1
|
Kang X, Chen H, Zhou Z, Tu S, Cui B, Li Y, Dong S, Zhang Q, Xu Y. Targeting Cyclin-Dependent Kinase 1 Induces Apoptosis and Cell Cycle Arrest of Activated Hepatic Stellate Cells. Adv Biol (Weinh) 2024; 8:e2300403. [PMID: 38103005 DOI: 10.1002/adbi.202300403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Liver fibrosis is the integral process of chronic liver diseases caused by multiple etiologies and characterized by excessive deposition of extracellular matrix (ECM). During liver fibrosis, hepatic stellate cells (HSCs) transform into a highly proliferative, activated state, producing various cytokines, chemokines, and ECM. However, the precise mechanisms that license HSCs into the highly proliferative state remain unclear. Cyclin-dependent kinase 1 (CDK1) is a requisite event for the transition of the G1/S and G2/M phases in eukaryotic cells. In this study, it is demonstrated that CDK1 and its activating partners, Cyclin A2 and Cyclin B1, are upregulated in both liver fibrosis/cirrhosis patient specimens and the murine hepatic fibrosis models, especially in activated HSCs. In vitro, CDK1 is upregulated in spontaneously activated HSCs, and inhibiting CDK1 with specific small-molecule inhibitors (CGP74514A, RO-3306, or Purvalanol A) orshort hairpin RNAs (shRNAs) resulted in HSC apoptosis and cell cycle arrest by regulating Survivin expression. Above all, it is illustrated that increased CDK1 expression licenses the HSCs into a highly proliferative state and can serve as a potential therapeutic target in liver fibrosis.
Collapse
Affiliation(s)
- Xinmei Kang
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Huaxin Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Zhuowei Zhou
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Silin Tu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Bo Cui
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Yanli Li
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Shuai Dong
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Qi Zhang
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Yan Xu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| |
Collapse
|
2
|
Ren Z, Li J, Du X, Shi W, Guan F, Wang X, Wang L, Wang H. Helicobacter pylori-Induced Progranulin Promotes the Progression of the Gastric Epithelial Cell Cycle by Regulating CDK4. J Microbiol Biotechnol 2022; 32:844-854. [PMID: 35880418 PMCID: PMC9628913 DOI: 10.4014/jmb.2203.03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori, a group 1 carcinogen, colonizes the stomach and affects the development of stomach diseases. Progranulin (PGRN) is an autocrine growth factor that regulates multiple cellular processes and plays a tumorigenic role in many tissues. Nevertheless, the mechanism of action of PGRN in gastric cancer caused by H. pylori infection remains unclear. Here, we investigated the role of PGRN in cell cycle progression and the cell proliferation induced by H. pylori infection. We found that the increased PGRN was positively associated with CDK4 expression in gastric cancer tissue. PGRN was upregulated by H. pylori infection, thereby promoting cell proliferation, and that enhanced level of proliferation was reduced by PGRN inhibitor. CDK4, a target gene of PGRN, is a cyclin-dependent kinase that binds to cyclin D to promote cell cycle progression, which was upregulated by H. pylori infection. We also showed that knockdown of CDK4 reduced the higher cell cycle progression caused by upregulated PGRN. Moreover, when the PI3K/Akt signaling pathway (which is promoted by PGRN) was blocked, the upregulation of CDK4 mediated by PGRN was reduced. These results reveal the potential mechanism by which PGRN plays a major role through CDK4 in the pathological mechanism of H. pylori infection.
