred Acevedo-Duncan
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
13
|
Fan HH, Li L, Zhang YM, Yang J, Li MC, Zeng FY, Deng F. PKCζ in prostate cancer cells represses the recruitment and M2 polarization of macrophages in the prostate cancer microenvironment. Tumour Biol 2017. [PMID: 28631559 DOI: 10.1177/1010428317701442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages are key regulators of the complex interplay between tumor and tumor microenvironment. M2 Macrophages, one type of tumor-associated macrophages, are involved in prostate cancer growth and progression. Protein kinase C zeta has been shown to suppress prostate cancer cell growth, invasion, and metastasis as a tumor suppressor; however, its role in chemotaxis and activation of tumor-associated macrophages remains unclear. Here, we investigated the role of protein kinase C zeta of prostate cancer cells in regulation of macrophage chemotaxis and M2 phenotype activation. Immunohistochemistry was performed to analyze the expression of protein kinase C zeta and the number of CD206+ M2 macrophages in human prostate tissue. Macrophage chemotaxis and polarization were examined using Transwell migration assays and a co-culture system. Quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were used to detect M2 markers, protein kinase C zeta, interleukin-4, and interleukin-10 expression. We found the expression of protein kinase C zeta increased in prostate cancer tissues, especially in the early stage, and was negatively associated with tumor grade and the number of CD206+ macrophages. Inhibition of protein kinase C zeta expression in prostate cancer cells promoted chemotaxis of peripheral macrophages and acquisition of M2 phenotypic features. These results were further supported by the finding that silencing of endogenous protein kinase C zeta promoted the expression of prostate cancer cell-derived interleukin-4 and interleukin-10. These results suggest that protein kinase C zeta plays an important role in reducing infiltration of tumor-associated macrophages and activation of a pro-tumor M2 phenotype, which may constitute an important mechanism by which protein kinase C zeta represses cancer progression.
Collapse
Affiliation(s)
- Hui-Hui Fan
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Li
- 2 Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Ming Zhang
- 3 Department of Clinical Laboratory, Hospital of Integrated Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jie Yang
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mao-Cheng Li
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang-Yin Zeng
- 2 Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Fan Deng
- 4 Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol 2017; 48:36-52. [PMID: 28571764 DOI: 10.1016/j.semcancer.2017.04.012] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
Abstract
The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its potential usage as a therapeutic target.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
15
|
NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626501 PMCID: PMC5463201 DOI: 10.1155/2017/9420539] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NADPH oxidases (NOX) are reactive oxygen species- (ROS-) generating enzymes regulating numerous redox-dependent signaling pathways. NOX are important regulators of cell differentiation, growth, and proliferation and of mechanisms, important for a wide range of processes from embryonic development, through tissue regeneration to the development and spread of cancer. In this review, we discuss the roles of NOX and NOX-derived ROS in the functioning of stem cells and cancer stem cells and in selected aspects of cancer cell physiology. Understanding the functions and complex activities of NOX is important for the application of stem cells in tissue engineering, regenerative medicine, and development of new therapies toward invasive forms of cancers.
Collapse
|
16
|
Tuccilli C, Baldini E, Arlot-Bonnemains Y, Chesnel F, Sorrenti S, De Vito C, D'Armiento E, Antonelli A, Fallahi P, Watutantrige S, Tartaglia F, Barollo S, Mian C, Arcieri S, Mascagni D, Pironi D, Bononi M, Vergine M, Monti M, Filippini A, Ulisse S. Expression and prognostic value of the cell polarity PAR complex members in thyroid cancer. Int J Oncol 2017; 50:1413-1422. [PMID: 28350047 DOI: 10.3892/ijo.2017.3907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/11/2017] [Indexed: 11/05/2022] Open
Abstract
Establishment and maintenance of the apical-basal cell polarity, required for proper replication, migration, specialized functions and tissue morphogenesis, relies on three evolutionary conserved complexes: PAR, CRUMBS and SCRIBBLE. Loss of cell polarity/cohesiveness (LOP/C) is implicated in cancer progression, and members of the polarity complex have been described as either oncogenes or oncosuppressors. However, no information on their role in thyroid cancer (TC) progression is available. In the present study, we evaluated the gene expression of the PAR complex members aPKCι, PARD3α/β and PARD6α/β/γ in 95 papillary TC (PTC), compared to their normal matched tissues and in 12 anaplastic TC (ATC). The mRNA and protein levels of investigated genes were altered in the majority of PTC and ATC tissues. In PTC, univariate analysis showed that reduced expression of aPKCι, PARD3β and PARD6γ mRNAs is associated with increased tumor size, and the reduced expression of PARD3β mRNA is associated also with recurrences. Multivariate analysis demonstrated that the presence of lymph node metastasis at diagnosis and the reduced expression of PARD3β are independent risk factors for recurrences, with hazard ratio, respectively, of 8.21 (p=0.006) and 3.04 (p=0.029). The latter result was confirmed by the Kaplan-Meier analysis, which evidenced the association between decreased PARD3β mRNA levels and shorter disease-free interval. In conclusion, we demonstrated that the expression of PAR complex components is deregulated in the majority of PTC and there is a general trend towards their reduction in ATC tissues. Moreover, a prognostic value for the PARD3β gene in PTCs is suggested.
