1
|
Ho YF, Yajit NLM, Shiau JY, Malek SNA, Shyur LF, Karsani SA. Changes in the Proteome Profile of A549 Cells Following Helichrysetin-Induced Apoptosis Suggest the Involvement of DNA Damage Response and Cell Cycle Arrest-Associated Proteins. Appl Biochem Biotechnol 2023; 195:6867-6880. [PMID: 36947367 DOI: 10.1007/s12010-023-04384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/23/2023]
Abstract
Our previous findings demonstrated that Helichrysetin possessed promising anti-cancer activity. It was able to induce apoptosis in the A549 cell line. However, its mechanism of action is unknown. The present study aimed to unravel possible underlying molecular mechanisms of helichrysetin-induced apoptosis in A549 (human lung carcinoma) cells using comparative quantitative proteomics (iTRAQ labeled), followed by an exhaustive bioinformatics analysis. Our results suggested that DNA damage response (DDR) and cell cycle arrest were responsible for lung cancer cell death with helichrysetin treatment. Among proteins that changed in abundance were Nrf2 and HMOX1. They are oxidative stress-related proteins and were increased in abundance. BRAT1 was also increased in abundance, suggesting an increase in DNA damage repair, indicating the occurrence of DNA damage due to oxidative stress. However, several essential DDR downstream proteins such as p-ATM, BRCA1, FANCD2, and Rb1 that would further increase DNA damage were found to be dramatically decreased in relative abundance. Cell cycle-related proteins, p53, p21, and cyclin D1, were increased while cyclin A, cyclin E, and cdk2 were decreased. This is predicted to facilitate S-phase arrest. Furthermore, excessive DNA damage and prolonged arrest would in turn result in the induction of mitochondrial-mediated apoptosis. Based on these observations, we postulate that the effects of helichrysetin were in part via the suppression of DNA damage response which led to DNA damage and prolonged cell cycle arrest. Subsequently, this event initiated mitochondrial-mediated apoptosis in A549 lung cancer cells.
Collapse
Affiliation(s)
- Yen Fong Ho
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Liana Mat Yajit
- University of Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jeng-Yuan Shiau
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Bevinakoppamath S, Ramachandra SC, Yadav AK, Basavaraj V, Vishwanath P, Prashant A. Understanding the Emerging Link Between Circadian Rhythm, Nrf2 Pathway, and Breast Cancer to Overcome Drug Resistance. Front Pharmacol 2022; 12:719631. [PMID: 35126099 PMCID: PMC8807567 DOI: 10.3389/fphar.2021.719631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The levels of different molecules in the cell are rhythmically cycled by the molecular clock present at the cellular level. The circadian rhythm is closely linked to the metabolic processes in the cells by an underlying mechanism whose intricacies need to be thoroughly investigated. Nevertheless, Nrf2 has been identified as an essential bridge between the circadian clock and cellular metabolism and is activated by the by-product of cellular metabolism like hydrogen peroxide. Once activated it binds to the specific DNA segments and increases the transcription of several genes that play a crucial role in the normal functioning of the cell. The central clock located in the suprachiasmatic nucleus of the anterior hypothalamus synchronizes the timekeeping in the peripheral tissues by integrating the light-dark input from the environment. Several studies have demonstrated the role of circadian rhythm as an effective tumor suppressor. Tumor development is triggered by the stimulation or disruption of signaling pathways at the cellular level as a result of the interaction between cells and environmental stimuli. Oxidative stress is one such external stimulus that disturbs the prooxidant/antioxidant equilibrium due to the loss of control over signaling pathways which destroy the bio-molecules. Altered Nrf2 expression and impaired redox balance are