Collapse
Affiliation(s)
- Zongjiao Ren
- Department of Pathogenic Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Jiayi Li
- Department of Pathogenic Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Xianhong Du
- Department of Pathogenic Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China,Key Lab for Immunology in Universities of Shandong Province, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Wenjing Shi
- Department of Gynecology, Weifang Medical University Affiliated Hospital, Weifang 261000, Shandong, P.R. China
| | - Fulai Guan
- Laboratory of Morphology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Xiaochen Wang
- Department of Pathogenic Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Linjing Wang
- Clinical Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Hongyan Wang
- Department of Pathogenic Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China,Key Lab for Immunology in Universities of Shandong Province, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China,Corresponding author Phone: +8615966097518 Fax: +86-0536-8462035 E-mail:
| |
Collapse
|
3
|
Kashyap D, Garg VK, Sandberg EN, Goel N, Bishayee A. Oncogenic and Tumor Suppressive Components of the Cell Cycle in Breast Cancer Progression and Prognosis. Pharmaceutics 2021; 13:pharmaceutics13040569. [PMID: 33920506 PMCID: PMC8072616 DOI: 10.3390/pharmaceutics13040569] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer, a disease of inappropriate cell proliferation, is strongly interconnected with the cell cycle. All cancers consist of an abnormal accumulation of neoplastic cells, which are propagated toward uncontrolled cell division and proliferation in response to mitogenic signals. Mitogenic stimuli include genetic and epigenetic changes in cell cycle regulatory genes and other genes which regulate the cell cycle. This suggests that multiple, distinct pathways of genetic alterations lead to cancer development. Products of both oncogenes (including cyclin-dependent kinase (CDKs) and cyclins) and tumor suppressor genes (including cyclin-dependent kinase inhibitors) regulate cell cycle machinery and promote or suppress cell cycle progression, respectively. The identification of cyclins and CDKs help to explain and understand the molecular mechanisms of cell cycle machinery. During breast cancer tumorigenesis, cyclins A, B, C, D1, and E; cyclin-dependent kinase (CDKs); and CDK-inhibitor proteins p16, p21, p27, and p53 are known to play significant roles in cell cycle control and are tightly regulated in normal breast epithelial cells. Following mitogenic stimuli, these components are deregulated, which promotes neoplastic transformation of breast epithelial cells. Multiple studies implicate the roles of both types of components-oncogenic CDKs and cyclins, along with tumor-suppressing cyclin-dependent inhibitors-in breast cancer initiation and progression. Numerous clinical studies have confirmed that there is a prognostic significance for screening for these described components, regarding patient outcomes and their responses to therapy. The aim of this review article is to summarize the roles of oncogenic and tumor-suppressive components of the cell cycle in breast cancer progression and prognosis.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India;
| | | | - Elise N. Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Neelam Goel
- University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, Punjab, India
- Correspondence: (N.G.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (N.G.); or (A.B.)
| |
Collapse
|
4
|
Chotiner JY, Wolgemuth DJ, Wang PJ. Functions of cyclins and CDKs in mammalian gametogenesis†. Biol Reprod 2020; 101:591-601. [PMID: 31078132 DOI: 10.1093/biolre/ioz070] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Cyclins and cyclin-dependent kinases (CDKs) are key regulators of the cell cycle. Most of our understanding of their functions has been obtained from studies in single-cell organisms and mitotically proliferating cultured cells. In mammals, there are more than 20 cyclins and 20 CDKs. Although genetic ablation studies in mice have shown that most of these factors are dispensable for viability and fertility, uncovering their functional redundancy, CCNA2, CCNB1, and CDK1 are essential for embryonic development. Cyclin/CDK complexes are known to regulate both mitotic and meiotic cell cycles. While some mechanisms are common to both types of cell divisions, meiosis has unique characteristics and requirements. During meiosis, DNA replication is followed by two successive rounds of cell division. In addition, mammalian germ cells experience a prolonged prophase I in males or a long period of arrest in prophase I in females. Therefore, cyclins and CDKs may have functions in meiosis distinct from their mitotic functions and indeed, meiosis-specific cyclins, CCNA1 and CCNB3, have been identified. Here, we describe recent advances in the field of cyclins and CDKs with a focus on meiosis and early embryogenesis.