Collapse
Affiliation(s)
- Chiara Tuccilli
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Enke Baldini
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | | | - Frank Chesnel
- CNRS-UMR 6290 (IGDR) Université Rennes 1, Rennes, France
| | - Salvatore Sorrenti
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Rome, Italy
| | - Eleonora D'Armiento
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Susi Barollo
- Department of Medicine, University of Padua, Padua, Italy
| | - Caterina Mian
- Department of Medicine, University of Padua, Padua, Italy
| | - Stefano Arcieri
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Domenico Mascagni
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Daniele Pironi
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Marco Bononi
- Department of Surgery 'Pietro Valdoni', 'Sapienza' University of Rome, Rome, Italy
| | - Massimo Vergine
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Massimo Monti
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Angelo Filippini
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| |
Collapse
|
17
|
Archibald A, Al-Masri M, Liew-Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell 2015; 26:3578-95. [PMID: 26269582 PMCID: PMC4603929 DOI: 10.1091/mbc.e15-05-0265] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/07/2015] [Indexed: 01/22/2023] Open
Abstract
Epithelial cells are major sites of malignant transformation. Atypical protein kinase C (aPKC) isoforms are overexpressed and activated in many cancer types. Using normal, highly polarized epithelial cells (MDCK and NMuMG), we report that aPKC gain of function overcomes contact inhibited growth and is sufficient for a transformed epithelial phenotype. In 2D cultures, aPKC induced cells to grow as stratified epithelia, whereas cells grew as solid spheres of nonpolarized cells in 3D culture. aPKC associated with Mst1/2, which uncoupled Mst1/2 from Lats1/2 and promoted nuclear accumulation of Yap1. Of importance, Yap1 was necessary for aPKC-mediated overgrowth but did not restore cell polarity defects, indicating that the two are separable events. In MDCK cells, Yap1 was sequestered to cell-cell junctions by Amot, and aPKC overexpression resulted in loss of Amot expression and a spindle-like cell phenotype. Reexpression of Amot was sufficient to restore an epithelial cobblestone appearance, Yap1 localization, and growth control. In contrast, the effect of aPKC on Hippo/Yap signaling and overgrowth in NMuMG cells was independent of Amot. Finally, increased expression of aPKC in human cancers strongly correlated with increased nuclear accumulation of Yap1, indicating that the effect of aPKC on transformed growth by deregulating Hippo/Yap1 signaling may be clinically relevant.
Collapse
Affiliation(s)
- Andrew Archibald
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Maia Al-Masri
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Alyson Liew-Spilger
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada Department of Oncology, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
18
|
Inhibition of protein kinase C by isojacareubin suppresses hepatocellular carcinoma metastasis and induces apoptosis in vitro and in vivo. Sci Rep 2015; 5:12889. [PMID: 26245668 PMCID: PMC4526861 DOI: 10.1038/srep12889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/14/2015] [Indexed: 01/12/2023] Open
Abstract
Targeted inhibition of protein kinase C (PKC) inhibits hepatocellular carcinoma (HCC) proliferation and metastasis. We previously reported the cytotoxicity of a series of synthetic phenyl-substituted polyoxygenated xanthone derivatives against human HCC. In the current study, the most potent natural product, isojacareubin (ISJ), was synthesized, and its cellular-level antihepatoma activities were evaluated. ISJ significantly inhibited cell proliferation and was highly selective for HCC cells in comparison to nonmalignant QSG-7701 hepatocytes. Moreover, ISJ exhibited pro-apoptotic effects on HepG2 hepatoma cells, as well as impaired HepG2 cell migration and invasion. Furthermore, ISJ was a potent inhibitor of PKC, with differential actions against various PKC isotypes. ISJ selectively inhibited the expression of aPKC (PKCζ) in the cytosol and the translocation of cytosolic PKCζ to membrane site. ISJ also directly interacted with cPKC (PKCα) and nPKC (PKCδ, PKCε and PKCμ) and thereby inhibited the early response of major MAPK phosphorylation and the late response of HCC cell invasion and proliferation. In a hepatoma xenograft model, ISJ pretreatment resulted in significant antihepatoma activity in vivo. These findings identify ISJ as a promising lead compound for the development of new antihepatoma agents and may guide the search for additional selective PKC inhibitors.