associated with various cancers suggesting that Nrf2 targeting may be used as a novel therapeutic approach for treating cancers. On the other hand, Nrf2 has also been shown to enhance the resistance of cancer cells to chemotherapeutic agents. We believe that maximum efficacy with minimum side effects for any particular therapy can be achieved if the treatment strategy regulates the circadian rhythm. In this review, we discuss the various molecular mechanisms interlinking the circadian rhythm with the Nrf2 pathway and contributing to breast cancer pathogenesis, we also talk about how these two pathways work in close association with the cell cycle which is another oscillatory system, and whether this interplay can be exploited to overcome drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shobha Chikkavaddaragudi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Anshu Kumar Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
- Special Interest Group-Human Genomics and Rare Disorders, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Akila Prashant,
| |
Collapse
|
3
|
Utility of Cyclin D1 in the Diagnostic Workup of Hematopoietic Neoplasms: What Can Cyclin D1 Do for Us? Adv Anat Pathol 2019; 26:281-291. [PMID: 31261248 DOI: 10.1097/pap.0000000000000241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclin D1, encoded by CCND1, promotes cell cycle progression from G1 to S phase. Its expression is induced by MAPK/ERK pathway as well as translocations/rearrangements involving CCND1 gene. The evaluation of cyclin D1 expression by immunohistochemistry plays an important role in the diagnostic workup of various hematopoietic diseases. In this review, we aimed to discuss the value of cyclin D1 immunostain in the diagnosis and different diagnosis of hematopoietic neoplasms.
Collapse
|
4
|
Abd El-Hafeez AA, Khalifa HO, Mahdy EAM, Sharma V, Hosoi T, Ghosh P, Ozawa K, Montano MM, Fujimura T, Ibrahim ARN, Abdelhamid MAA, Pack SP, Shouman SA, Kawamoto S. Anticancer effect of nor-wogonin (5, 7, 8-trihydroxyflavone) on human triple-negative breast cancer cells via downregulation of TAK1, NF-κB, and STAT3. Pharmacol Rep 2019; 71:289-298. [PMID: 30826569 DOI: 10.1016/j.pharep.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Nor-wogonin, a polyhydroxy flavone, has been shown to possess antitumor activity. However, the mechanisms responsible for its antitumor activity are poorly studied. Herein, we investigated the mechanisms of nor-wogonin actions in triple-negative breast cancer (TNBC) cells. METHODS Effects of nor-wogonin on cell proliferation and viability of four TNBC cell lines (MDA-MB-231, BT-549, HCC70, and HCC1806) and two non-tumorigenic breast cell lines (MCF-10A and AG11132) were assessed by BrdU incorporation assays and trypan blue dye exclusion tests. Cell cycle and apoptosis analyses were carried out by flow cytometry. Protein expression was analyzed by immunoblotting. RESULTS Nor-wogonin significantly inhibited the growth and decreased the viability of TNBC cells; however, it exhibited no or minimal effects in non-tumorigenic breast cells. Nor-wogonin (40 μM) was a more potent anti-proliferative and cytotoxic agent than wogonin (100 μM) and wogonoside (100 μM), which are structurally related to nor-wogonin. The antitumor effects of nor-wogonin can be attributed to cell cycle arrest via reduction of the expression of cyclin D1, cyclin B1, and CDK1. Furthermore, nor-wogonin induced mitochondrial apoptosis, (as evidenced by the increase in % of cells that are apoptotic), decreases in the mitochondrial membrane potential (ΔΨm), increases in Bax/Bcl-2 ratio, and caspase-3 cleavage. Moreover, nor-wogonin attenuated the expression of the nuclear factor kappa-B and activation of signal transducer and activator of transcription 3 pathways, which can be correlated with suppression of transforming growth factor-β-activated kinase 1 in TNBC cells. CONCLUSION These results showed that nor-wogonin might be a potential multi-target agent for TNBC treatment.