Collapse
Affiliation(s)
- Jessica Y Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Lu S, Sung T, Amaro M, Hirakawa B, Jessen B, Hu W. Phenotypic Characterization of Targeted Knockdown of Cyclin-Dependent Kinases in the Intestinal Epithelial Cells. Toxicol Sci 2020; 177:226-234. [PMID: 32556214 DOI: 10.1093/toxsci/kfaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine kinases that regulate cell cycle and have been vigorously pursued as druggable targets for cancer. There are over 20 members of the CDK family. Given their structural similarity, selective inhibition by small molecules has been elusive. In addition, collateral damage to highly proliferative normal cells by CDK inhibitors remains a safety concern. Intestinal epithelial cells are highly proliferative and the impact of individual CDK inhibition on intestinal cell proliferation has not been well studied. Using the rat intestinal epithelial (IEC6) cells as an in vitro model, we found that the selective CDK4/6 inhibitor palbociclib lacked potent anti-proliferative activity in IEC6 relative to the breast cancer cell line MCF7, indicating the absence of intestinal cell reliance on CDK4/6 for cell cycle progression. To further illustrate the role of CDKs in intestinal cells, we chose common targets of CDK inhibitors (CDK 1, 2, 4, 6, and 9) for targeted gene knockdown to evaluate phenotypes. Surprisingly, only CDK1 and CDK9 knockdown demonstrated profound cell death or had moderate growth effects, respectively. CDK2, 4, or 6 knockdowns, whether single, double, or triple combinations, did not have substantial impact. Studies evaluating CDK1 knockdown under various cell seeding densities indicate direct effects on viability independent of proliferation state and imply a potential noncanonical role for CDK1 in intestinal epithelial biology. This research supports the concept that CDK1 and CDK9, but not CDKs 2, 4, or 6, are essential for intestinal cell cycle progression and provides safety confidence for interphase CDK inhibition.
Collapse
Affiliation(s)
- Shuyan Lu
- Drug Safety Research and Development, Pfizer Inc., San Diego, California 92121
| | - Tae Sung
- Drug Safety Research and Development, Pfizer Inc., San Diego, California 92121
| | - Marina Amaro
- Drug Safety Research and Development, Pfizer Inc., San Diego, California 92121
| | - Brad Hirakawa
- Drug Safety Research and Development, Pfizer Inc., San Diego, California 92121
| | - Bart Jessen
- Drug Safety Research and Development, Pfizer Inc., San Diego, California 92121
| | - Wenyue Hu
- Drug Safety Research and Development, Pfizer Inc., San Diego, California 92121
| |
Collapse
|
6
|
Teng M, Jiang J, He Z, Kwiatkowski NP, Donovan KA, Mills CE, Victor C, Hatcher JM, Fischer ES, Sorger PK, Zhang T, Gray NS. Development of CDK2 and CDK5 Dual Degrader TMX‐2172. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Jie Jiang
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Zhixiang He
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Nicholas P. Kwiatkowski
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Katherine A. Donovan
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Caitlin E. Mills
- Laboratory of Systems Pharmacology Department of Systems Biology Harvard Medical School Boston MA USA
| | - Chiara Victor
- Laboratory of Systems Pharmacology Department of Systems Biology Harvard Medical School Boston MA USA
| | - John M. Hatcher
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Eric S. Fischer
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Peter K. Sorger
- Laboratory of Systems Pharmacology Department of Systems Biology Harvard Medical School Boston MA USA
| | - Tinghu Zhang
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Nathanael S. Gray
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| |
Collapse
|
7
|
Teng M, Jiang J, He Z, Kwiatkowski NP, Donovan KA, Mills CE, Victor C, Hatcher JM, Fischer ES, Sorger PK, Zhang T, Gray NS. Development of CDK2 and CDK5 Dual Degrader TMX-2172. Angew Chem Int Ed Engl 2020; 59:13865-13870. [PMID: 32415712 DOI: 10.1002/anie.202004087] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinase 2 (CDK2) is a potential therapeutic target for the treatment of cancer. Development of CDK2 inhibitors has been extremely challenging as its ATP-binding site shares high similarity with CDK1, a related kinase whose inhibition causes toxic effects. Here, we report the development of TMX-2172, a heterobifunctional CDK2 degrader with degradation selectivity for CDK2 and CDK5 over not only CDK1, but transcriptional CDKs (CDK7 and CDK9) and cell cycle CDKs (CDK4 and CDK6) as well. In addition, we demonstrate that antiproliferative activity in ovarian cancer cells (OVCAR8) depends on CDK2 degradation and correlates with high expression of cyclin E1 (CCNE1), which functions as a regulatory subunit of CDK2. Collectively, our work provides evidence that TMX-2172 represents a lead for further development and that CDK2 degradation is a potentially valuable therapeutic strategy in ovarian and other cancers that overexpress CCNE1.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Chiara Victor
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - John M Hatcher
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Hsieh YYP, Makrantoni V, Robertson D, Marston AL, Murray AW. Evolutionary repair: Changes in multiple functional modules allow meiotic cohesin to support mitosis. PLoS Biol 2020; 18:e3000635. [PMID: 32155147 PMCID: PMC7138332 DOI: 10.1371/journal.pbio.3000635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/07/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The role of proteins often changes during evolution, but we do not know how cells adapt when a protein is asked to participate in a different biological function. We forced the budding yeast, Saccharomyces cerevisiae, to use the meiosis-specific kleisin, recombination 8 (Rec8), during the mitotic cell cycle, instead of its paralog, Scc1. This perturbation impairs sister chromosome linkage, advances the timing of genome replication, and reduces reproductive fitness by 45%. We evolved 15 parallel populations for 1,750 generations, substantially increasing their fitness, and analyzed the genotypes and phenotypes of the evolved cells. Only one population contained a mutation in Rec8, but many populations had mutations in the transcriptional mediator complex, cohesin-related genes, and cell cycle regulators that induce S phase. These mutations improve sister chromosome cohesion and delay genome replication in Rec8-expressing cells. We conclude that changes in known and novel partners allow cells to use an existing protein to participate in new biological functions.