Collapse
|
19
|
Boccellino M, Alaia C, Misso G, Cossu AM, Facchini G, Piscitelli R, Quagliuolo L, Caraglia M. Gene interference strategies as a new tool for the treatment of prostate cancer. Endocrine 2015; 49:588-605. [PMID: 26049369 DOI: 10.1007/s12020-015-0629-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancer in men. It affects older men and the incidence increases with age; the median age at diagnosis is 67 years. The diagnosis of PCa is essentially based on three tools: digital rectal exam, serum concentration of prostate specific antigen, and transrectal ultrasound-guided biopsy. Currently, the therapeutic treatments of this cancer are different and range from the prostatectomy to hormonal therapy, to radiation therapy, to immunotherapy, and to chemotherapy. However, additional efforts are required in order to find new weapons for the treatment of metastatic setting of disease. The purpose of this review is to highlight new therapeutic strategies based on gene interference; in fact, numerous siRNA and miRNA in the therapeutic treatment of PCa are reported below.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio, 7, 80138, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
PKCζ Promotes Breast Cancer Invasion by Regulating Expression of E-cadherin and Zonula Occludens-1 (ZO-1) via NFκB-p65. Sci Rep 2015. [PMID: 26218882 PMCID: PMC4648478 DOI: 10.1038/srep12520] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atypical Protein Kinase C zeta (PKCζ) forms Partitioning-defective (PAR) polarity complex for apico-basal distribution of membrane proteins essential to maintain normal cellular junctional complexes and tissue homeostasis. Consistently, tumor suppressive role of PKCζ has been established for multiple human cancers. However, recent studies also indicate pro-oncogenic function of PKCζ without firm understanding of detailed molecular mechanism. Here we report a possible mechanism of oncogenic PKCζ signaling in the context of breast cancer. We observed that depletion of PKCζ promotes epithelial morphology in mesenchymal-like MDA-MB-231 cells. The induction of epithelial morphology is associated with significant upregulation of adherens junction (AJ) protein E-cadherin and tight junction (TJ) protein Zonula Occludens-1 (ZO-1). Functionally, depletion of PKCζ significantly inhibits invasion and metastatic progression. Consistently, we observed higher expression and activation of PKCζ signaling in invasive and metastatic breast cancers compared to non-invasive diseases. Mechanistically, an oncogenic PKCζ– NFκB-p65 signaling node might be involved to suppress E-cadherin and ZO-1 expression and ectopic expression of a constitutively active form of NFκB-p65 (S536E-NFκB-p65) significantly rescues invasive potential of PKCζ-depleted breast cancer cells. Thus, our study discovered a PKCζ - NFκB-p65 signaling pathway might be involved to alter cellular junctional dynamics for breast cancer invasive progression.
Collapse
|
21
|
TGFβ-induced phosphorylation of Par6 promotes migration and invasion in prostate cancer cells. Br J Cancer 2015; 112:1223-31. [PMID: 25756394 PMCID: PMC4385960 DOI: 10.1038/bjc.2015.71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 01/16/2015] [Accepted: 01/28/2015] [Indexed: 12/18/2022] Open
Abstract
Background: The Par complex – comprising partition-defective 6 (Par6), Par3, and atypical protein kinase C (aPKC) – is crucial for cell polarisation, the loss of which contributes to cancer progression. Transforming growth factor β (TGFβ)-induced phosphorylation of Par6 on the conserved serine 345 is implicated in epithelial-to-mesenchymal transition (EMT) in breast cancer. Here we investigated the importance of phosphorylated Par6 in prostate cancer. Methods: We generated a p-Par6345-specific antibody and verified its specificity in vitro. Endogenous p-Par6345 was analysed by immunoblotting in normal human prostate RWPE1 and prostate cancer (PC-3U) cells. Subcellular localisation of p-Par6345 in migrating TGFβ-treated PC-3U cells was analysed by confocal imaging. Invasion assays of TGFβ-treated PC-3U cells were performed. p-Par6 expression was immunohistochemically analysed in prostate cancer tissues. Results: TGFβ induced Par6 phosphorylation on Ser345 and its recruitment to the leading edge of the membrane ruffle in migrating PC-3U cells, where it colocalised with aPKCζ. The p-Par6–aPKCζ complex is important for cell migration and invasion, as interference with this complex prevented prostate cancer cell invasion. High levels of activated Par6 correlated with aggressive prostate cancer. Conclusions: Increased p-Par6Ser345 levels in aggressive prostate cancer tissues and cells suggest that it could be a useful novel biomarker for predicting prostate cancer progression.