Collapse
Affiliation(s)
- Amer Ali Abd El-Hafeez
- Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Global Career Design Center, Hiroshima University, Hiroshima, Japan; Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Hazim O Khalifa
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | | | - Vikas Sharma
- Pharmacology Department, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Toru Hosoi
- Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA,USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Koichiro Ozawa
- Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Monica M Montano
- Pharmacology Department, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Takashi Fujimura
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| | - Ahmed R N Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed A A Abdelhamid
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia Egypt; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Samia A Shouman
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Belső N, Gubán B, Manczinger M, Kormos B, Bebes A, Németh I, Veréb Z, Széll M, Kemény L, Bata-Csörgő Z. Differential role of D cyclins in the regulation of cell cycle by influencing Ki67 expression in HaCaT cells. Exp Cell Res 2019; 374:290-303. [DOI: 10.1016/j.yexcr.2018.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 11/30/2022]
|
6
|
Márton M, Tihanyi N, Gyulavári P, Bánhegyi G, Kapuy O. NRF2-regulated cell cycle arrest at early stage of oxidative stress response mechanism. PLoS One 2018; 13:e0207949. [PMID: 30485363 PMCID: PMC6261604 DOI: 10.1371/journal.pone.0207949] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress results in activation of several signal transduction pathways controlled by the PERK-substrate NRF2 (nuclear factor erythroid 2-related factor 2); meanwhile the ongoing cell division cycle has to be blocked. It has been recently shown that Cyclin D1 got immediately down-regulated via PERK pathway in response to oxidative stress leading to cell cycle arrest. However, the effect of NRF2 on cell cycle regulation has not been explored yet. We aimed to reveal a crosstalk between PERK-substrate NRF2 and the key elements of cell cycle regulatory network upon oxidative stress using molecular biological techniques- Although Cyclin D1 level remained constant, its activity was blocked by various stoichiometric inhibitors (such as p15, p21 and p27) even at low level of oxidative stress. The activity of these CDK inhibitors completely disappeared, when the addition of oxidative agent was combined with silencing of either PERK or NRF2.This further confirms the important role of NRF2 in blocking Cyclin D1 with stoichiometric inhibitors at early stage of oxidative stress.
Collapse
Affiliation(s)
- Margita Márton
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Nikolett Tihanyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Pál Gyulavári
- MTA-SE Pathobiochemistry Research Group, Budapest, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Budapest, Hungary
| | - Orsolya Kapuy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
7
|
Chen H, Xu X, Wang G, Zhang B, Wang G, Xin G, Liu J, Jiang Q, Zhang H, Zhang C. CDK4 protein is degraded by anaphase-promoting complex/cyclosome in mitosis and reaccumulates in early G 1 phase to initiate a new cell cycle in HeLa cells. J Biol Chem 2017; 292:10131-10141. [PMID: 28446612 DOI: 10.1074/jbc.m116.773226] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/26/2017] [Indexed: 12/29/2022] Open
Abstract
CDK4 regulates G1/S phase transition in the mammalian cell cycle by phosphorylating retinoblastoma family proteins. However, the mechanism underlying the regulation of CDK4 activity is not fully understood. Here, we show that CDK4 protein is degraded by anaphase-promoting complex/cyclosome (APC/C) during metaphase-anaphase transition in HeLa cells, whereas its main regulator, cyclin D1, remains intact but is sequestered in cytoplasm. CDK4 protein reaccumulates in the following G1 phase and shuttles between the nucleus and the cytoplasm to facilitate the nuclear import of cyclin D1. Without CDK4, cyclin D1 cannot enter the nucleus. Point mutations that disrupt CDK4 and cyclin D1 interaction impair the nuclear import of cyclin D1 and the activity of CDK4. RNAi knockdown of CDK4 also induces cytoplasmic retention of cyclin D1 and G0/G1 phase arrest of the cells. Collectively, our data demonstrate that CDK4 protein is degraded in late mitosis and reaccumulates in the following G1 phase to facilitate the nuclear import of cyclin D1 for activation of CKD4 to initiate a new cell cycle in HeLa cells.