Collapse
Affiliation(s)
- Yu-Ying Phoebe Hsieh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Vasso Makrantoni
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Robertson
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Adèle L. Marston
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
9
|
Caglar HO, Biray Avci C. Alterations of cell cycle genes in cancer: unmasking the role of cancer stem cells. Mol Biol Rep 2020; 47:3065-3076. [DOI: 10.1007/s11033-020-05341-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/22/2020] [Indexed: 02/07/2023]
|
10
|
Liu H, Li Z, Huo S, Wei Q, Ge L. Induction of G0/G1 phase arrest and apoptosis by CRISPR/Cas9-mediated knockout of CDK2 in A375 melanocytes. Mol Clin Oncol 2019; 12:9-14. [PMID: 31832188 PMCID: PMC6904871 DOI: 10.3892/mco.2019.1952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 07/03/2019] [Indexed: 01/14/2023] Open
Abstract
Cutaneous melanoma is one of the most common malignant skin tumors, with a continuously increasing incidence. Cyclin-dependent kinase (CDK) 2 is a key regulator of G1-S transition and modulation of G2 progression; however, its role in cancer is a matter of debate. In the present study, a lentivirus expressing single-guide RNA (sgRNA) was constructed to knock out CDK2 using CRISP/Cas9 technology, in order to confirm the role of CDK2 in A375 human melanoma cells. The results demonstrated that CDK2 knockout induced G0/G1 phase arrest and early apoptosis by downregulating the expression of CDK4 and cyclin A2, and by upregulating the expression of cyclin D1. These results suggest that therapeutic strategies designed to target CDK2 using CRISP/Cas9 may improve the treatment outcome of cutaneous melanoma.
Collapse
Affiliation(s)
- Houguang Liu
- Department of Dermatology, The Third Hospital of Xiamen, Xiamen, Fujian 361100, P.R. China
| | - Zheng Li
- Department of Dermatology, The Third Hospital of Xiamen, Xiamen, Fujian 361100, P.R. China
| | - Shanshan Huo
- Department of Dermatology, The Third Hospital of Xiamen, Xiamen, Fujian 361100, P.R. China
| | - Qiongling Wei
- Department of Dermatology, The Third Hospital of Xiamen, Xiamen, Fujian 361100, P.R. China
| | - Ling Ge
- Department of Dermatology, The Third Hospital of Xiamen, Xiamen, Fujian 361100, P.R. China
| |
Collapse
|
11
|
Cdk2 strengthens the intra-S checkpoint and counteracts cell cycle exit induced by DNA damage. Sci Rep 2017; 7:13429. [PMID: 29044141 PMCID: PMC5647392 DOI: 10.1038/s41598-017-12868-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/17/2017] [Indexed: 02/03/2023] Open
Abstract
Although cyclin-dependent kinase 2 (Cdk2) controls the G1/S transition and promotes DNA replication, it is dispensable for cell cycle progression due to redundancy with Cdk1. Yet Cdk2 also has non-redundant functions that can be revealed in certain genetic backgrounds and it was reported to promote the G2/M DNA damage response checkpoint in TP53 (p53)-deficient cancer cells. However, in p53-proficient cells subjected to DNA damage, Cdk2 is inactivated by the CDK inhibitor p21. We therefore investigated whether Cdk2 differentially affects checkpoint responses in p53-proficient and deficient cell lines. We show that, independently of p53 status, Cdk2 stimulates the ATR/Chk1 pathway and is required for an efficient DNA replication checkpoint response. In contrast, Cdk2 is not required for a sustained DNA damage response and G2 arrest. Rather, eliminating Cdk2 delays S/G2 progression after DNA damage and accelerates appearance of early markers of cell cycle exit. Notably, Cdk2 knockdown leads to down-regulation of Cdk6, which we show is a non-redundant pRb kinase whose elimination compromises cell cycle progression. Our data reinforce the notion that Cdk2 is a key p21 target in the DNA damage response whose inactivation promotes exit from the cell cycle in G2.