Collapse
|
22
|
Lin WH, Asmann YW, Anastasiadis PZ. Expression of polarity genes in human cancer. Cancer Inform 2015; 14:15-28. [PMID: 25991909 PMCID: PMC4390136 DOI: 10.4137/cin.s18964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
23
|
Höll M, Koziel R, Schäfer G, Pircher H, Pauck A, Hermann M, Klocker H, Jansen-Dürr P, Sampson N. ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells. Mol Carcinog 2015; 55:27-39. [PMID: 25559363 PMCID: PMC4949723 DOI: 10.1002/mc.22255] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/31/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and second leading cause of male cancer death in Western nations. Thus, new treatment modalities are urgently needed. Elevated production of reactive oxygen species (ROS) by NADPH oxidase (Nox) enzymes is implicated in tumorigenesis of the prostate and other tissues. However, the identity of the Nox enzyme(s) involved in prostate carcinogenesis remains largely unknown. Analysis of radical prostatectomy tissue samples and benign and malignant prostate epithelial cell lines identified Nox5 as an abundantly expressed Nox isoform. Consistently, immunohistochemical staining of a human PCa tissue microarray revealed distinct Nox5 expression in epithelial cells of benign and malignant prostatic glands. shRNA‐mediated knockdown of Nox5 impaired proliferation of Nox5‐expressing (PC‐3, LNCaP) but not Nox5‐negative (DU145) PCa cell lines. Similar effects were observed upon ROS ablation via the antioxidant N‐acetylcysteine confirming ROS as the mediators. In addition, Nox5 silencing increased apoptosis of PC‐3 cells. Concomitantly, protein kinase C zeta (PKCζ) protein levels and c‐Jun N‐terminal kinase (JNK) phosphorylation were reduced. Moreover, the effect of Nox5 knockdown on PC‐3 cell proliferation could be mimicked by pharmacological inhibition of JNK. Collectively, these data indicate that Nox5 is expressed at functionally relevant levels in the human prostate and clinical PCa. Moreover, findings herein suggest that Nox5‐derived ROS and subsequent depletion of PKCζ and JNK inactivation play a critical role in modulating intracellular signaling cascades involved in the proliferation and survival of PCa cells. © 2014 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monika Höll
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander Pauck
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Umemori Y, Kuribayashi K, Nirasawa S, Kondoh T, Tanaka M, Kobayashi D, Watanabe N. Protein kinase C ζ regulates survivin expression and inhibits apoptosis in colon cancer. Int J Oncol 2014; 45:1043-50. [PMID: 24920238 DOI: 10.3892/ijo.2014.2489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/02/2014] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3-kinase pathway transduces cell survival signals in different malignancies. Protein kinase C ζ (PKCζ) is one of the molecules involved in this pathway. In this study, we investigated the role of PKCζ in apoptosis. Short interfering RNA against PKCζ (siPKCζ) sensitized HCT116 and SW480 colon cancer cells to TRAIL‑induced apoptosis. Among anti-apoptotic proteins, survivin protein and mRNA expression levels decreased after siPKCζ transfection while protein half-life did not change. The expression levels of survivin and PKCζ were correlated in 18 colon cancer specimens (r=0.72, P=3.01x10‑4). Chemosensitivity to 5-FU was enhanced by siPKCζ in HCT116 and SW480 cells. These results indicate that PKCζ regulates survivin expression levels and inhibits apoptosis in colon cancer cells. This study provides a rationale for targeting PKCζ in combination with chemotherapy for colon cancer treatment.
Collapse
Affiliation(s)
- Yoshifumi Umemori
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Kageaki Kuribayashi
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Shinya Nirasawa
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Takashi Kondoh
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Maki Tanaka
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Daisuke Kobayashi
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Naoki Watanabe
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| |
Collapse
|
25
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
26
|
Perry AS, Furusato B, Nagle RB, Ghosh S. Increased aPKC Expression Correlates with Prostatic Adenocarcinoma Gleason Score and Tumor Stage in the Japanese Population. Prostate Cancer 2014; 2014:481697. [PMID: 24868468 PMCID: PMC4020167 DOI: 10.1155/2014/481697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Background. Levels of the protein kinase aPKC have been previously correlated with prostate cancer prognosis in a British cohort. However, prostate cancer incidence and progression rates, as well as genetic changes in this disease, show strong ethnic variance, particularly in Asian populations. Objective. The aim of this study was to validate association of aPKC expression with prostatic adenocarcinoma stages in a Japanese cohort. Methods. Tissue microarrays consisting of 142 malignant prostate cancer cases and 21 benign prostate tissues were subject to immunohistological staining for aPKC. aPKC staining intensity was scored by three independent pathologists and categorized as absent (0), dim (1+), intermediate (2+), and bright (3+). aPKC staining intensities were correlated with Gleason score and tumor stage. Results. Increased aPKC staining was observed in malignant prostate cancer, in comparison to benign tissue. Additionally, aPKC staining levels correlated with Gleason score and tumor stage. Our results extend the association of aPKC with prostate cancer to a Japanese population and establish the suitability of aPKC as a universal prostate cancer biomarker that performs consistently across ethnicities.