Collapse
Affiliation(s)
- Huabo Chen
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaowei Xu
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guopeng Wang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Boyan Zhang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Wang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junjun Liu
- the Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Qing Jiang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China,
| | - Hongyin Zhang
- the Cancer Research Center, Peking University Hospital, Peking University, Beijing 100871, China, and
| | - Chuanmao Zhang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China,
| |
Collapse
|
8
|
Magiera K, Tomala M, Kubica K, De Cesare V, Trost M, Zieba BJ, Kachamakova-Trojanowska N, Les M, Dubin G, Holak TA, Skalniak L. Lithocholic Acid Hydroxyamide Destabilizes Cyclin D1 and Induces G 0/G 1 Arrest by Inhibiting Deubiquitinase USP2a. Cell Chem Biol 2017; 24:458-470.e18. [PMID: 28343940 PMCID: PMC5404848 DOI: 10.1016/j.chembiol.2017.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/26/2016] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
USP2a is a deubiquitinase responsible for stabilization of cyclin D1, a crucial regulator of cell-cycle progression and a proto-oncoprotein overexpressed in numerous cancer types. Here we report that lithocholic acid (LCA) derivatives are inhibitors of USP proteins, including USP2a. The most potent LCA derivative, LCA hydroxyamide (LCAHA), inhibits USP2a, leading to a significant Akt/GSK3β-independent destabilization of cyclin D1, but does not change the expression of p27. This leads to the defects in cell-cycle progression. As a result, LCAHA inhibits the growth of cyclin D1-expressing, but not cyclin D1-negative cells, independently of the p53 status. We show that LCA derivatives may be considered as future therapeutics for the treatment of cyclin D1-addicted p53-expressing and p53-defective cancer types.
Collapse
Affiliation(s)
- Katarzyna Magiera
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Marcin Tomala
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna Kubica
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Bartosz J Zieba
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| | - Marcin Les
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
9
|
Byrnes KA, Phatak P, Mansour D, Xiao L, Zou T, Rao JN, Turner DJ, Wang JY, Donahue JM. Overexpression of miR-199a-5p decreases esophageal cancer cell proliferation through repression of mitogen-activated protein kinase kinase kinase-11 (MAP3K11). Oncotarget 2016; 7:8756-70. [PMID: 26717044 PMCID: PMC4891002 DOI: 10.18632/oncotarget.6752] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/16/2015] [Indexed: 01/23/2023] Open
Abstract
Studies examining the oncogenic or tumor suppressive functions of dysregulated microRNAs (miRs) in cancer cells may also identify novel miR targets, which can themselves serve as therapeutic targets. Using array analysis, we have previously determined that miR-199a-5p was the most downregulated miR in two esophageal cancer cell lines compared to esophageal epithelial cells. MiR-199a-5p is predicted to bind mitogen-activated protein kinase kinase kinase 11 (MAP3K11) mRNA with high affinity. In this study, we observed that MAP3K11 is markedly overexpressed in esophageal cancer cell lines. Forced expression of miR-199a-5p in these cells leads to a decrease in the mRNA and protein levels of MAP3K11, due to decreased MAP3K11 mRNA stability. A direct binding interaction between miR-199a-5p and MAP3K11 mRNA is demonstrated using biotin pull-down assays and heterologous luciferase reporter constructs and confirmed by mutational analysis. Finally, forced expression of miR-199a-5p decreases proliferation of esophageal cancer cells by inducing G2/M arrest. This effect is mediated, in part, by decreased transcription of cyclin D1, due to reduced MAP3K11-mediated phosphorylation of c-Jun. These findings suggest that miR-199a-5p acts as a tumor suppressor in esophageal cancer cells and that its downregulation contributes to enhanced cellular proliferation by targeting MAP3K11.