Collapse
|
12
|
Ianes C, Xu P, Werz N, Meng Z, Henne-Bruns D, Bischof J, Knippschild U. CK1δ activity is modulated by CDK2/E- and CDK5/p35-mediated phosphorylation. Amino Acids 2016; 48:579-92. [PMID: 26464264 DOI: 10.1007/s00726-015-2114-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 10/23/2022]
Abstract
CK1 protein kinases form a family of serine/threonine kinases which are highly conserved through different species and ubiquitously expressed. CK1 family members can phosphorylate numerous substrates thereby regulating different biological processes including membrane trafficking, cell cycle regulation, circadian rhythm, apoptosis, and signal transduction. Deregulation of CK1 activity and/or expression contributes to the development of neurological diseases and cancer. Therefore, CK1 became an interesting target for drug development and it is relevant to further understand the mechanisms of its regulation. In the present study, Cyclin-dependent kinase 2/Cyclin E (CDK2/E) and Cyclin-dependent kinase 5/p35 (CDK5/p35) were identified as cellular kinases able to modulate CK1δ activity through site-specific phosphorylation of its C-terminal domain. Furthermore, pre-incubation of CK1δ with CDK2/E or CDK5/p35 reduces CK1δ activity in vitro, indicating a functional impact of the interaction between CK1δ and CDK/cyclin complexes. Interestingly, inhibition of Cyclin-dependent kinases by Dinaciclib increases CK1δ activity in pancreatic cancer cells. In summary, these results suggest that CK1δ activity can be modulated by the interplay between CK1δ and CDK2/E or CDK5/p35. These findings extend our knowledge about CK1δ regulation and may be of use for future development of CK1-related therapeutic strategies in the treatment of neurological diseases or cancer.
Collapse
Affiliation(s)
- Chiara Ianes
- Department of General and Visceral Surgery, Surgery Centre, Ulm University Hospital, Albert‑Einstein‑Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis. Parasitology 2016; 144:571-582. [PMID: 27928981 DOI: 10.1017/s0031182016002195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.
Collapse
|
14
|
Djakbarova U, Marzluff WF, Köseoğlu MM. DDB1 and CUL4 associated factor 11 (DCAF11) mediates degradation of Stem-loop binding protein at the end of S phase. Cell Cycle 2016; 15:1986-96. [PMID: 27254819 DOI: 10.1080/15384101.2016.1191708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, bulk histone expression occurs in the S phase of the cell cycle. This highly conserved system is crucial for genomic stability and proper gene expression. In metazoans, Stem-loop binding protein (SLBP), which binds to 3' ends of canonical histone mRNAs, is a key factor in histone biosynthesis. SLBP is mainly expressed in S phase and this is a major mechanism to limit bulk histone production to the S phase. At the end of S phase, SLBP is rapidly degraded by proteasome, depending on two phosphorylations on Thr 60 and Thr 61. Previously, we showed that SLBP fragment (aa 51-108) fused to GST, is sufficient to mimic the late S phase (S/G2) degradation of SLBP. Here, using this fusion protein as bait, we performed pull-down experiments and found that DCAF11, which is a substrate receptor of CRL4 complexes, binds to the phosphorylated SLBP fragment. We further confirmed the interaction of full-length SLBP with DCAF11 and Cul4A by co-immunoprecipitation experiments. We also showed that DCAF11 cannot bind to the Thr61/Ala mutant SLBP, which is not degraded at the end of S phase. Using ectopic expression and siRNA experiments, we demonstrated that SLBP expression is inversely correlated with DCAF11 levels, consistent with the model that DCAF11 mediates SLBP degradation. Finally, we found that ectopic expression of the S/G2 stable mutant SLBP (Thr61/Ala) is significantly more toxic to the cells, in comparison to wild type SLBP. Overall, we concluded that CRL4-DCAF11 mediates the degradation of SLBP at the end of S phase and this degradation is essential for the viability of cells.