Collapse
Affiliation(s)
- Anthony S. Perry
- Department of Pathology, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, USA
| | - Bungo Furusato
- Department of Pathology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Raymond B. Nagle
- Department of Pathology, The University of Arizona and Arizona Cancer Center, Tucson, AZ 85724-5044, USA
| | - Sourav Ghosh
- Department of Cellular & Molecular Medicine, The University of Arizona and Arizona Cancer Center, Tucson, AZ 85724-5044, USA
| |
Collapse
|
27
|
Rewiring cell polarity signaling in cancer. Oncogene 2014; 34:939-50. [PMID: 24632617 DOI: 10.1038/onc.2014.59] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Disrupted cell polarity is a feature of epithelial cancers. The Crumbs, Par and Scribble polarity complexes function to specify and maintain apical and basolateral membrane domains, which are essential to organize intracellular signaling pathways that maintain epithelial homeostasis. Disruption of apical-basal polarity proteins facilitates rewiring of oncogene and tumor suppressor signaling pathways to deregulate proliferation, apoptosis, invasion and metastasis. Moreover, apical-basal polarity integrates intracellular signaling with the microenvironment by regulating metabolic signaling, extracellular matrix remodeling and tissue level organization. In this review, we discuss recent advances in our understanding of how polarity proteins regulate diverse signaling pathways throughout cancer progression from initiation to metastasis.
Collapse
|
28
|
Shiota M, Yokomizo A, Takeuchi A, Imada K, Kashiwagi E, Song Y, Inokuchi J, Tatsugami K, Uchiumi T, Naito S. Inhibition of protein kinase C/Twist1 signaling augments anticancer effects of androgen deprivation and enzalutamide in prostate cancer. Clin Cancer Res 2013; 20:951-61. [PMID: 24352647 DOI: 10.1158/1078-0432.ccr-13-1809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The progression of prostate cancer to metastatic and castration-resistant disease represents a critical step. We previously showed that the transcription factor Twist1, which promotes epithelial-mesenchymal transition, was involved in castration-resistant progression. Similarly, protein kinase C (PKC) has been implicated in both metastatic progression and castration resistance in prostate cancer. EXPERIMENTAL DESIGN In this study, we aimed to elucidate the role of PKC/Twist1 signaling in castration resistance, and to apply this information to the development of a novel therapeutic concept using PKC inhibitor Ro31-8220 against prostate cancer using various prostate cancer cell lines. RESULTS Androgen deprivation and the next-generation antiandrogen enzalutamide induced PKC activation and Twist1 expression, which were reversed by the PKC inhibitor Ro31-8220. Ro31-8220 suppressed cell proliferation in androgen-dependent prostate cancer LNCaP cells, which was augmented by its combination with androgen deprivation or enzalutamide. The favorable anticancer effects of the combination of Ro31-8220 and enzalutamide were also observed in castration-resistant C4-2 and 22Rv1 cells. Furthermore, PKC phosphorylation was elevated in castration-resistant and enzalutamide-resistant cells compared with their parental cells, leading to persistent sensitivity to Ro-31-8220 in castration- and enzalutamide-resistant cells. CONCLUSIONS Taken together, these findings indicate that PKC/Twist1 signaling contributes to castration resistance as well as enzalutamide resistance in prostate cancer, and suggest that therapeutics targeting PKC/Twist1 signaling, such as PKC inhibitors, represent a promising novel therapeutic strategy for prostate cancer, especially castration-resistant prostate cancer, when combined with enzalutamide.