Collapse
Affiliation(s)
- Kimberly A. Byrnes
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Pornima Phatak
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Daniel Mansour
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Lan Xiao
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Tongtong Zou
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jaladanki N. Rao
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Douglas J. Turner
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jian-Ying Wang
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
| | - James M. Donahue
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| |
Collapse
|
10
|
Akçay Nİ, Bashirov R, Tüzmen Ş. Validation of signalling pathways: Case study of the p16-mediated pathway. J Bioinform Comput Biol 2015; 13:1550007. [DOI: 10.1142/s0219720015500079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
p16 is recognized as a tumor suppressor gene due to the prevalence of its genetic inactivation in all types of human cancers. Additionally, p16 gene plays a critical role in controlling aging, regulating cellular senescence, detection and maintenance of DNA damage. The molecular mechanism behind these events involves p16-mediated signaling pathway (or p16- Rb pathway), the focus of our study. Understanding functional dependence between dynamic behavior of biological components involved in the p16-mediated pathway and aforesaid molecular-level events might suggest possible implications in the diagnosis, prognosis and treatment of human cancer. In the present work, we employ reverse-engineering approach to construct the most detailed computational model of p16-mediated pathway in higher eukaryotes. We implement experimental data from the literature to validate the model, and under various assumptions predict the dynamic behavior of p16 and other biological components by interpreting the simulation results. The quantitative model of p16-mediated pathway is created in a systematic manner in terms of Petri net technologies.
Collapse
Affiliation(s)
- Nimet İlke Akçay
- Department of Applied Mathematics and Computer Science, Eastern Mediterranean University, Famagusta, North Cyprus, Mersin-10, Turkey
| | - Rza Bashirov
- Department of Applied Mathematics and Computer Science, Eastern Mediterranean University, Famagusta, North Cyprus, Mersin-10, Turkey
| | - Şükrü Tüzmen
- Department of Biological Sciences, Eastern Mediterranean University, Famagusta, North Cyprus, Mersin-10, Turkey
| |
Collapse
|
11
|
Boucherat O, Nadeau V, Bérubé-Simard FA, Charron J, Jeannotte L. Crucial requirement of ERK/MAPK signaling in respiratory tract development. Development 2014; 141:3197-211. [DOI: 10.1242/dev.110254] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian genome contains two ERK/MAP kinase genes, Mek1 and Mek2, which encode dual-specificity kinases responsible for ERK/MAP kinase activation. In order to define the function of the ERK/MAPK pathway in the lung development in mice, we performed tissue-specific deletions of Mek1 function on a Mek2 null background. Inactivation of both Mek genes in mesenchyme resulted in several phenotypes, including giant omphalocele, kyphosis, pulmonary hypoplasia, defective tracheal cartilage and death at birth. The absence of tracheal cartilage rings establishes the crucial role of intracellular signaling molecules in tracheal chondrogenesis and provides a putative mouse model for tracheomalacia. In vitro, the loss of Mek function in lung mesenchyme did not interfere with lung growth and branching, suggesting that both the reduced intrathoracic space due to the dysmorphic rib cage and the omphalocele impaired lung development in vivo. Conversely, Mek mutation in the respiratory epithelium caused lung agenesis, a phenotype resulting from the direct impact of the ERK/MAPK pathway on cell proliferation and survival. No tracheal epithelial cell differentiation occurred and no SOX2-positive progenitor cells were detected in mutants, implying a role for the ERK/MAPK pathway in trachea progenitor cell maintenance and differentiation. Moreover, these anomalies were phenocopied when the Erk1 and Erk2 genes were mutated in airway epithelium. Thus, the ERK/MAPK pathway is required for the integration of mesenchymal and epithelial signals essential for the development of the entire respiratory tract.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Valérie Nadeau
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Félix-Antoine Bérubé-Simard
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada G1V 0A6
| | - Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada G1V 0A6
| |
Collapse
|
12
|
Lou X, Zhang J, Liu S, Xu N, Liao DJ. The other side of the coin: the tumor-suppressive aspect of oncogenes and the oncogenic aspect of tumor-suppressive genes, such as those along the CCND-CDK4/6-RB axis. Cell Cycle 2014; 13:1677-93. [PMID: 24799665 DOI: 10.4161/cc.29082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although cancer-regulatory genes are dichotomized to oncogenes and tumor-suppressor gene s, in reality they can be oncogenic in one situation but tumor-suppressive in another. This dual-function nature, which sometimes hampers our understanding of tumor biology, has several manifestations: (1) Most canonically defined genes have multiple mRNAs, regulatory RNAs, protein isoforms, and posttranslational modifications; (2) Genes may interact at different levels, such as by forming chimeric RNAs or by forming different protein complexes; (3) Increased levels of tumor-suppressive genes in normal cells drive proliferation of cancer progenitor cells in the same organ or tissue by imposing compensatory proliferation pressure, which presents the dual-function nature as a cell-cell interaction. All these manifestations of dual functions can find examples in the genes along the CCND-CDK4/6-RB axis. The dual-function nature also underlies the heterogeneity of cancer cells. Gene-targeting chemotherapies, including that targets CDK4, are effective to some cancer cells but in the meantime may promote growth or progression of some others in the same patient. Redefining "gene" by considering each mRNA, regulatory RNA, protein isoform, and posttranslational modification from the same genomic locus as a "gene" may help in better understanding tumor biology and better selecting targets for different sub-populations of cancer cells in individual patients for personalized therapy.