Collapse
Affiliation(s)
- Umidahan Djakbarova
- a Department of Genetics and Bioengineering , Fatih University , Istanbul , Turkey.,b Bionanotechnology Center , Fatih University , Istanbul , Turkey
| | - William F Marzluff
- c Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,d Program in Molecular Biology and Biotechnology , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - M Murat Köseoğlu
- a Department of Genetics and Bioengineering , Fatih University , Istanbul , Turkey.,b Bionanotechnology Center , Fatih University , Istanbul , Turkey
| |
Collapse
|
15
|
Zhong ZF, Tan W, Wang SP, Qiang WA, Wang YT. Anti-proliferative activity and cell cycle arrest induced by evodiamine on paclitaxel-sensitive and -resistant human ovarian cancer cells. Sci Rep 2015; 5:16415. [PMID: 26553648 PMCID: PMC4639765 DOI: 10.1038/srep16415] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/01/2015] [Indexed: 12/30/2022] Open
Abstract
Chemo-resistance is the main factor for poor prognosis in human ovarian epithelial cancer. Active constituents derived from Chinese medicine with anti-cancer potential might circumvent this obstacle. In our present study, evodiamine (EVO) derived from Evodia rutaecarpa (Juss.) Benth suppressed the proliferation of human epithelial ovarian cancer, A2780 and the related paclitaxel-resistant cell lines and did not cause cytotoxicity, as confirmed by the significant decline of clone formation and the representative alterations of CFDA-SE fluorescence. Meanwhile, EVO induced cell cycle arrest in a dose- and time-dependent manner. This disturbance might be mediated by the cooperation of Cyclin B1 and Cdc2, including the up-regulation of Cyclin B1, p27, and p21, and activation failure of Cdc2 and pRb. MAPK signaling pathway regulation also assisted in this process. Furthermore, chemo-sensitivity potential was enhanced as indicated in A2780/PTXR cells by the down-regulation of MDR-1 expression, accompanied by MDR-1 function suppression. Taken together, we confirmed initially that EVO exerted an anti-proliferative effect on human epithelial ovarian cancer cells, A2780/WT and A2780/PTXR, induced G2/M phase cell cycle arrest, and improved chemo-resistance. Overall, we found that EVO significantly suppressed malignant proliferation in human epithelial ovarian cancer, thus proving to be a potential anti-cancer agent in the future.
Collapse
Affiliation(s)
- Zhang-Feng Zhong
- University of Macau, Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Macau, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Sheng-Peng Wang
- University of Macau, Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Macau, China
| | - Wen-An Qiang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| | - Yi-Tao Wang
- University of Macau, Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Macau, China
| |
Collapse
|
16
|
Djakbarova U, Marzluff WF, Köseoğlu MM. Translation regulation and proteasome mediated degradation cooperate to keep stem-loop binding protein low in G1-phase. J Cell Biochem 2014; 115:523-30. [PMID: 24122909 DOI: 10.1002/jcb.24686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/28/2022]
Abstract
Histone mRNA levels are cell cycle regulated, and the major regulatory steps are at the posttranscriptional level. A major regulatory mechanism is S-phase restriction of Stem-loop binding protein (SLBP) which binds to the 3' end of histone mRNA and participates in multiple steps of histone mRNA metabolism, including 3' end processing, translation and regulation of mRNA stability. SLBP expression is cell cycle regulated without significant change in its mRNA level. SLBP expression is low in G1 until just before S phase where it functions and at the end of S phase SLBP is degraded by proteasome complex depending on phosphorylations on Thr60 and Thr61. Here using synchronized HeLa cells we showed that SLBP production rate is low in early G1 and recovers back to S phase level somewhere between early and mid-G1. Further, we showed that SLBP is unstable in G1 due to proteasome mediated degradation as a novel mechanism to keep SLBP low in G1. Finally, the S/G2 stable mutant form of SLBP is degraded by proteasome in G1, indicating that indicating that the SLBP degradation in G1 is independent of the previously identified SLBP degradation at S/G2. In conclusion, as a mechanism to limit histone production to S phase, SLBP is kept low in G1 phase due to cooperative action of translation regulation and proteasome mediated degradation which is independent of previously known S/G2 degradation.