Collapse
Affiliation(s)
- Masaki Shiota
- Authors' Affiliations: Departments of Urology and Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
FOROOTAN FARZADS, FOROOTAN SHIVAS, MALKI MOHAMMEDI, CHEN DANQING, LI GANDI, LIN KE, RUDLAND PHILIPS, FOSTER CHRISTOPHERS, KE YOUQIANG. The expression of C-FABP and PPARγ and their prognostic significance in prostate cancer. Int J Oncol 2013; 44:265-75. [DOI: 10.3892/ijo.2013.2166] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/17/2013] [Indexed: 11/05/2022] Open
|
30
|
Rimessi A, Patergnani S, Ioannidi E, Pinton P. Chemoresistance and Cancer-Related Inflammation: Two Hallmarks of Cancer Connected by an Atypical Link, PKCζ. Front Oncol 2013; 3:232. [PMID: 24062985 PMCID: PMC3770915 DOI: 10.3389/fonc.2013.00232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/24/2013] [Indexed: 12/25/2022] Open
Abstract
Atypical protein kinase C isoforms are serine threonine kinases involved in various pathological conditions. In recent years, the PKCζ isoform has emerged as an important regulator of multiple cellular processes operating in cancer. In this review, we will focus on the PKCζ isoform as an oxidative-sensing kinase involved in cancer-related inflammation and chemoresistance. We will discuss its nuclear localization and its possible pivotal role in connecting inflammation with drug resistance.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara , Ferrara , Italy
| | | | | | | |
Collapse
|
31
|
Protein kinase C zeta regulates human pancreatic cancer cell transformed growth and invasion through a STAT3-dependent mechanism. PLoS One 2013; 8:e72061. [PMID: 24015205 PMCID: PMC3756013 DOI: 10.1371/journal.pone.0072061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/05/2013] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with few therapeutic options. In this study, we investigate the role of protein kinase C zeta (PKCζ) in pancreatic cancer cells. PKCζ has been shown to act as either a tumor suppressor or tumor promoter depending upon the cellular context. We find that PKCζ expression is either maintained or elevated in primary human pancreatic tumors, but is never lost, consistent with PKCζ playing a promotive role in the pancreatic cancer phenotype. Genetic inhibition of PKCζ reduced adherent growth, cell survival and anchorage-independent growth of human pancreatic cancer cells in vitro. Furthermore, PKCζ inhibition reduced orthotopic tumor size in vivo by inhibiting tumor cell proliferation and increasing tumor necrosis. In addition, PKCζ inhibition reduced tumor metastases in vivo, and caused a corresponding reduction in pancreatic cancer cell invasion in vitro. Signal transducer and activator of transcription 3 (STAT3) is often constitutively active in pancreatic cancer, and plays an important role in pancreatic cancer cell survival and metastasis. Interestingly, inhibition of PKCζ significantly reduced constitutive STAT3 activation in pancreatic cancer cells in vitro and in vivo. Pharmacologic inhibition of STAT3 mimicked the phenotype of PKCζ inhibition, and expression of a constitutively active STAT3 construct rescued the transformed phenotype in PKCζ-deficient cells. We conclude that PKCζ is required for pancreatic cancer cell transformed growth and invasion in vitro and tumorigenesis in vivo, and that STAT3 is an important downstream mediator of the pro-carcinogenic effects of PKCζ in pancreatic cancer cells.
Collapse
|
32
|
Abstract
Studies showing reduced PKCζ expression or enzymatic activity in different types of human cancers support the clinical relevance of PKCζ as a tumor suppressor. However, the in vivo role of PKCζ and its mechanisms of action in prostate cancer remain unclear. Here we demonstrate that the genetic inactivation of PKCζ in mice results in invasive prostate carcinoma in vivo in the context of phosphatase and tensin homolog deficiency. Bioinformatic analysis of human prostate cancer gene-expression sets revealed increased c-Myc transcriptional activity in PKCζ-inactive cells, which correlated with increased cell growth, invasion, and metastasis. Interestingly, PKCζ knockdown or the overexpression of a kinase-inactive mutant resulted in enhanced cell proliferation and invasion in vitro through increased c-Myc mRNA and protein levels and decreased Ser-373 phosphorylation of c-Myc. Analysis of prostate cancer samples demonstrated increased expression and decreased phosphorylation of c-Myc at Ser-373 in PKCζ knockout tumors. In vivo xenograft studies revealed that c-Myc phosphorylation by PKCζ is a critical event in the control of metastasis. Collectively, these results establish PKCζ as an important tumor suppressor and regulator of c-Myc function in prostate cancer.