Collapse
Affiliation(s)
- Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology; Cancer Institute; Chinese Academy of Medical Science; Beijing, PR China
| | - D Joshua Liao
- Hormel Institute; University of Minnesota; Austin, MN USA
| |
Collapse
|
13
|
Schuld NJ, Hauser AD, Gastonguay AJ, Wilson JM, Lorimer EL, Williams CL. SmgGDS-558 regulates the cell cycle in pancreatic, non-small cell lung, and breast cancers. Cell Cycle 2014; 13:941-52. [PMID: 24552806 DOI: 10.4161/cc.27804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oncogenic mutation or misregulation of small GTPases in the Ras and Rho families can promote unregulated cell cycle progression in cancer. Post-translational modification by prenylation of these GTPases allows them to signal at the cell membrane. Splice variants of SmgGDS, named SmgGDS-607 and SmgGDS-558, promote the prenylation and membrane trafficking of multiple Ras and Rho family members, which makes SmgGDS a potentially important regulator of the cell cycle. Surprisingly little is known about how SmgGDS-607 and SmgGDS-558 affect cell cycle-regulatory proteins in cancer, even though SmgGDS is overexpressed in multiple types of cancer. To examine the roles of SmgGDS splice variants in the cell cycle, we compared the effects of the RNAi-mediated depletion of SmgGDS-558 vs. SmgGDS-607 on cell cycle progression and the expression of cyclin D1, p27, and p21 in pancreatic, lung, and breast cancer cell lines. We show for the first time that SmgGDS promotes proliferation of pancreatic cancer cells, and we demonstrate that SmgGDS-558 plays a greater role than SmgGDS-607 in cell cycle progression as well as promoting cyclin D1 and suppressing p27 expression in multiple types of cancer. Silencing both splice variants of SmgGDS in the cancer cell lines produces an alternative signaling profile compared with silencing SmgGDS-558 alone. We also show that loss of both SmgGDS-607 and SmgGDS-558 simultaneously decreases tumorigenesis of NCI-H1703 non-small cell lung carcinoma (NSCLC) xenografts in mice. These findings indicate that SmgGDS promotes cell cycle progression in multiple types of cancer, making SmgGDS a valuable target for cancer therapeutics.