Collapse
Affiliation(s)
- Umidahan Djakbarova
- Department of Genetics and Bioengineering, Fatih University Istanbul, Istanbul, Turkey; Bionanotechnology Center, Fatih University Istanbul, Istanbul, Turkey
| | | | | |
Collapse
|
17
|
Lotharius J, Gamo-Benito FJ, Angulo-Barturen I, Clark J, Connelly M, Ferrer-Bazaga S, Parkinson T, Viswanath P, Bandodkar B, Rautela N, Bharath S, Duffy S, Avery VM, Möhrle JJ, Guy RK, Wells T. Repositioning: the fast track to new anti-malarial medicines? Malar J 2014; 13:143. [PMID: 24731288 PMCID: PMC4021201 DOI: 10.1186/1475-2875-13-143] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/23/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Repositioning of existing drugs has been suggested as a fast track for developing new anti-malarial agents. The compound libraries of GlaxoSmithKline (GSK), Pfizer and AstraZeneca (AZ) comprising drugs that have undergone clinical studies in other therapeutic areas, but not achieved approval, and a set of US Food and Drug Administration (FDA)-approved drugs and other bio-actives were tested against Plasmodium falciparum blood stages. METHODS Molecules were tested initially against erythrocytic co-cultures of P. falciparum to measure proliferation inhibition using one of the following methods: SYBR®I dye DNA staining assay (3D7, K1 or NF54 strains); [(3)H] hypoxanthine radioisotope incorporation assay (3D7 and 3D7A strain); or 4',6-diamidino-2-phenylindole (DAPI) DNA imaging assay (3D7 and Dd2 strains). After review of the available clinical pharmacokinetic and safety data, selected compounds with low μM activity and a suitable clinical profile were tested in vivo either in a Plasmodium berghei four-day test or in the P. falciparum Pf3D7(0087/N9) huSCID 'humanized' mouse model. RESULTS Of the compounds included in the GSK and Pfizer sets, 3.8% (9/238) had relevant in vitro anti-malarial activity while 6/100 compounds from the AZ candidate drug library were active. In comparison, around 0.6% (24/3,800) of the FDA-approved drugs and other bio-actives were active. After evaluation of available clinical data, four investigational drugs, active in vitro were tested in the P. falciparum humanized mouse model: UK-112,214 (PAF-H1 inhibitor), CEP-701 (protein kinase inhibitor), CEP-1347 (protein kinase inhibitor), and PSC-833 (p-glycoprotein inhibitor). Only UK-112,214 showed significant efficacy against P. falciparum in vivo, although at high doses (ED90 131.3 mg/kg [95% CI 112.3, 156.7]), and parasitaemia was still present 96 hours after treatment commencement. Of the six actives from the AZ library, two compounds (AZ-1 and AZ-3) were marginally efficacious in vivo in a P. berghei model. CONCLUSIONS Repositioning of existing therapeutics in malaria is an attractive proposal. Compounds active in vitro at μM concentrations were identified. However, therapeutic concentrations may not be effectively achieved in mice or humans because of poor bio-availability and/or safety concerns. Stringent safety requirements for anti-malarial drugs, given their widespread use in children, make this a challenging area in which to reposition therapy.