Collapse
|
33
|
Guo J, Evans JC, O’Driscoll CM. Delivering RNAi therapeutics with non-viral technology: a promising strategy for prostate cancer? Trends Mol Med 2013; 19:250-61. [DOI: 10.1016/j.molmed.2013.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023]
|
34
|
Association between DNA methylation of HSPB1 and death in low Gleason score prostate cancer. Prostate Cancer Prostatic Dis 2012; 16:35-40. [PMID: 23165430 PMCID: PMC3572391 DOI: 10.1038/pcan.2012.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Heat shock protein 27 (Hsp-27) encoded by gene HSPB1 is a critical regulator of the behavioral phenotype of human prostate cancer (PCa) cells, enhanced expression being associated with highly aggressive disease and poor clinical outcome. In contrast, the protein is not expressed in PCas of low malignant potential. To gain insight into the mechanism regulating its expression, we tested the hypothesis that differential methylation of CpG islands within HSPB1 controls transcription and subsequent translation of the gene. Methods: We studied prostate epithelial cell lines and tissue biopsies, including 59 BPH and 415 PCas, of which 367 were a cohort of men with up to 20 years of follow-up. Methylation across the gene (DNA methylation (DNAme)) was assayed by pyrosequencing. Hsp-27 expression was assessed by western blot and immunohistochemistry. Results: In cancer tissues, methylation increased in a 3′ direction (P<0.0001) whereas in benign hyperplasia methylation was constantly below 5%, a cutoff giving a specificity of 100% and sensitivity of 50%. Although methylation of the promoter region was significantly discriminating between benign and malignant prostatic epithelia, it compared poorly with methylation of the first intron. The prognostic value of HSPB1 DNAme was confirmed by both univariate (hazard ratio 1.77 per 50% increment, P=0.02) and multivariate models. Interaction between HSPB1 methylation and Gleason score revealed high DNAme to be a reliable prognostic marker of poor outcome in men with low Gleason score (P=0.014). Conclusions: Our data indicate CpG methylation of the first HSPB1 intron to be an important biomarker that identifies aggressive PCas otherwise regarded as low risk by current clinical criteria but that, biologically, require immediate active management.
Collapse
|
35
|
Ferreira LB, Palumbo A, de Mello KD, Sternberg C, Caetano MS, de Oliveira FL, Neves AF, Nasciutti LE, Goulart LR, Gimba ERP. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer 2012; 12:507. [PMID: 23130941 PMCID: PMC3544699 DOI: 10.1186/1471-2407-12-507] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/19/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling. METHODS LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR. RESULTS LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions. CONCLUSIONS Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new possibilities of using PCA3 knockdown as an additional therapeutic strategy for PCa control.
Collapse
Affiliation(s)
- Luciana Bueno Ferreira
- Instituto Nacional do Câncer/Programa de Carcinogênese Molecular and Programa de Pós Graduação Stricto Sensu em Oncologia, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yao S, Ireland SJ, Bee A, Beesley C, Forootan SS, Dodson A, Dickinson T, Gerard P, Lian LY, Risk JM, Smith P, Malki MI, Ke Y, Cooper CS, Gosden C, Foster CS. Splice variant PRKC-ζ(-PrC) is a novel biomarker of human prostate cancer. Br J Cancer 2012; 107:388-99. [PMID: 22644296 PMCID: PMC3394965 DOI: 10.1038/bjc.2012.162] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/24/2012] [Accepted: 03/25/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previously, using gene-knockdown techniques together with genome expression array analysis, we showed the gene protein Kinase C (PKC)-zeta (PRKCZ) to mediate the malignant phenotype of human prostate cancer. However, according to NCBI, the gene has undergone several major iterations. Therefore, to understand the relationship between its structure and biological activities, we have analysed its expressed sequence in prostate cancer cell lines and tissues. METHODS Transcriptome-walking and targeted PCR were used to sequence the mRNA transcribed from PRKCZ. Hydropathy analysis was employed to analyse the hypothetical protein sequence subsequently translated and to identify an appropriate epitope to generate a specific monoclonal antibody. RESULTS A novel sequence was identified within the 3'-terminal domain of human PRKCZ that, in prostate cancer cell lines and tissues, is expressed during transcription and thereafter translated into protein (designated PKC-ζ(-PrC)) independent of conventional PKC-ζ(-a). The monoclonal antibody detected expression of this 96 kD protein only within malignant prostatic epithelium. INTERPRETATION Transcription and translation of this gene sequence, including previous intronic sequences, generates a novel specific biomarker of human prostate cancer. The presence of catalytic domains characteristic of classic PKC-β and atypical PKC-ι within PKC-ζ(-PrC) provides a potential mechanism for this PRKCZ variant to modulate the malignant prostatic phenotype out-with normal cell-regulatory control.