Collapse
Affiliation(s)
- Nathan J Schuld
- Department of Pharmacology and Toxicology; Medical College of Wisconsin; Milwaukee, WI USA
| | - Andrew D Hauser
- Department of Pharmacology and Toxicology; Medical College of Wisconsin; Milwaukee, WI USA
| | - Adam J Gastonguay
- Department of Pediatrics; Medical College of Wisconsin; Milwaukee, WI USA
| | - Jessica M Wilson
- Department of Pharmacology and Toxicology; Medical College of Wisconsin; Milwaukee, WI USA
| | - Ellen L Lorimer
- Department of Pharmacology and Toxicology; Medical College of Wisconsin; Milwaukee, WI USA
| | - Carol L Williams
- Department of Pharmacology and Toxicology; Medical College of Wisconsin; Milwaukee, WI USA
| |
Collapse
|
14
|
Pyo CW, Choi JH, Oh SM, Choi SY. Oxidative stress-induced cyclin D1 depletion and its role in cell cycle processing. Biochim Biophys Acta Gen Subj 2013; 1830:5316-25. [PMID: 23920145 DOI: 10.1016/j.bbagen.2013.07.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/01/2013] [Accepted: 07/27/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cyclin D1 is immediately down-regulated in response to reactive oxygen species (ROS) and implicated in the induction of cell cycle arrest in G2 phase by an unknown mechanism. Either treatment with a protease inhibitor alone or expression of protease-resistant cyclin D1 T286A resulted in only a partial relief from the ROS-induced cell cycle arrest, indicating the presence of an additional control mechanism. METHODS Cells were exposed to hydrogen peroxide (H2O2), and analyzed to assess the changes in cyclin D1 level and its effects on cell cycle processing by kinase assay, de novo synthesis, gene silencing, and polysomal analysis, etc. RESULTS Exposure of cells to excessive H2O2 induced ubiquitin-dependent proteasomal degradation of cyclin D1, which was subsequently followed by translational repression. This dual control mechanism was found to contribute to the induction of cell cycle arrest in G2 phase under oxidative stress. Silencing of an eIF2α kinase PERK significantly retarded cyclin D1 depletion, and contributed largely to rescuing cells from G2 arrest. Also the cyclin D1 level was found to be correlated with Chk1 activity. CONCLUSIONS In addition to an immediate removal of the pre-existing cyclin D1 under oxidative stress, the following translational repression appear to be required for ensuring full depletion of cyclin D1 and cell cycle arrest. Oxidative stress-induced cyclin D1 depletion is linked to the regulation of G2/M transit via the Chk1-Cdc2 DNA damage checkpoint pathway. GENERAL SIGNIFICANCE The control of cyclin D1 is a gate keeping program to protect cells from severe oxidative damages.
Collapse
Affiliation(s)
- Chul-Woong Pyo
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
15
|
Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:247504. [PMID: 23710216 PMCID: PMC3655614 DOI: 10.1155/2013/247504] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/19/2013] [Indexed: 11/17/2022]
Abstract
Ellagitannins (ETs) from pomegranate juice (PJ) are bioactive polyphenols with chemopreventive potential against prostate cancer (PCa). ETs are not absorbed intact but are partially hydrolyzed in the gut to ellagic acid (EA). Colonic microflora can convert EA to urolithin A (UA), and EA and UA enter the circulation after PJ consumption. Here, we studied the effects of EA and UA on cell proliferation, cell cycle, and apoptosis in DU-145 and PC-3 androgen-independent PCa cells and whether combinations of EA and UA affected cell proliferation. EA demonstrated greater dose-dependent antiproliferative effects in both cell lines compared to UA. EA induced cell cycle arrest in S phase associated with decreased cyclin B1 and cyclin D1 levels. UA induced a G2/M arrest and increased cyclin B1 and cdc2 phosphorylation at tyrosine-15, suggesting inactivation of the cyclin B1/cdc2 kinase complex. EA induced apoptosis in both cell lines, while UA had a less pronounced proapoptotic effect only in DU-145. Cotreatment with low concentrations of EA and UA dramatically decreased cell proliferation, exhibiting synergism in PC-3 cells evaluated by isobolographic analysis and combination index. These data provide information on pomegranate metabolites for the prevention of PCa recurrence, supporting the role of gut flora-derived metabolites for cancer prevention.