Collapse
Affiliation(s)
- Julie Lotharius
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 rte de Pré-Bois, 1215, Geneva 15, Switzerland
| | | | - Iñigo Angulo-Barturen
- Diseases of the Developing World Medicines Development Campus, GlaxoSmithKline, Madrid, Tres Cantos, Spain
| | - Julie Clark
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Michele Connelly
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Santiago Ferrer-Bazaga
- Diseases of the Developing World Medicines Development Campus, GlaxoSmithKline, Madrid, Tres Cantos, Spain
| | | | | | | | - Nikhil Rautela
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bangalore, India
| | - Sowmya Bharath
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bangalore, India
| | - Sandra Duffy
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Jörg J Möhrle
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 rte de Pré-Bois, 1215, Geneva 15, Switzerland
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Timothy Wells
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 rte de Pré-Bois, 1215, Geneva 15, Switzerland
| |
Collapse
|
18
|
Jiménez J, Ricco N, Grijota-Martínez C, Fadó R, Clotet J. Redundancy or specificity? The role of the CDK Pho85 in cell cycle control. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 4:140-149. [PMID: 24049669 PMCID: PMC3776146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
It is generally accepted that progression through the eukaryotic cell cycle is driven by cyclin-dependent kinases (CDKs), which are regulated by interaction with oscillatory expressed proteins called cyclins. CDKs may be separated into 2 categories: essential and non-essential. Understandably, more attention has been focused on essential CDKs because they are shown to control cell cycle progression to a greater degree. After clearly determining the basic and "core" mechanisms of essential CDKs, several questions arise. What role do non-essential CDKs play? Are these CDKs functionally redundant and do they serve as a mere backup? Or might they be responsible for some accessory tasks in cell cycle progression or control? In the present review we will try to answer these questions based on recent findings on the involvement of non-essential CDKs in cell cycle progression. We will analyse the most recent information with regard to these questions in the yeast Saccharomyces cerevisiae, a well-established eukaryotic model, and in its unique non-essential CDK involved in the cell cycle, Pho85. We will also briefly extend our discussion to higher eukaryotic systems.
Collapse
Affiliation(s)
- Javier Jiménez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, International University of Catalonia Barcelona, Catalonia
| | | | | | | | | |
Collapse
|
19
|
Activation of p107 by fibroblast growth factor, which is essential for chondrocyte cell cycle exit, is mediated by the protein phosphatase 2A/B55α holoenzyme. Mol Cell Biol 2013; 33:3330-42. [PMID: 23775125 DOI: 10.1128/mcb.00082-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The phosphorylation state of pocket proteins during the cell cycle is determined at least in part by an equilibrium between inducible cyclin-dependent kinases (CDKs) and serine/threonine protein phosphatase 2A (PP2A). Two trimeric holoenzymes consisting of the core PP2A catalytic/scaffold dimer and either the B55α or PR70 regulatory subunit have been implicated in the activation of p107/p130 and pRB, respectively. While the phosphorylation state of p107 is very sensitive to forced changes of B55α levels in human cell lines, regulation of p107 in response to physiological modulation of PP2A/B55α has not been elucidated. Here we show that fibroblast growth factor 1 (FGF1), which induces maturation and cell cycle exit in chondrocytes, triggers rapid accumulation of p107-PP2A/B55α complexes coinciding with p107 dephosphorylation. Reciprocal solution-based mass spectrometric analysis identified the PP2A/B55α complex as a major component in p107 complexes, which also contain E2F/DPs, DREAM subunits, and/or cyclin/CDK complexes. Of note, p107 is one of the preferred partners of B55α, which also associates with pRB in RCS cells. FGF1-induced dephosphorylation of p107 results in its rapid accumulation in the nucleus and formation of larger complexes containing p107 and enhances its interaction with E2F4 and other p107 partners. Consistent with a key role of B55α in the rapid activation of p107 in chondrocytes, limited ectopic expression of B55α results in marked dephosphorylation of p107 while B55α knockdown results in hyperphosphorylation. More importantly, knockdown of B55α dramatically delays FGF1-induced dephosphorylation of p107 and slows down cell cycle exit. Moreover, dephosphorylation of p107 in response to FGF1 treatment results in early recruitment of p107 to the MYC promoter, an FGF1/E2F-regulated gene. Our results suggest a model in which FGF1 mediates rapid dephosphorylation and activation of p107 independently of the CDK activities that maintain p130 and pRB hyperphosphorylation for several hours after p107 dephosphorylation in maturing chondrocytes.
Collapse
|
20
|
Davis SW, Ellsworth BS, Peréz Millan MI, Gergics P, Schade V, Foyouzi N, Brinkmeier ML, Mortensen AH, Camper SA. Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol 2013; 106:1-47. [PMID: 24290346 DOI: 10.1016/b978-0-12-416021-7.00001-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types. We now realize that pulsatile hormone secretion involves a 3D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade, we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas.
Collapse
Affiliation(s)
- Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|