Collapse
Affiliation(s)
- S Yao
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - S J Ireland
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - A Bee
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - C Beesley
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - S S Forootan
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - A Dodson
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - T Dickinson
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - P Gerard
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - L-Y Lian
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - J M Risk
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - P Smith
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - M I Malki
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - Y Ke
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - C S Cooper
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - C Gosden
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - C S Foster
- Division of Pathology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| |
Collapse
|
37
|
Clotworthy M. The application of human tissue for drug discovery and development. Expert Opin Drug Discov 2012; 7:543-7. [DOI: 10.1517/17460441.2012.689282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Inoue T, Ogawa O. Role of signaling transduction pathways in development of castration-resistant prostate cancer. Prostate Cancer 2011; 2011:647987. [PMID: 22110995 PMCID: PMC3197001 DOI: 10.1155/2011/647987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/09/2011] [Indexed: 12/16/2022] Open
Abstract
Almost all patients who succumb to prostate cancer die of metastatic castration-resistant disease. Although docetaxel is the standard treatment for this disease and is associated with modest prolongation of survival, there is an urgent need for novel treatments for castration-resistant prostate cancer (CRPC). Great advances in our understanding of the biological and molecular mechanisms of prostate cancer progression have resulted in many clinical trials of numerous targeted therapies. In this paper, we review mechanisms of CRPC development, with particular focus on recent advances in the understanding of specific intracellular signaling pathways participating in the proliferation of CRPC cells.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
39
|
Bee A, Brewer D, Beesley C, Dodson A, Forootan S, Dickinson T, Gerard P, Lane B, Yao S, Cooper CS, Djamgoz MBA, Gosden CM, Ke Y, Foster CS. siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. PLoS One 2011; 6:e22672. [PMID: 21799931 PMCID: PMC3142177 DOI: 10.1371/journal.pone.0022672] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/04/2011] [Indexed: 12/15/2022] Open
Abstract
We provide novel functional data that posttranscriptional silencing of gene RPL19 using RNAi not only abrogates the malignant phenotype of PC-3M prostate cancer cells but is selective with respect to transcription and translation of other genes. Reducing RPL19 transcription modulates a subset of genes, evidenced by gene expression array analysis and Western blotting, but does not compromise cell proliferation or apoptosis in-vitro. However, growth of xenografted tumors containing the knocked-down RPL19 in-vivo is significantly reduced. Analysis of the modulated genes reveals induction of the non-malignant phenotype principally to involve perturbation of networks of transcription factors and cellular adhesion genes. The data provide evidence that extra-ribosomal regulatory functions of RPL19, beyond protein synthesis, are critical regulators of cellular phenotype. Targeting key members of affected networks identified by gene expression analysis raises the possibility of therapeutically stabilizing a benign phenotype generated by modulating the expression of an individual gene and thereafter constraining a malignant phenotype while leaving non-malignant tissues unaffected.
Collapse
Affiliation(s)
- Alix Bee
- Section of Cellular Pathology and Molecular Genetics, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Daniel Brewer
- Molecular Carcinogenesis Group, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Carol Beesley
- Section of Cellular Pathology and Molecular Genetics, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Dodson
- Section of Cellular Pathology and Molecular Genetics, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Shiva Forootan
- Section of Cellular Pathology and Molecular Genetics, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Timothy Dickinson
- Section of Cellular Pathology and Molecular Genetics, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Gerard
- Section of Cellular Pathology and Molecular Genetics, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Brian Lane
- Liverpool Microarray Facility, Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Sheng Yao
- Section of Cellular Pathology and Molecular Genetics, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Colin S. Cooper
- Molecular Carcinogenesis Group, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Mustafa B. A. Djamgoz
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Christine M. Gosden
- Section of Cellular Pathology and Molecular Genetics, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Youqiang Ke
- Section of Cellular Pathology and Molecular Genetics, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christopher S. Foster
- Section of Cellular Pathology and Molecular Genetics, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Pathology: coming in from the cold. Cell Tissue Bank 2010; 12:25-7. [PMID: 20824351 DOI: 10.1007/s10561-010-9211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
Following the UK's organ retention scandals that occurred a decade ago, politicians unleashed a deluge of well-intentioned but naïve and unnecessarily burdensome regulations that have progressively stymied human tissue-based research, stifling development of improved diagnostic and prognostic tests as well as discovery of new treatments based on sound knowledge of human-specific biology. For the UK to maintain a leading role in medical research, more sensible levels of regulation need to be introduced that recognise differences between tissue from donors who have passed-away and surgical tissue that is surplus to diagnostic requirements and that otherwise will be incinerated. While it is important to reassure the public that research using their tissues will be conducted within an approved ethical framework, it is equally important to ensure that, as hospital staff and academic researchers, we are able to fulfil our unwritten covenant with patients to do our utmost to seek better diagnostic assays and more predictive prognostic indicators, while collaborating with our colleagues in academia and industry and hence bring hope to patients with illnesses for which no effective treatments are yet available. There is a clear case for introducing an opt-out system as the default to allow all surplus surgical tissues to be immediately available for research, concomitant with an education campaign. This is the optimal and most ethical approach to ensure the wishes of the vast majority of patients are respected by allowing their residual surgical tissues and relevant clinical information to be made available for research without the current levels of obstruction and hindrance.
Collapse
|