Collapse
|
16
|
Affiliation(s)
- Mathew C Casimiro
- Department of Cancer Biology, Thomas Jefferson University and Hospital, Kimmel Cancer Center, Philadelphia, USA
| | | |
Collapse
|
17
|
Zhu L, Guan H, Cui C, Tian S, Yang D, Wang X, Zhang S, Wang L, Jiang H. Gastrodin inhibits cell proliferation in vascular smooth muscle cells and attenuates neointima formation in vivo. Int J Mol Med 2012; 30:1034-40. [PMID: 22922870 PMCID: PMC3573735 DOI: 10.3892/ijmm.2012.1100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/23/2012] [Indexed: 02/06/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the development of vascular diseases. In the present study, we tested the efficacy and the mechanisms of action of gastrodin, a bioactive component of the Chinese herb Gastrodia elata Bl, in relation to platelet-derived growth factor-BB (PDGF-BB)-dependent cell proliferation and neointima formation after acute vascular injury. Cell experiments were performed with VSMCs isolated from rat aortas. WST and BrdU incorporation assays were used to evaluate VSMC proliferation. Eight-week-old C57BL/6 mice were used for the animal experiments. Gastrodin (150 mg/kg/day) was administered in the animal chow for 14 days, and the mice were subjected to wire injury of the left carotid artery. Our data demonstrated that gastrodin attenuated the VSMC proliferation induced by PDGF-BB, as assessed by WST assay and BrdU incorporation. Gastrodin influenced the S-phase entry of VSMCs and stabilised p27Kip1 expression. In addition, pre-incubation with sinomenine prior to PDGF-BB stimulation led to increased smooth muscle-specific gene expression, thereby inhibiting VSMC dedifferentiation. Gastrodin treatment also reduced the intimal area and the number of PCNA-positive cells. Furthermore, PDGF-BB-induced phosphorylation of ERK1/2, p38 MAPK, Akt and GSK3β was suppressed by gastrodin. Our results suggest that gastrodin can inhibit VSMC proliferation and attenuate neointimal hyperplasia in response to vascular injury. Furthermore, the ERK1/2, p38 MAPK and Akt/GSK3β signalling pathways were found to be involved in the effects of gastrodin.
Collapse
Affiliation(s)
- Lihua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Casimiro MC, Crosariol M, Loro E, Ertel A, Yu Z, Dampier W, Saria EA, Papanikolaou A, Stanek TJ, Li Z, Wang C, Fortina P, Addya S, Tozeren A, Knudsen ES, Arnold A, Pestell RG. ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. J Clin Invest 2012; 122:833-43. [PMID: 22307325 DOI: 10.1172/jci60256] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/21/2011] [Indexed: 12/25/2022] Open
Abstract
Chromosomal instability (CIN) in tumors is characterized by chromosomal abnormalities and an altered gene expression signature; however, the mechanism of CIN is poorly understood. CCND1 (which encodes cyclin D1) is overexpressed in human malignancies and has been shown to play a direct role in transcriptional regulation. Here, we used genome-wide ChIP sequencing and found that the DNA-bound form of cyclin D1 occupied the regulatory region of genes governing chromosomal integrity and mitochondrial biogenesis. Adding cyclin D1 back to Ccnd1(-/-) mouse embryonic fibroblasts resulted in CIN gene regulatory region occupancy by the DNA-bound form of cyclin D1 and induction of CIN gene expression. Furthermore, increased chromosomal aberrations, aneuploidy, and centrosome abnormalities were observed in the cyclin D1-rescued cells by spectral karyotyping and immunofluorescence. To assess cyclin D1 effects in vivo, we generated transgenic mice with acute and continuous mammary gland-targeted cyclin D1 expression. These transgenic mice presented with increased tumor prevalence and signature CIN gene profiles. Additionally, interrogation of gene expression from 2,254 human breast tumors revealed that cyclin D1 expression correlated with CIN in luminal B breast cancer. These data suggest that cyclin D1 contributes to CIN and tumorigenesis by directly regulating a transcriptional program that governs chromosomal stability.
Collapse
Affiliation(s)
- Mathew C Casimiro
- Department of Cancer Biology, Thomas Jefferson University and Hospital, Kimmel Cancer Center, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|